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Abstract 
Temperature modelling is a major issue for valuation of weather derivatives. Goodness of fit 
is usually assessed from historical data. However, estimation errors can result in large price 
uncertainty that may be problematic for practical applications. In this paper, we consider a 
temperature ARMA model and quantify the price uncertainties for weather Futures and 
weather options. Each price is seen as a random variable (which is a function of the 
parameters estimator), and we assess price uncertainty by giving confidence intervals. In 
addition, we look for sources of uncertainty, and point out the major defects of the model. 
 
Résumé 
La modélisation des températures est cruciale pour la valorisation des dérivés climatiques. Les 
paramètres des modèles sont estimés à partir de bases de données de températures. 
L’incertitude qui en résulte se répercute sur les évaluations des prix des dérivés climatiques. 
Dans cet article, nous quantifions ces effets pour des contrats futures et des options sur des 
indices de températures. Les prix des dérivés climatiques sont alors vus comme des variables 
aléatoires pour lesquelles nous donnons des intervalles de confiance. Nous déterminons 
également comment les différents paramètres du processus des températures contribuent à 
l’incertitude sur les prix des dérivés climatiques. 
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I. INTRODUCTION 
The market for weather derivatives was launched by investment banks, insurance 

companies and utilities in the late 90’s. Most of the contracts are OTC though some can be 
traded on Future Exchanges (CME, LIFFE-Euronext). These products provide protection 
against losses due to non-catastrophic climatic events. End-users are, mostly, energy 
companies but also theme parks, breweries, winter shipment manufacturers, leisure resorts, 
fertiliser manufacturers… The underlying climatic risks are measured by means of indexes 
built from available meteorological data.  

 
Since these markets are currently quite illiquid and not very transparent, it is difficult to 

mark to market the products and calibrate some parameters from market prices. Thus, market 
participants rather use econometric models plus a pricing rule and then mark to model. We 
want here to investigate the magnitude of model risk arising from this approach. We look for 
key parameters that are most influential on prices. The outcome of the paper is twofold: 
firstly, we show that parameters that drive the mean of the temperature are the most 
important, even for short-term products. This suggests that more emphasis should be put with 
respect to modelling temperature trends. Secondly, we can provide some confidence intervals 
for prices; this can be used for determining a reserve policy and better cope with model risk. 

 
The article is organised as follows. In section II, we describe more precisely the model risk 

issue. In section III, we present the data, and some specifications for the weather derivatives 
used. In section IV, we quantify price uncertainty corresponding to (daily) temperature 
modelling. In particular, we look for sources of uncertainty by assessing specific influence of 
each parameter (or groups of parameters) on prices. Finally, some concluding remarks and 
directions for future researches are given in section V. 

 

II. MODEL RISK METHODOLOGY 
 
The researches on temperature modelling have led to some autoregressive econometric 

models, which are well suited for simulating temperatures over time horizons within some 
months, that is the usual maturity of weather contracts1. Earlier work relied upon a Hull and 
White AR(1) model (Dischel (1998), Dornier and Quéruel (2000) or Moréno (2000)). More 
recently, Brody, Syroka and Zervos (2001) have proposed to replace the traditional Brownian 
motion by a fractional Brownian motion, leading to a fractional Ornstein – Uhlenbeck, 
allowing to incorporate a long memory effect. Besides, Davis (2001) has used the geometric 
Brownian motion to model the accumulated HDDs (or CDDs). The second approach is based 
solely on time series. Initially, an ARMA model with periodic variance was proposed by Cao 
and Wei (1998). Campbell and Diebold (2000) show that conditional heteroskedasticity needs 
to be added in the model to eliminate the misspecifications observed for US cities. However, 
the periodic ARMA model was found to be well suited for French cities (see Roustant, 2002) 
and we will further rely on this approach. 

 
Given a payoff contract based on temperatures, the use of Black and Scholes replication 

technology is questionable due to the lack of underlying hedging asset2. Since for these new 
products, the market is illiquid and not very transparent, market participants rather use a 
                                                           
1 However, this time horizon is too long for relying on meteorological forecasts. 
2 One may think to use weather Futures contracts to hedge weather options. However, up to now the weather 
market is far from being liquid. Unlike electricity there is no spot market for weather quantities. 
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“marked-to-model” than a “marked-to-market” approach. There are currently a number of 
pricing methodologies for such contracts, see Carr, Geman and Madan (1999), Davis (2001), 
Musiela and Zariphopoulou (2001), Schweizer (2001) or Barrieu and El Karoui (2002). In the 
following, we will rely on a pricing rule, known by actuaries as the “standard deviation 
principle” (see Goovaerts et al., 1984, or Bühlmann, 1996):  

[ ] [ ]( ) X . XP X E λ σ= +   (*) 

where X denotes the expected payoff and [ ]. Xλ σ  is known as the safety loading and 
corresponds to a risk premium. This approach has been used for long by practitioners and has 
also been thoroughly studied: Moller (2001, 2003a and 2003b) and Schweizer (2001) have 
considered the pricing of such claims in a financial environment and Hürlimann (2001), 
Denneberg (1990) compares the standard deviation principle with other pricing approaches. 
We will thereafter call net premium the first term [ ]XE  and for the second one, [ ]Xσ , we 
will speak of “risk premium”.  

 
The mark to model approach results in higher model risk. Reserve policy can be used to 

cope with model risk. Nevertheless, an important practical point is to look for the sources of 
model risk: model risk can come through misspecification of the temperature process or from 
parameter uncertainty3. After checking the statistical adequacy of our model (tests, out-of-
sample analysis, …), we look for the key parameters with respect to model risk. Thereafter, 
we use the ARMA temperature model that can be seen as a benchmark. In addition to its 
simplicity that makes the study feasible, note that it takes into account the major 
characteristics of temperature (trend, seasonality, seasonality of dispersion, complexity of the 
dynamics). With this modelling, we assess independently net premium and risk premium 
uncertainty of weather Futures and options. Let Θ  be the vector of parameters involved in the 
distribution ( )Q Θ  of the temperature process. Given some valuation rule such as the standard 
deviation, the true price is: 

[ ] [ ]( ) ( )( ) discounted payoff . discounted payoffQ QP P E λ σΘ Θ= Θ = +  

where ( )QE Θ  and ( )Qσ Θ  denote the expectation and the standard distribution under ( )Q Θ . 
Since one can only deal with an estimator Θ̂  of Θ , this results in some price uncertainty: 

[ ] [ ]ˆ ˆ( ) ( )ˆ ˆ( ) discounted payoff . discounted payoffQ QP P E λ σΘ Θ= Θ = +  
Therefore, the price of some weather derivative can itself be seen as a random variable4. In 

the following, we will consider confidence intervals of the price estimator as a way to assess 
this parameter uncertainty. This approach is common in other fields of finance (see Bawa, 
Brown, Klein, 1979 or Jorion, 1985, for some work related to portfolio management, or 
Campbell, Lo, MacKinlay, 1997, § 9.3.3, for option pricing). This methodology deals only 
with parameter uncertainty and assumes that the statistical model is well specified (for a 
relaxation of this assumption, see Cairns, 2000). 

 
Compared with sensitivity analysis, this statistical approach to model risk assessment takes 

into account the precision estimation which may vary among parameters. For instance, one 
may have a good precision in estimating variance and a poor precision with respect to mean 
parameters. 

 
 
 

                                                           
3 Since there are no liquid prices we cannot calibrate the parameters from traded prices. 
4 This is not surprising since for illiquid markets, one can only think of a price distribution. 
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III. PRESENTATION OF DATA AND CONTRACTS. 

1. Common specifications 

Most of weather contracts are based on temperature. On the CME exchange, the 
temperature risk for a monthly period is measured by HDD and CDD indexes:  

 in month
( )ref t

t
HDD X X += −∑   

 in month
( )t ref

t
CDD X X += −∑  

where tX  is the average temperature at date t, defined as the mean of the minimum and 
maximum temperature observed during the day, and refX  is a baseline temperature (its 
standard value is 18°C). On the LIFFE-Euronext exchange, temperature indexes are monthly 
means (or seasonally means) of daily average temperatures. The payoff of a given weather 
derivative contract is computed from these indexes. This is the main difference with an 
insurance product: no demonstration of loss is required, the decision of reimbursement and 
the size of the possible compensations are based on measurement of temperature. It appears 
that the OTC markets also use such indices. Common specifications of weather derivatives 
involve the location, the temperature index and the risk exposure period. Now, we explicit our 
choices for the present study. 

• Location 

As mentioned in the introduction, we focus on the Paris case. For that location indeed, the 
Gaussian ARMA process used for the temperature modelling (see section IV for details) is 
rather satisfactory (see Roustant, 2002): unlike the US case (see Campbell and Diebold, 
2000), the heteroskedasticity phenomena are not too important for French locations. 

• Temperature index 

We have chosen to work with the Heating Degree-Day (HDD) and Cooling Degree-Day 
(CDD) indexes: 

( )
v

ref t
t u

HDD X X +

=
= −∑   ( )

v

t ref
t u

CDD X X +

=
= −∑  

[ ; ]u v  is the risk exposure period, tX  denotes the daily average temperature, equal to the 
mean of the maximum and minimum daily temperatures, and refX  is the standard baseline 
temperature equal to 18°C. This value is a benchmark in the industry since it is usually 
considered that heating starts when temperatures go below 18°C. 

We could have considered other indexes, such as monthly average of daily temperatures, 
which are used in the LIFFE-Euronext weather exchange. Actually for months of interest, the 
two kinds of indexes are closely related, as wee see now. Thus, the methodology presented 
here applies and we obtain identical conclusions. 

• Risk exposure period 

Usually HDD indexes are computed during the “winter season” from October to April (or 
November to March, it depends) whereas CDD indexes are used during the “summer season” 
from May to September. The risk exposure period is mostly considered as the entire season or 
a specified month. In this paper, we only consider monthly indexes and restrict to the 
geographic seasons: December to February for winter, June to August for summer. We focus 
on these contracts for two reasons. First, the months considered are the coldest and the hottest 
ones, and thus correspond to the most important needs for hedging. In addition, for these 
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months, the results will apply either for CME or LIFFE-Euronext contracts: we argue that for 
each month in the (geographic) winter season (resp. summer season), we have: 

( )
v

ref t
t u

HDD X X
=

≈ −∑           (1) 

(resp. ( )
v

t ref
t u

CDD X X
=

≈ −∑ ) ; therefore HDD or CDD indexes are an affine function of the 

LIFFE-Euronext monthly average of daily temperatures index. This approximation is quite 
natural since in winter almost all temperatures lie below 18refX C= ° . Moreover, assuming 
that the temperature model of section IV is correct, we can convince ourselves that (1) may 
hold by simulating a lot of temperature paths and representing the estimated quantiles of the 
index versus those of its approximation. Such a QQ-plot obtained is drawn in Figure 1. It 
corresponds to the December case, and was obtained with 610R =  temperature paths. The 
perfect observed alignment still remains when we perturb the temperature model’s 
parameters. 

In conclusion, we will consider in the present paper monthly risk exposure periods among 
December, January or February (and thus, relative to HDD index) and June, July and August 
(relative to CDD index). 

 

2. Weather Futures and options 

Temperature-based weather Futures (also called swaps) and options are written on the 
temperature index, noted TI . 

• Futures pricing 

The Future price is calculated so that the initial value is 0. With our methodology, we can 
consider that the payoff is the temperature index itself since: 

       [ ] [ ]0 .E TI F TI Fλ σ= − + −  

   ⇔    [ ] [ ].F E TI TIλ σ= +  
(F denotes the Future price). From now on, we will adopt this point of view. 

• Weather options 

A fundamental characteristic of an option is its strike price. Firstly, we suggest considering 
the historical average temperature index’s, denoted by 0K . It will be interesting for statistical 
reasons (see section III, §2.). Of course there is no justification for focusing solely on this 
particular choice, and finally, we consider five different strikes,  

0 60K − , 0 30K − , 0K , 0 30K + , 0 60K +  
such as two consecutive strikes are separated by a value corresponding to an elevation of one 
degree per a day. 
 

3. The data 

We use daily average temperature from the 1st of January 1979 to the 31st of December 
1999, observed at Paris-Montsouris. The source of data is Météo France. In order to facilitate 
the treatment, we did not consider the 29th of January, which corresponds to remove 5 values 
per station for a total of 7665 temperatures. 
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4. Notations 

We recall some major notations of the paper: 
 
 TI   temperature index 
 tX   daily average temperature 
 NP   net premium: [ ]discounted payoffE . 

 RP   “risk premium”: [ ]discounted payoffσ . 
 0K   historical average temperature index’s 
 

IV. PRICE UNCERTAINTY WITH TEMPERATURE MODELLING 
As mentioned in section II, we have chosen a simple ARMA model, which captures most 

of the features of temperature. We study the corresponding price uncertainty and assess 
marginal influence of each parameter, or group of parameter such as trend, seasonality, 
volatility or stochastic part. It shows the defects of the temperature model towards weather 
derivatives pricing issue. 

1. The temperature model 
The model of temperature takes into account the major characteristics of temperature: 

seasonality of the values and of the dispersion, quick reversion to the mean, correlations from 
the days before and today... It has presented by Cao and Wei (1998) or Roustant (2002). It is a 
linear model with a periodic variance:  

ttttt ZsmX .σ++=  
where:  

• tm  represents the trend; 
• ts  is the seasonal component; 
• tσ  is a deterministic and periodic process with an annual periodicity representing the 

standard deviation of tX ; we assume that 0>tσ . 
• tZ  is an ARMA process with variance 1 :  

qtqttptptt ZZZ −−−− ++++++= εθεθεφφ .......... 1111  
where )( tε  is a Gaussian white noise.  
Moreover, we assume: 

• etdmt += .  

• ∑
=

+=
fN

i
iit tibtias

1

))..sin(.)..cos(.( ωω  

• ).sin(.).cos(. tctbat ωωσ ++=  
with  365/2πω = . 
Choosing such a parametric form allows easy computation of maximum likelihood 

estimator. For the seasonal component, the choice of frequencies is achieved by means of a 
preliminary spectral analysis of the normal temperature of each series. In the case of Paris, the 
discrete curve of the normal temperature is asymmetric which forces the use of at least two 
frequencies. Finally, we retained the form 
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∑
=

+=
2

1

)..sin(.)..cos(.
i

iit tibtias ωω . 

The selection of  p and q , the orders of the ARMA model is accomplished by standard 
procedures (see Brockwell and Davis, 1991), after a preliminary estimation of tm , ts and tσ . 
It leads to the choice 3=p , 0=q .  

 

2. Price uncertainty 
From now on, we assume that the model of temperature is well specified. Thus, following 

the approach described above, the price of a weather derivative contract can be computed 
analytically and is simply a function P of the parameters involved in the model of 
temperature. If Θ  denotes the vector of parameters, and Θ̂  its maximum likelihood 
estimator, the price ˆ( )P Θ  is the maximum likelihood estimator of ( )P Θ . The goal of this 
paragraph is to quantify the precision of this estimator. This is done in two steps: firstly, an 
asymptotic pivotal statistic for Θ  is explicited; secondly, we derive an approximate 
distribution for ˆ( )P Θ . Price uncertainty is assessed as an interquantile interval. Moreover, we 
argue that, when the payoff is approximately a linear function of temperature, the result can 
be fully interpreted as a confidence interval. This is the case of the net premium of Futures 
corresponding to “non- intermediate” months considered here, such as winter or summer 
months. 

2.1. Statistical properties of the temperature model's parameters estimator 
The model used for temperature is roughly an ARMA model with a deterministic pattern 

including trend and seasonality, and a deterministic correction for the seasonal volatility. We 
recall that for an ARMA process, we have the following result. If Θ  is the parameters vector 
and Θ̂  the maximum likelihood estimator of Θ , then Θ̂  is asymptotically Gaussian (see 
Gouriéroux and Montfort, 1997):  ( )ˆ (0; ( ))nn N→+∞Θ − Θ  → Γ Θ . 

 
Here, we assume that this results still holds for the periodic ARMA process. This is not 

unreasonable for two reasons. Firstly, the additional parametric forms tm , ts  and tσ  for 
trend, seasonality and volatility are all deterministic. Secondly, remark that this asymptotical 
result may give a good proxy for the exact distribution of ( )ˆn Θ − Θ  since the sample size is 

rather large ( 7.665n = ); Now, we can check a posteriori the normality property for the 
distribution of Θ̂ . Indeed, by using a simulation technique, as shown in the appendix, one can 
obtain independent realisations of Θ̂ . Then, standard normality tests can be used. We have 
studied both the normality of the marginal distributions using the Kolmogorov test and the 
normality of the whole distribution, with the skewness and kurtosis tests, as presented in 
(Lütkepohl, 1993, § 4.5., formulas 4.5.4., 4.5.5. and 4.5.8). The results (see Table 2) show that 
the distributional assumption for Θ̂  is satisfactory5. 

 

                                                           
5 In particular, the difficulty for the trend parameters is not general: results obtained with an American 
temperature series show it. Rather, it may indicate that the asymptotic normality is not totally reached yet. 
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The same simulated realisations can be used to estimate the covariance matrix ( )Γ Θ . Thus, 
the normality of the temperature model’s parameter estimator can be used to derive confident 
intervals for the weather derivatives products6. This is the aim of next paragraph.  

  
Moreover, let us mention that the expression of the covariance matrix provides us with 

information about the temperature model itself. For easier legibility, we have reported details 
and results in the appendix (see Table 1 for the covariance matrix). The most striking one is 
the significance of the growing trend. Indeed, even if the estimation results of literature have 
exhibited a growing trend (explained by the global warming and urbanisation phenomena), 
this one is rather small and might have been non significant at all, because of estimation 
errors. We can see that it is not the case. 

2.2. Assessment of price uncertainty. 
We discuss two methodologies for the assessment of Future price uncertainty the first one 

based on asymptotic expansions and the second one based on simulation. 

• Asymptotic methodology. 

From the assumption above, we can easily derive an asymptotic pivotal statistic of ( )P Θ , 
by using a first-order Taylor expansion (see Campbell, Lo and MacKinlay, 1997, section A.4. 
of the appendix). We then have: 

 ( )ˆ( ) ( ) (0; ( ))Pnn P P N v→+∞Θ − Θ  → Θ  (1) 

where ( ) ( )
'P

P Pv ∂ ∂Θ = Γ Θ
∂Θ ∂Θ

. 

If we can compute the expression above, then we can estimate ( )Pv Θ  in a natural way by 
replacing Θ  by its sample estimation, and deduce an asymptotic confidence interval for 

( )P Θ . 
The major drawback with this methodology is that we have no idea of the accuracy of the 

asymptotic distribution of ˆ( )P Θ . Thus, it is useful to look for the shape of the exact 
distribution and to precise the situations where the two ones merge. 

• Simulation methodology. 

We get an approximation of the exact distribution of ˆ( )P Θ  by using a simulation 
technique: 

− simulate independently 1Θ̂ , ..., ˆ RΘ  with the Gaussian distribution of covariance 
matrix ( )Γ Θ  obtained previously; 

− calculate ( )1ˆP Θ , ..., ( )ˆ RP Θ . 

Therefore price uncertainty is assessed by two quantiles of ˆ( )P Θ  estimated with the 

simulated sample ( )1ˆP Θ , ..., ( )ˆ RP Θ . 

• Discussion 

Both methodologies lead to approximate confidence intervals. However, the uncertainty 
may be assessed in a more realistic manner if the exact distribution departs from the 
asymptotic Gaussian one. In that case, we will prefer following the simulation methodology. 

                                                           
6 As we will see, the asymptotic part of the result is not strictly required. 
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• Linear payoff. 

In last paragraph, we have noticed the importance of situations in which payment is a 
Gaussian random variable. In practise, this happens when the payoff is a linear function; in 
our purpose, this is the case for the net premium of a Future contract for any “non-
intermediate” months, such as winter or summer months. Indeed, for the months considered 
here, the temperature index is an affine combination of the model’s parameters. By linearity 
of the payoff, ˆ( )P Θ  then reduces to an affine combination of the model's parameters. Since 
the parameters estimator is approximately normally distributed, we conclude that ˆ( )P Θ  is 
approximately normally distributed too.  

• Results 

Some results are indicated in Table 3, Table 4 and Table 5. The conclusions are quite 
different whether they concern Futures or options contracts. For Futures, price uncertainty is 
reasonable and may even be acceptable in some cases, as for a winter month HDD contract 
with an order of magnitude of 5%. On the other hand, we observe large price uncertainty in 
the options case: the net premium uncertainty is about 50% when the strike is the historical 
average temperature index’s and can increase dramatically for higher strike prices (actually, 
the quality of estimation seems to decrease with the estimated price).  

To go further in the understanding of these results, we now focus on local influence on 
prices of parameters, or groups of parameters. 

2.3. Assessment of local price uncertainty 
Up to the present time, we have assessed price uncertainty due to estimation error of all 

parameters. But can we quantify the impact of estimation error around trend only (for 
instance) on the weather derivative price? We will speak of local uncertainty as opposed to 
(global) price uncertainty studied before. Denote by 1Θ  the set of parameters we want to 
assess influence (in our example, 1Θ  consists of the two parameters modelling trend) and 2Θ  
the other ones; let 1Θ̂  and 2Θ̂  the corresponding (maximum likelihood) estimators. Then the 
issue can be addressed by estimating the conditional distribution: 

( )1 2 2
ˆ ˆP Θ Θ = Θ  

Therefore local price uncertainty can be assessed exactly in the same way as for price 
uncertainty. Indeed, assume that 

( )ˆ (0; ( ))nn N→+∞Θ − Θ  → Γ Θ  

Now introduce the partition in ( )Γ Θ  corresponding to ( )1 2;Θ = Θ Θ : 11 12

21 22

Γ Γ 
Γ =  Γ Γ 

; 

hence ijΓ  represents the (asymptotic) matrix of the covariances between ( )ˆ
i in Θ − Θ  and 

( )ˆ
j jn Θ − Θ . Then we have (see Saporta, § 4.2.4):  

( ) 1
1 1 2 2 11 12 22 21

ˆ ˆ (0; )nn N −
→+∞Θ − Θ Θ = Θ  → Γ − Γ Γ Γ  

Therefore, using again a first Taylor expansion (see § 2.2. Asymptotic methodology), we 
get: 

( ) 21 1 2 2 | 1
ˆ ˆ( ) ( ) (0; ( ))Pnn P P N v Θ→+∞Θ − Θ Θ = Θ  → Θ  
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with ( )
2

1
1 11 12 22 21

1 1

( )
'P

P Pv −
Θ

∂ ∂Θ = Γ − Γ Γ Γ
∂Θ ∂Θ

. 

In practise, as discussed before, we do not use last result but prefer resampling in the 
conditional asymptotic distribution of 1Θ̂  to get an approximation of the exact distribution of 

1 2 2
ˆ ˆ( )P Θ Θ = Θ . 

• Results 

Figure 2 and Figure 4 show the marginal influence of groups of parameters. They represent 
simulated samples (obtained with 410R =  simulations) of the (entire) price distribution and 
the price conditional distributions corresponding to trend, seasonality, volatility or 
autoregressive part. Before discussing the results, remark that in the Future case, only two 
groups of parameters come into account in the net premium and the risk premium expression 
(see Appendix A.1.) - trend and seasonality only for the former, dispersion and stochastic part 
only for the latter. Now, we clearly observe that the largest uncertainties on prices are 
essentially caused by trend and seasonality estimation errors. We can even say that both trend 
and seasonality are responsible for price uncertainty since the involved parameters are nearly 
independent (see the correlation matrix, Table 1). 

In order to assess the local influence of each parameter, we compare prices conditional 
distributions corresponding to a sole parameter (Figure 3 and Figure 5). We conclude that 
trend slope is the most harmful parameter. To obtain this result, a change of parameter has 
been necessary; indeed in the basic form the two trend parameters are highly negatively 
correlated and it would have been impossible to dissociate the specific influence of only one 
of them. On the other hand, with the new parameterisation, trend slope is nearly independent 
of all other parameters (see Appendix A.3.). This confirms the idea that the trend modelling 
by a straight line is too rough and, in particular, that a small deviation of the slope should 
cause a large deviation on the temperature level and then on the (model) prices. However the 
lack of accuracy is not due solely to this parameter as we have seen on Figure 3 and Figure 5. 

 
Finally, we see that the temperature model imperfections that are most harmful for weather 

derivatives prices, come from the modelling of the deterministic parts relative to the process 
mean, that is: trend and seasonality. 

 

V. CONCLUSION 
Motivated by the development of statistical modelling for weather derivatives, we have 

addressed the issue of price uncertainty coming from risk estimation in a given model. We 
have assessed price uncertainty obtained with a Gaussian ARMA process (with periodic 
volatility). We observe dramatic uncertainty around options prices. After searching for the 
source of that uncertainty, we conclude that the parameters of the process mean - that is: trend 
and seasonality parameters, are essentially responsible for it. 

These conclusions indicate that some efforts should be done on the modelling of trend and 
seasonality. For instance, new models could allow stochastic trend and seasonality. Of course 
the improvements of the stochastic part, such as the incorporation of conditional 
heteroskedasticity in the model (Campbell and Diebold, 2000) or long memory effects 
(Brody, Syroka and Zervos, 2001), should also be useful, especially for options. 
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APPENDIX  
 
A.1. Analytical expressions of options net premiums and risk premiums 
By an immediate computation, one can show the following: 
 
Lemma. Let K be a real, and X a Gaussian random variable, ( )2,X N µ σ! . Then, with 

( )Y K X += −  (resp. ( )Y X K += − ), we have: 

( ) ( )

2

22 2 2

1. ( ) exp
22

1 . ( ) exp
22

LE Y L N L

L LE Y L N L

σ
π

σ
π

+

+

    = + −      
    = + + −       

 

where KL µ
σ
−=  (resp. KL µ

σ
−= − .), and N(.) denotes the standard normal cumulative 

function. 
 
Application. For instance consider the case of HDD options. Denote by [u; v] the period of 

risk exposure, and ( )tX  the temperature process. Then, for the months considered here, the 
HDD index equals approximately 

( )
v

ref t
t u

HDD X X
=

≈ −∑  

where refX  is the standard threshold, that is 18refX C= ° . Since ( )tX  is a Gaussian process, 
we deduce that  

. ( ); '. .
v

ref t t Z
t u

HDD N l X m s ρ ρ
=

 − + Γ 
 

∑!  

with notations of section III and where, in addition, 1l v u= − +  (the period length), ρ  is the 
vector 1l × , 1( ; ;...; )u u vρ ρ ρ ρ+=  and ZΓ  the l l×  autocorrelations matrix of the 

autoregressive process Z, ( ) ( )0, cov ;Z i ji j Z Z −Γ = , 1 ,i j l≤ ≤ . Then, the lemma applies. 

 
 
A.2. Statistical properties of the temperature model parameters  
 
We consider the temperature model  

ttttt ZsmX .σ++= , 
where 1 1. ... .t t p t p tZ Z Zφ φ ε− −= + + + , and the residuals process ( )tε  is a Gaussian white 

noise. Denote by Θ  the parameter vector, and Θ̂  the maximum likelihood estimator. In 
§IV.2, we have assumed that ( )ˆ( ) 0, ( )nn N→+∞Θ − Θ  → Γ Θ . Now, we show below how to 

obtain independent realisations *1Θ ,..., *RΘ  of Θ̂  without using the preceding assumption, by 
a simulation technique. These ones are used to check the distributional assumption of Θ̂ (see 
Table 2), and lead to the standard estimation of ( )Γ Θ  by the empirical covariance matrix 
computed from the *rΘ (see results below): 
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, * *

1

ˆ 1 ( )( )
R

i j r r
i i j j

rn R =

Γ
= Θ − Θ Θ − Θ∑  

with  *

1

1 R
r

i i
rR =

Θ = Θ∑  ( *r
iΘ  denotes the i-th coordinate of *rΘ ). 

Independent realisations from the distribution of Θ̂  can be obtained from the data by 
simulation in the standard way, as shown in (Efron and Tibshirani, 1986, §6). Practically, for 

Rr ,...,1= , we do the following operations: 
− simulate independently **

1 ,..., nεε  from the estimated Gaussian distribution of 
residuals.  

− reconstitute the corresponding temperature path **
1 ,..., nxx  using the temperature 

model with the initial parameter estimation : 
* *.t t t t tx m s zσ= + + ,  

   with * * * *
1 1
ˆ ˆ. ... .t t p t p tz z zφ φ ε− −= + + +   and * * *

0 1 1... 0pz z z− −= = = = ; 

− calculate the maximum likelihood estimate *rΘ  from the “new data” **
1 ,..., nxx . 

Actually, we make a statistical error by replacing the true distribution of residuals by its 
estimated one, and the true parameter vector by its (maximum likelihood) estimation. 
Nevertheless, it may be small because of the large sample size, n = 7665. Thus we can 
consider that *1Θ ,..., *RΘ  are independent realisations of Θ̂ . 

 

• Numerical result 

Below, we give the standard deviation of estimation of the parameters, and the correlation 
matrix computed from the covariance matrix obtained using the aforementioned simulation 
technique with 2.000R =  simulations. To improve the quality of estimation, a new 
parameterisation was adopted for trend. Parameters have been gathered according to their 
belonging to the characteristics of the model: trend, seasonality, dispersion and autoregressive 
part. Half of the matrix is represented for legibility reasons; one will deduce the other side by 
symmetry.  

Here are some remarks that can be made.  
!"About the estimation of the trend, we see that the estimated slope is positive in a 

significant manner, though the estimation error is large; thus the trend is significantly 
increasing. Moreover the estimators of the slope d and the constant e are highly negatively 
correlated (not given here). Indeed, overestimating the slope result in underestimating the 
constant, as increasing the inclination of a mobile bar fixed at its middle result in lowering the 
lowest end. One can reduce dramatically this correlation by replacing the constant e by 

' .e d t e= +  where t  is the mean time. This is what we have done. 
!"Moreover, the estimators of a and 1φ  are highly positively correlated. We can 

understand it by approximating a by the standard deviation of the process tσ  and 
approximating tZ  by an AR(1) process, so that tttt ZasmX .++≈  with ttt ZZ εφ +≈ −11. . 
Hence we remark that, intuitively, overestimating 1φ  results in decreasing the dispersion of 

tZ  which leads to overestimate a to “fit” the dispersion of the data.  
Eventually, the estimation of the coefficients of the autoregressive process and their 

correlations are very close to what we obtain by estimating the coefficients of an AR(3) model 
using the de-trended and deseasonalised data (but with a constant dispersion).  The maximum 
likelihood estimation procedure of such a model is a simple least squares estimation 
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procedure, whereas the estimation of the temperature model, which is also a maximum 
likelihood procedure, is nearly equivalent to use least squares weighted by tσ . The fact that 
the weighting is not too significant may explain the closeness of the results. The introduction 
of a periodic variance is especially useful to obtain closer to reality errors (Roustant, 2002). 



14 

 
Table 1. Parameters of the temperature model: estimated values, standard deviations 

and correlation matrix 
 

Paris-Montsouris 
    (Trend) 

θ 
emvθ̂  σ  d  e’ 

d 1.85* .48*  1  
e’ 12.1 .11  .00 1  (Seasonality) 
       a1 b1 a2 b2  

a1 -7.39 .15  .01 .07  1     
b1 -2.67 .15  .06 .04  -.01 1    
a2 -0.14 .15  -.01 -.01  .03 -.05 1   
b2 0.74 .15  .03 .02  .04 .01 .00 1  (Dispersion)  
            a b c  

a 3.35 .05  -.00 .01  .01 .00 .02 .03  1    
b 0.11 .04  -.01 .00  .03 .01 -.02 .01  .02 1   
c 0.15 .04  -.02 .02  -.02 -.02 .02 .00  .10 -.03 1  (AR process)  
                φ1 φ2 φ3  

φ1 0.92 .01  -.01 .02  -.01 .00 .01 .02  .57 -.01 .03  1    

φ2 -0.19 .01  .01 .01  .03 .01 -.00 -.01  -.08 .01 .03  -.68 1   
φ3 0.06 .01  .02 .03  -.02 -.01 .00 .01  .06 .02 -.01  .16 -.68 1  

 
* : ×10-4 
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Table 2. Results of the normality tests for the distribution of Θ̂  
 

 Paris Chicago 
  
Marginal distributions Kolmogorov statistic 

d̂  * 0.0248 0.0160 
ê  * 0.0228 0.0167 

1â  0.0101 0.0152 

1̂b  0.0169 0.0129 

2â  0.0171  

2̂b  0.0137  

â  0.0165 0.0155 

b̂  0.0105 0.0146 
ĉ  0.0095 0.0094 

1̂φ  0.0158 0.0193 

2̂φ  0.0133 0.0135 

3̂φ  0.0141 0.0162 

  
Multidimensional 

 distribution p-value 

 Skewness test 0.5955 0.6258 
 Kurtosis test 0.0517 0.0879 
 Joint test 0.1497 0.2227 

 
This table gives the results of normality tests for samples of length 2.000R = , obtained by 
simulation on temperature data relative to Paris-Montsouris and O’Hare Airport (Chicago) 
[for the latter, data are available freely on the Chicago Mercantile Exchange website]. For 
Kolmogorov test, with 5% confidence level, normality is rejected here when the statistic value 
is superior to 0.0200; corresponding cases are indicated by a star. 
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Figure 1. Validity of the linear approximation for the temperature indexes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QQ-plot of the estimated centiles of the December HDD index (at Paris) 
versus those of its linear approximation, obtained with 106 simulations. 
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Table 3. Future price uncertainty. 
 

December HDD Future. Paris. 
 Net premium Risk premium 
Estimated value 370.0 49.1 
Uncertainty [351.6; 388.9] [45.5; 52.2] 
Relative uncertainty* (%) [-5.2; 5.0] [-7.3; 6.3] 

 
July CDD Future. Paris. 

 Net premium Risk premium 
Estimated value 88.3 46.1 
Uncertainty [70.1; 106.2] [43.0; 48.9] 
Relative uncertainty* (%) [-20.5; 20.4] [-6.6; 6.0] 

 
* around the estimated value. 
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Table 4. Option price uncertainty. 
 

Call option on Future December HDD, with strike price 0K . Paris. 
 Net premium Risk premium 
Estimated value 14.5 24.9 
Uncertainty [8.1; 23.6] [18.3; 31.3] 
Relative uncertainty* (%) [-44.2; 62.3] [-26.2; 25.8] 

 
Call option on Future July CDD, with strike price 0K . Paris. 

 Net premium Risk premium 
Estimated value 22.6 29.6 
Uncertainty [13.7; 34.2] [23.2; 35.3] 
Relative uncertainty* (%) [-39.2; 51.0] [-21.6; 19.2] 

 
K0  is the historical average temperature index’s.  
 
* around the estimated value. 
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Table 5. Option price uncertainty versus strike price. 
 

Net premium of some December HDD call options. Paris. 
Strike price Estimated 

value 
Uncertainty Relative uncertainty* (%) 

0 60K −  53.0 [38.4; 69.6] [-27.5; 31.2] 

0 30K −  30.4 [19.5; 44.1] [-35.9; 44.5] 

0K  14.5 [8.1; 23.6] [-44.2; 62.3] 

0 30K +  5.5 [2.5; 10.5] [-54.6; 89.6] 

0 60K +  1.6 [0.6; 3.7] [-62.6; 126.8] 
 

Risk premium of the some December HDD call options. Paris. 
Strike price Estimated 

value 
Uncertainty Relative uncertainty* (%) 

0 60K −  42.5 [37.6; 46.2] [-11.5; 8.7] 

0 30K −  34.8 [28.3; 40.3] [-18.8; 15.5] 

0K  24.9 [18.3; 31.3] [-26.2; 25.8] 

0 30K +  15.1 [9.7; 21.2] [-35.2; 40.4] 

0 60K +  7.8 [4.4; 12.2] [-42.4; 56.7] 
 

0K  is the historical average temperature index’s. Here, 0 381.1K = . 
 
* around the estimated value. 
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Figure 2. Future price uncertainty - Local price uncertainty due to the model 
components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulated samples of the price* distribution and conditional distributions**  
of the December HDD Future, Paris. 

 
* NP: net premium – RP: risk premium. 
** In the conditioning, all parameters are fixed except those involved in the specified 

group of parameters: trend, seasonality, volatility or autoregressive part (AR). 
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Figure 3. Future price uncertainty - Local price uncertainty due to each parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulated samples of the price* distribution and conditional distributions**  
of the December HDD Future, Paris. 

 
* NP: net premium – RP: risk premium. 
** In the conditioning, all parameters are fixed except the one indicated. 
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Figure 4. Option price uncertainty - Local price uncertainty due to the model 
components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulated samples of the price* distribution and conditional distributions**  
of the call option on the December HDD Future with strike price 0K  , Paris. 

 
0K  is the historical average temperature index’s.  

 
* NP: net premium – RP: risk premium. 
** In the conditioning, all parameters are fixed except those involved in the specified 

group of parameters: trend, seasonality, volatility or autoregressive part (AR). 
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Figure 5. Option price uncertainty - Local price uncertainty due to each parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulated samples of the price* distribution and conditional distributions**  
of the call option on the December HDD Future with strike price 0K , Paris. 

 
0K  is the historical average temperature index’s.  

 
* NP: net premium – RP: risk premium. 
** In the conditioning, all parameters are fixed except those involved in the specified 

group of parameters: trend, seasonality, volatility or autoregressive part (AR). 
 

 


