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Abstract

We consider the computation of quantiles and spectral risk measures for discrete

distributions. This accounts for the empirical distributions of portfolio returns or

outcomes of Monte Carlo simulations. We study the di¤erentiability of quantiles with

respect to portfolio allocation. We show that quantiles and spectral risk measures are

piecewise linear with respect to portfolio allocation. We also provide di¤erentiability

conditions for a given allocation and relate the gradient to conditional expectations.

Eventually, we extend our results to spectral or distortion risk measures.

The theory of risk measures is expanding quite quickly with contributions coming for the actuarial commu-
nity, …nancial mathematicians and specialists of optimisation. For example, Artzner et al [1999], Delbaen
[2000] introduce the concept of coherent measures of risk, which Acerbi [2002] further specializes to spec-
tral measures of risk. On the insurance side Denneberg [1990], Wang et al [1997] introduce the closely
related concept of distortion risk measures based on earlier work by Yaari [1987], Schmeidler [1986, 1989].
Amongst popular risk measures being considered by the …nancial community, one may quote the expected
shortfall (see Pflug [2000], Acerbi et al [2001], Acerbi & Tasche [2001, 2002], Rockafellar & Urya-
sev [2000, 2002]). Chateauneuf et al [1996], Hodges [1998], Frittelli [2000], Föllmer & Schied
[2002], have related such non linear approaches to pricing rules in markets with frictions. Amongst the
actuarial community, the same kind of approaches have been applied to study the PH transform of Wang
[1995], or other risk measures such as the absolute deviation of Denneberg [1990]. Wang & Young [1998],
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Wirch & Hardy [1999], Landsman & Sherris [2001], Dhaene et al [2003] provide other applications of
the risk measure theory to insurance problems.

Among signi…cant contributions for practitioners, Rockafellar & Uryasev [2000, 2002] have proposed
a very fast algorithm for computing e¢cient frontiers under Expected Shortfall constraints. They exhibit
an underlying piecewise linear structure that allows the use of linear programming techniques. The use
of discrete distributions is a key aspect of the technique. On the other hand, while the sensitivity of
VaR measures has been explored for continuous distributions, we do not have such results for discrete
distributions. Discrete distributions are important for practical purpose since there are involved through
empirical measures or outcomes of Monte Carlo simulations. For such discrete distributions, we show that
quantiles are piecewise linear functions of portfolio allocations. This property is inherited by spectral risk
measures or using the actuarial terminology by (concave) distortion risk measures. As a consequence, one
may use linear programming techniques as was already suggested by Acerbi & Simonetti [2002]. In case
of di¤erentiability with respect to portfolio allocation, we show that the result stated by Gouriéroux,
Laurent & Scaillet [2000], Tasche [2000] is still valid. Non di¤erentiability is related to the possibility
of multiple scenarios leading to the same portfolio value.

The paper is organized as follows. For the paper to be self-contained, the …rst section reviews some basic
results about quantiles. The second section considers quantiles of discrete distributions. The third section
studies quantiles of portfolio returns with applications towards sensitivity analysis with respect to portfolio
allocation. The third section shows how the results can be extended to spectral risk measures (or distortion
risk measures).

1 Quantiles
Let us start with some common de…nitions about quantiles.

Dé…nition 1.1 Quantile set
Let us consider a real random variable X on a probabilistic space (­;A; P ) and ® 2]0; 1[. The set:

Q®(X) = fx 2 R; P (X < x) · ® · P (X · x)g : (1.1)

de…nes the ® quantiles of X.

It can be readily checked that Q®(X) is an interval1 : let x1 and x2 be in Q®(X), x1 < x2 and y 2]x1; x2[.
Since x1 < y, P (X · x1) · P (X · y), we get ® · P (X · y). Since y < x2, P (X < y) · P (X < x2) and
since P (X < x2) · ®, we get P (X < y) · ®. This shows that y is in Q®(X). From the de…nition, it is clear
thatQ®(X) depends onX only through its distribution (invariance in distribution). We can also immediately
state some invariance with respect to location and scale: let a 2 R, then Q®(X + a) = Q®(X) + a, where
Q®(X) + a = fx+ a; x 2 Q®(X)g; let ¸ > 0, then Q®(¸X) = ¸Q®(X), where ¸Q®(X) = f¸x; x 2 Q®(X)g.

1We will see later on that Q®(X) is closed and non empty.
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1.1 Higher quantile
Dé…nition 1.2 higher quantile
Let (­;A; P ) be a probabilistic space and ® 2]0; 1[. For X being a real random variable de…ned on (­;A; P ),

q+® (X) = supfx 2 R; P (X < x) · ®g (1.2)

is the higher quantile of order ® of X.

Let us check that the set fx 2 R; P (X < x) · ®g is non empty and thus q+® (X) is well de…ned: the sets
X¡1(] ¡1; n[), n 2 N are decreasing and \n2NX¡1(] ¡1;¡n[) = ;. Thus, limn!1 P (X < ¡n) = 0. As
a consequence, 9n0 2 N, P (X < ¡n0) · ®. Let us now check that for ® 2]0; 1[, q+® (X) 2 R or equivalently
the set fx 2 R; P (X < x) · ®g is upper bounded. If the set fx 2 R; P (X < x) · ®g was not bounded, we
could construct an increasing series (xn)n2N converging to in…nity, with 8n 2 N, P (X < xn) · ®. From the
left continuity of x! P (X < x), we vould obtain 1 · ® and thus a contradiction. We can also notice that
for ® = 1, we always have q+® (X) =1.

The following proposition relates q+® (X) and the set of quantiles Q®(X).

Proposition 1.1 Let (­;A; P ) be a probabilistic space and ® 2]0; 1[. q+® (X) is an ® quantile of X and is
the right end of Q®(X).

Proof:
Let us now …rstly that q+® (X) is in Q®(X):

² let us …rstly show that ® · P (X · q+® (X)). Let us assume that ® > P (X · q+® (X)). We consider
a decreasing series (xn)n2N converging to q+® (X). Since x ! P (X · x) is right continuous, P (X ·
xn)! P (X · q+® (X)) and there exists n such that ® > P (X · xn). Then ® > P (X < xn) and since
xn > q

+
® (X), q

+
® (X) cannot be the higher quantile.

² let us now check that P (X < q+® (X)) · ®. Let us consider an increasing series (xn)n2N in the set
fx 2 R; P (X < x) · ®g converging towards q+® (X). Since s 2 R ! P (X < s) is left continuous, we
obtain P (X < xn) ! P (X < q+® (X)). Since 8n 2 N, P (X < xn) · ®, limn!1 P (X < xn) · ®.
Eventually, P (X < q+® (X)) · ®, which shows that q+® (X) 2 Q®(X) and thus the set Q®(X) is not
empty.

Let us now show that x 2 Q®(X) implies that x · q+® (X).
² since x is an ® quantile, we get P (X < x) · ®. From the de…nition of q+® (X), x is smaller than
q+® (X). q

+
® (X) is then on the right of Q®(X).

q+® (X) is then the right end of the quantile set Q®(X). Since Q®(X) is an interval, we have just shown that
it was closed on the right. We can also provide an alternative characterization of the higher quantile that is
often used:

Proposition 1.2 higher quantile
Let (­;A; P ) be a probabilistic space, ® 2]0; 1[ and X a random variable. Then,

q+® (X) = inffx 2 R; P (X · x) > ®g: (1.3)
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Proof: let us denote q®(X) = inffx 2 R; P (X · x) > ®g.
² let us …rstly show that q®(X) · q+® (X). Let us assume that q®(X) > q+® (X). Let z 2]q+® (X); q®(X)[.

– z < q®(X). This implies P (X · z) · ®. Indeed, if P (X · z) > ®, we would have q®(X) · z,
by de…nition of q®(X).

– z > q+® (X). We then get P (X < z) > ®. If P (X < z) · ®, we would have z · q+® (X) by
de…nition of q+® (X). But P (X · z) ¸ P (X < z), then P (X · z) > ®. This provides the
inconsistency we were looking for.

² let us now show that q®(X) ¸ q+® (X). Let x1 be such that P (X < x1) · ® and x2 such that
P (X · x2) > ®. Since P (X < x1) < P (X · x2), x1 · x22 . This shows q+® (X) · q®(X). ¥

1.2 Characterization of higher quantile
Proposition 1.3 Characterization of higher quantile
Let (­;A; P ) be a probabilistic space, ® 2]0; 1[ and X a random variable. Let s 2 R. Then,

q+® (X) ¸ s, P (X < s) · ®:

Proof:

² P (X < s) · ® implies s · q+® (X) since q+® (X) = supfs 2 R; P (X < s) · ®g.
² let us assume that s · q+® (X). Then, P (X < s) · P (X < q+® (X)). Since q

+
® (X) is a quantile,

P (X < q+® (X)) · ®, which shows that P (X < s) · ®). ¥

We can remark that the previous proposition can also be written as: q+® (X) < s , P (X < s) > ®. As a
consequence, we readily obtain the following:

Corollary 1.1 Simulating X
Let U be a [0; 1] uniform random variable3 . Then, the random variable q+U (X) has the same distribution as
X.

Proof: from the previous proposition, we can state, P
¡
q+U (X) < s

¢
= P (U < P (X < s)) = P (X < s).

q¡U (X) and X have the same distribution function and thus the same distribution. ¥

1.3 Lower quantile
Dé…nition 1.3 lower quantile
Let (­;A; P ) be a probabilistic space and ® 2]0; 1[. For X being a real random variable de…ned on (­;A; P ),

q¡® (X) = inffx 2 R; P (X · x) ¸ ®g (1.4)

is the lower quantile of order ® of X

2Indeed if x1 > x2, then ]¡1; x2] ½]¡1; x1], which implies P (X · x2) · P (X < x1).
3U is not necessarily de…ned on the same probability space as X. Indeed, it may be that no uniform

random variable can be de…ned on (­;A; P ).
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Let us …rstly check that for ® 2]0; 1[, the set fx 2 R; P (X · x) ¸ ®g is not empty. From the basic properties
of distribution functions, we get that limx!1 P (X · x) = 1. As a consequence, there exists some x 2 R
such that P (X · x) ¸ ®. Let us now check that the set fx 2 R; P (X · x) ¸ ®g is bounded from below
that is q¡® (X) 2 R. If the previous set was not bounded from below, we could construct a decreasing to ¡1
series (xn)n2N with P (X · xn) ¸ ®. From the right continuity of x ! P (X · x), we would obtain 0 ¸ ®
and thus a contradiction. We can also notice that for ® = 0, we always have q¡® (X) = ¡1.

The following proposition provides an alternative characterization of the lower quantile.

Proposition 1.4 lower quantile
Let (­;A; P ) be a probabilistic space, ® 2]0; 1[ and X a random variable. Then,

q¡® (X) = supfx 2 R; P (X < x) < ®g: (1.5)

While the de…nition provides a right approximation of the lower quantile, the latter expression provides a
left approximation.

Proof: let us denote q® = supfx 2 R; P (X < x) < ®g.
² …rstly, we show that q® · q¡® (X). Let x1 such that P (X < x1) < ® and x2 such that P (X · x2) ¸ ®.
Since P (X < x1) < P (X · x2), x1 · x2. Then:

sup
fx1;P (X<x1)<®g

x1 · inf
fx2;P (X·x2)¸®g

x2;

which means q® · q¡® (X).
² let us now show that q¡® (X) · q®. Let us assume q® < q¡® (X). Let z be such that q® < z < q¡® (X).

– z > q®. We cannot have P (X < z) < ®, otherwise from the de…nition of q®, z · q®. Thus,
P (X < z) ¸ ®.

– z < q¡® (X). We cannot have P (X · z) ¸ ® otherwise from the de…nition of q¡® (X), z ¸ q¡® (X).
Thus, P (X · z) < ®.

we then get P (X · z) < P (X < z), thus the required inconsistency. ¥

We can now relate q¡® (X) and the set of quantiles Q®(X).

Proposition 1.5 Let (­;A; P ) be a probabilistic space, ® 2]0; 1[ and X a random variable. q¡® (X) is an ®
quantile of X and is the left end of Q®(X).

Proof: let us …rstly check that q¡® (X) is an ® quantile. The starting point is q¡® (X) = inffx 2 R; P (X ·
x) ¸ ®g. There exists a decreasing series (xn)n2N, such that P (X · xn) ¸ ®, 8n 2 N and converging
towards q¡® (X). By using right continuity of x ! P (X · x), we get P (X · q¡® (X)) ¸ ®. We now use
q¡® (X) = supfx 2 R; P (X < x) < ®g. There exists an increasing series (yn)n2N with P (X < yn) < ®

converging towards q¡® (X). Using left continuity of x! P (X < x), we get P (X < q¡® (X)) · ®. Eventually,
P (X < q¡® (X)) · ® · P (X · q¡® (X)), shows that q¡® (X) 2 Q®(X). Now, let x be an ® quantile of X. By
de…nition of quantiles, we have P (X · x) ¸ ®. By the de…nition of the lower quantile, q¡® (X) = inffx 2
R; P (X · x) ¸ ®g, we get x ¸ q¡® (X), which shows that the lower quantile is the left end of the quantile
set. Eventually, for ® 2]0; 1[, we get Q®(X) = [q¡® (X); q+® (X)].
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1.4 Characterization of lower quantile
Proposition 1.6 Characterization of lower quantile
Let (­;A; P ) be a probabilistic space, ® 2]0; 1[ and X a random variable. Let s 2 R. Then,

q¡® (X) · s, P (X · s) ¸ ®:

Proof:

² P (X · s) ¸ ® implies s ¸ q¡® (X) since q¡® (X) = inffs 2 R; P (X · s) ¸ ®g.
² let us assume that s ¸ q¡® (X). Then, P (X · s) ¸ P (X · q¡® (X)). Since q¡® (X) is a quantile,
P (X · q¡® (X)) ¸ ®, which shows P (X · s) ¸ ®). ¥

As for the higher quantile, we can simulate X from its lower quantile.

Corollary 1.2 simulating X
Let U be a uniform random variable on [0; 1]. Then the random variable q¡U (X) has the same distribution
as X.

Proof: From the previous proposition, P
¡
q¡U (X) · s

¢
= P (U · P (X · s)) = P (X · s). q¡U (X) and X

have the same distribution function and thus the same distribution. ¥

1.5 Quantiles of ¡X
Proposition 1.7 Quantiles of ¡X
Let (­;A; P ) be a probabilistic space, ® 2]0; 1[ and X a random variable. The ® quantiles of ¡X are the
opposites of the 1¡ ® quantiles of X. If A is a subset of R, let us denote by ¡A = f¡x; x 2 Ag. Then,

Q®(¡X) = ¡Q1¡®(X);

Proof: Let x be an ® quantile of ¡X. Then P (¡X < x) · ® · P (¡X · x). We can write these two
inequalities as:

1¡ P (¡X ¸ x) · ® · 1¡ P (¡X > x);

or equivalently as: 1 ¡ P (X · ¡x) · ® · 1 ¡ P (X < ¡x), thus P (X < ¡x) · 1 ¡ ® · P (X · ¡x),
which shows that ¡x is an 1¡® quantile of X. We have indeed stated some equivalences, which shows the
property ¥

Corollary 1.3 Let (­;A; P ) be a probabilistic space, ® 2]0; 1[ and X a random variable.

q¡® (¡X) = ¡q+1¡®(X); q+® (¡X) = ¡q¡1¡®(X):

Proof: let us recall that Q®(¡X) = [q¡® (¡X); q+® (¡X)] and Q1¡®(X) = [q¡1¡®(X); q
+
1¡®(X)]

4. Since
¡Q1¡®(X) = [¡q+1¡®(X);¡q¡1¡®(X)], we obtain the required result, thanks to previous proposition.

4These two intervals may be singletons.
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2 Quantiles for discrete distributions
We are now going to consider the case where X is a discrete random variable taking values x1; : : : ; xn,
n 2 N. To each xi, we associate pi > 0, with

Pn
i=1 pi = 1. To ease notations, we assume that x1 · : : : · xn.

In case of equality, we choose an arbitrary ordering. We denote by Pk = P (X · xk) =
P
j;xj·xk pj , for

k = 1; : : : ; n the distribution function of X.

2.1 Quantile Characterization
Let us denote Ak = [Pk¡1; Pk[ for k = 2; : : : ; n5 and A1 =]0; P1[ . The sets A1; : : : ; Ak; : : : ; An form a
partition of ]0; 1[, possibly with some empty sets. We consider the step function i de…ned over ]0; 1[ taking
values in the set f1; : : : ; ng by:

8® 2]0; 1[; i(®) =
X
1·i·n

i1Ai(®): (2.6)

We also de…ne the sets A¤1; : : : ;A¤k; : : : ; A
¤
n by: A

¤
k =]Pk¡1; Pk] for k = 2; : : : ; n¡ 1 and A¤1 =]0; p1]; A¤n =

]Pn¡1; 1[. The sets A¤1; : : : ; A¤k; : : : ; A
¤
n form a partition of ]0; 1[ . We also consider the step function i¤

de…ned on ]0; 1[, taking values in the set f1; : : : ; ng by:

8® 2]0; 1[; i¤(®) =
X
1·i·n

i1A¤i (®): (2.7)

We can then state the following result for ® 2]0; 1[:

Q®(X) = [xi¤(®); xi(®)]: (2.8)

Proof:

² we …rstly set for ® 2]0; 1[6:(
P (X · xi(®)¡1) · ® < P (X · xi(®));
P (X · xi¤(®)¡1) < ® · P (X · xi¤(®)):

By de…nition of functions i and i¤ and because the sets Ak, k = 1; : : : ; n and A¤k, k = 1; : : : ; n form
partitions of ]0; 1[, we get ® 2 Ai(®) and ® 2 A¤i¤(®). From the de…nition of Ak = [Pk¡1; Pk[, Pi(®)¡1 ·
® < Pi(®). From the de…nition of Pk = P (X · xk), P (X · xi(®)¡1) · ® < P (X · xi(®)). We treat
the inequalities regarding i¤ similarly. Let us also remark that as a consequence xi(®)¡1 < xi(®).
Indeed, if xi(®)¡1 = xi(®), then we would have P

¡
X · xi(®)

¢
< P

¡
X · xi(®)

¢
. We can also state

xi¤(®)¡1 < xi¤(®). This allows to write P
¡
X < xi(®)

¢
= P

¡
X · xi(®)¡1

¢
+ P

¡
X 2]xi(®)¡1; xi(®)[

¢
.

The latter term being equal to zero, we get P
¡
X < xi(®)

¢
= P

¡
X · xi(®)¡1

¢
. Similarly, we have

P
¡
X < xi¤(®)

¢
= P

¡
X · xi¤(®)¡1

¢
.

² let us show that [xi¤(®); xi(®)] ½ Q®(X). We write P (X · xi¤(®)¡1) = P (X < xi¤(®)) and P (X ·
xi(®)¡1) = P (X < xi(®)) and using the stated inequalities, we obtain:

5If xk¡1 = xk then Ak is an empty set.
6If i(®) = 1, we then de…ne P (X · xi(®)¡1) = 0, we treat the case i¤(®) = 1 similarly by setting

P (X · xi¤(®)¡1) = 0.
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(
P (X < xi(®)) · ® < P (X · xi(®));
P (X < xi¤(®)) < ® · P (X · xi¤(®)):

This shows that xi(®) and xi¤(®) are ® quantiles of X. As a consequence Q®(X) is not empty. Since
Q®(X) is convex, it also contains the interval [xi¤(®); xi(®)] (we are going to show in the next point
that indeed, xi¤(®) · xi(®)).

² let us show now that Q®(X) ½ [xi¤(®); xi(®)]. We recall that Q®(X) = fx 2 R; P (X < x) ·
® · P (X · x)g. Let x 2 Q®(X)

7. We can write P (X < x) · ® ; since ® < P (X · xi(®)),
we get P (X < x) < P (X · xi(®)). This implies x · xi(®). Indeed if we had xi(®) < x, then
P (X · xi(®)) · P (X · x), which would lead to P (X < x) < P (X · x). By taking x = xi¤(®), we
have also that xi¤(®) · xi(®), which was stated in the previous step.
Let us now write ® · P (X · x). We have P (X · xi¤(®)¡1) < ® · P (X · x). Since P (X ·
xi¤(®)¡1) = P (X < xi¤(®)), we obtain P (X < xi¤(®)) < P (X · x). This implies that xi¤(®) · x.
Indeed, if we had x < xi¤(®), then P (X · x) · P (X < xi¤(®)) would contradict P (X < xi¤(®)) <

P (X < xi¤(®)). We have thus shown that x 2 [xi¤(®); xi(®)], which shows Q®(X) ½ [xi¤(®); xi(®)].

2.2 Higher quantile
Since we already know that Q®(X) = [q¡® (X); q+® (X)], we can state the higher quantile for discrete distri-
butions as:

q+® (X) = xi(®) =
X
1·i·n

xi1Ai(®): (2.9)

Let us now give a further characterization of the higher quantile for discrete distributions. We …rstly remark
that higher (and lower) quantiles of a discrete distribution correspond to points with positive probability.

Proposition 2.8 higher quantile, discrete distribution
Let X be a random variable taking values among xi 2 R, i = 1; : : : ; n. Then,

xi = q
+
® (X) , P (X < xi) · ® < P (X · xi): (2.10)

Proof: we already know that q+® (X) = xi(®) and P (X < xi(®)) · ® < P (X · xi(®)), which shows the direct
implication. Let us now show the converse. The set E = fxi; i 2 f1; : : : ; ng; P (X < xi) · ® < P (X · xi)g
is non empty since it contains xi(®). Let us show that E is a singleton. Let us assume that xi1 and xi2 are
in E and xi1 < xi2 . This implies P (X · xi1) · P (X < xi2) · ®, where the second inequality comes from
xi2 2 E. Since xi1 is also in E, we obtain ® < P (X · xi1), and thus the impossibility. ¥

2.3 Lower quantile
Similarly to the higher quantile, we obtain the lower quantile for discrete distributions as:

q¡® (X) = xi¤(®) =
X
1·i·n

xi1A¤i (®): (2.11)

We get a further characterization of the lower quantile, similar to that of the higher quantile:

7From the previous step, we know that Q®(X) is not empty since xi¤(®) and xi(®) are in Q®(X).
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Proposition 2.9 lower quantile, discrete distribution
Let X be a random variable taking values among xi 2 R, i = 1; : : : ; n. Then,

xi = q
¡
® (X) , P (X < xi) < ® · P (X · xi): (2.12)

Proof: we already know that q+® (X) = xi¤(®) and P (X < xi¤(®)) < ® · P (X · xi¤(®)), which shows the
direct implication. Let us show the converse. The set E = fxi; i 2 f1; : : : ; ng;; P (X < xi) < ® · P (X ·
xi)g is not empty since it contains xi¤(®). Let us show that E is a singleton. Let us assume that xi1 and
xi2 are in E with xi1 < xi2 . Then, P (X · xi1) · P (X < xi2) < ®, where the second inequality comes from
xi2 2 E. Since xi1 is also in E, we obtain ® · P (X · xi1), which contradicts the previous inequality. ¥

3 Portfolio quantiles, discrete distributions
We consider a set of p assets and we denote by x1; : : : ; xn, where the xi are in Rp, the values taken by the
asset returns. X will here denote the vector of returns and we set P (X = xi) = pi > 0 for i = 1; : : : ; n the
joint distribution of the returns. We denote by a 2 Rp the portfolio allocation and by a0 the transpose of a.
Then, for a portfolio allocation a, the set of possible returns are a0x1; : : : ; a0xn. The portfolio distribution
is such that: P (a0X · a0xi) =

Pn
j=1 pj1a0xj·a0xi . Let us remark that we may have a

0xi = a0xj for i 6= j.
In this case, we talk of multiple scenarios. If there are no j 2 f1; : : : ; ng, j 6= i, such that a0xi = a0xj , we
will say that i is an isolated scenario (for portfolio allocation a). For i 2 f1; : : : ; ng, we will further denote
xi = (x

1
i ; : : : ; x

p
i ) where x

j
i , j 2 f1; : : : ; pg corresponds to the return of asset j in scenario i.

3.1 Scenarios associated with a given quantile
We recall that higher or lower quantiles of discrete distributions take their values in the support of the
distribution. Let us …rstly state a technical lemma:

Lemma 3.1 Let i 2 f1; : : : ; ng be a scenario such that a0xi 6= q+® (a0X). Then, there exists a neighbourhood
v(a) of a such that 8b 2 v(a), b0xi 6= q+® (b0X).

Proof:

² let us …rstly assume that a0xi < q+® (a0X). We recall that there exists at least a portfolio value, that
we denote here a0xia(®) such that q

+
® (a

0X) = a0xia(®)
8 . Let us choose z in ]a0xi; a0xia(®)[, z not being

a portfolio value9. Let us choose a neighbourhood of a, v(a), such that 8b 2 v(a), b0xi < z10. This
implies that on v(a), fj 2 1; : : : ; n; b0xj · b0xig ½ fj 2 1; : : : ; n; b0xj < zg. Thus, for all b in v(a),
P (b0X · b0xi) · P (b0X < z). We now look at the set fj 2 1; : : : ; n; a0xj < zg. Since z is not a
portfolio value, for j = 1; : : : ; n, a0xj > z or a0xj < z. We conclude the existence of a neighbourhood
of a, v¤(a) such that for all b in v¤(a), fj 2 1; : : : ; n; b0xj < zg = fj 2 1; : : : ; n; a0xj < zg. Thus, for
all b 2 v¤(a), P (b0X < z) = P (a0X < z). Eventually, for b in v(a) \ v¤(a),

P (b0X · b0xi) · P (a0X < z) · P (a0X < q+® (a
0X)) · ®;

8Several scenarios i 2 f1; : : : ; ng may correspond to that portfolio value.
98j = 1; : : : ; n; a0xj 6= z.
10This is possible since fa 2 Rn; a0xi < zg is open.
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the latter inequality coming from proposition (2.8) characterizing the higher quantile. But, if b0xi =
q+® (b

0X), always by the same proposition (2.8), P (b0X · b0xi) > ®11 ; the scenario i cannot be
associated with a ® quantile for any portfolio b taken in v(a) \ v¤(a).

² let us now show that a0xi > q+® (a
0X). Let us choose z in ]a0xia(®); a

0xi[, z not being a portfolio
value. We take a neighbourhood of a, v(a), such that 8b 2 v(a), b0xi > z12. Thus, on v(a),
fj 2 1; : : : ; n; b0xj ¸ b0xig ½ fj 2 1; : : : ; n; b0xj > zg. Thus, for all b in v(a), P (b0X ¸ b0xi) ·
P (b0X > z). We now look at the set fj 2 1; : : : ; n; a0xj > zg. As before there exists a neighbourhood
of a, v¤(a) such that for all b in v¤(a), fj 2 1; : : : ; n; b0xj > zg = fj 2 1; : : : ; n; a0xj > zg. Thus, for
all b 2 v¤(a), P (b0X > z) = P (a0X > z). Eventually, for all b in v(a) \ v¤(a),

P (b0X ¸ b0xi) · P (a0X > z) · P (a0X > q+® (a
0X)):

We can then state:
P (b0X < b0xi) ¸ P (a0X · q+® (a0X)) > ®;

the second inequality coming from proposition (2.8) characterizing q+® (a
0X). As P (b0X < b0xi) > ®,

b0xi cannot be an ® quantile of b0X13. This shows the lemma.

Dé…nition 3.4 We denote by Ia(®) = fi 2 f1; : : : ; ng; a0xi = q+® (a0X)g the scenarios i 2 f1; : : : ; ng asso-
ciated with the higher quantile q+® (a

0X).

We then state the following proposition:

Proposition 3.10 quantile di¤erentiation, isolated scenarios
Let us assume that the ® quantile q+® (a

0X) is associated with a unique scenario, that is:

#Ia(®) = 1;

where Ia(®) is the set of scenarios associated with the quantile q+® (a
0X). We denote by ia(®) the corres-

ponding scenario and q+® (a
0X) = a0xia(®). Then, the ® higher quantile is di¤erentiable with respect to a

and:

@q+® (a
0X)

@aj
= xjia(®); j = 1; : : : ; n: (3.13)

Proof: let j 2 1; : : : ; n, j 6= ia(®). From the previous lemma, there exists a neighbourhood of a, vj(a)
such that all b in vj(a), j is not associated with a higher ® quantile of b0X. In this neighbourhood of a,
\j 6=ia(®)vj(a), the scenarios j 6= ia(®) are not associated with higher ® quantile of b0X. Since q+® (b0X)
is associated with at least one scenario, it must be ia(®). As a consequence, on this neighbourhood of a,
q+® (b

0X) = a0xia(®), which gives the stated result. ¥

11Let us remark that if b0xi ¸ q+® (b
0X), then P (b0X · b0xi) ¸ P (b0X · q+® (b0X)) > ® and we get a

contradiction. Thus, b0xi < q+® (b0X).
12This can be done sincefa 2 Rn; a0xi > zg is open.
13Let us assume that b0xi · q+® (b0X). Then P (b0X < q+® (b

0X)) ¸ P (b0X < b0xi) ¸ P (a0X · q+® (a0X)) >
®. Eventually, P (b0X < q+® (b

0X)) > ®, which is not possible from proposition (2.8). Thus, b0xi > q+® (b0X).
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The only cases where the quantile is not di¤erentiable with respect to portfolio allocation thus correspond
to multiple scenarios. The set of portfolios a 2 Rn associated with multiple scenarios is included in [i 6=jfa 2
Rn; a0(xi ¡ xj) = 0g. This union of hyperplanes has zero Lebesgue measure by Fubini’s theorem. Higher
quantiles are then almost surely di¤erentiable with respect to portfolio allocation in the case of discrete
distributions. Let us also remark that, in the di¤erentiability case, the partial derivatives are locally constant.

3.2 Continuity of higher quantiles
Let us further study how higher ® quantiles depend on portfolio allocation. We …rstly state a simple
characterization of quantiles for discrete distributions. We recall that for a 2 Rp, q+® (a0X) = supfx 2
R; P (a0X < x) · ®g and P (a0X < q+® (a

0X)) · ®. On the other hand, for a discrete distribution, the
quantiles correspond to portfolio values: q+® (a

0X) 2 fa0xi; i = 1; : : : ; ng. Thus,
q+® (a

0X) = supfa0xi; i = 1; : : : ; n; P (a0X < a0xi) · ®g: (3.14)

Let us notice that the ® higher quantile is the superior envelope of a¢ne functions. We are now going to
show the continuity of q+® (a

0X) with respect to a.

Proposition 3.11 continuity of ® quantiles
Let X be a p dimensional random vector following a discrete distribution and ® 2]0; 1[. Then, a 2 Rp !
q+® (a

0X) is continuous.

Proof: from the previous lemma, there exists a neighbourhood of a, v(a), such that for all portfolios b in
v(a), the quantiles of b0X are associated with scenarios in Ia(®). For b 2 Rp, we can then write:

q+® (b
0X) = supf(a+ (b¡ a))0xi; i 2 Ia(®); P (b0X < b0xi) · ®g;

where the set of scenarios i such that i 2 Ia(®) and P (b0X < b0xi) · ® is non empty. For i 2 Ia(®),
a0xi = q+® (a0X). We can then write:

q+® (b
0X) = q+® (a

0X) + supf(b¡ a)0xi; i 2 Ia(®); P (b0X < b0xi) · ®g: (3.15)

We can write supf(b¡ a)0xi; i 2 Ia(®); P (b0X < b0xi) · ®g · supf(b¡ a)0xi; i 2 f1; : : : ; ngg. By Cauchy-
Schwarz inequality, (b¡ a)0xi ·k b¡ a k £ k xi k. We can then state that for b in v(a),

q+® (b
0X)¡ q+® (a0X) ·k b¡ a k £ max

i=1;::: ;n
k xi k :

Equation (3.15) also allows to state:

q+® (b
0X) ¸ q+® (a0X) + inff(b¡ a)0xi; i = 1; : : : ; ng:

By Cauchy-Schwarz inequality, we get: (b¡a)0xi ¸ ¡ k b¡a k £ k xi k and moreover, ¡ k b¡a k £ k xi k¸
¡ k b¡ a k £ supi=1;::: ;n k xi k. Eventually, inff(b¡ a)0xi; i = 1; : : : ; ng ¸ ¡ k b¡ a k £ supi=1;::: ;n k xi k
and:

q+® (b
0X)¡ q+® (a0X) ¸ ¡ k b¡ a k £ max

i=1;::: ;n
k xi k :

We have then stated:

j q+® (b0X)¡ q+® (a0X) ·jk b¡ a k £ max
i=1;::: ;n

k xi k; (3.16)

which shows that higher quantiles are continuous with respect to portfolio allocation.
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3.3 Right and left di¤erentiability of higher quantiles
We now study the general case where the ® quantile of portfolio a 2 Rp may not be associated with an
isolated quantile.

Proposition 3.12 left and right di¤erentiability of ® quantiles
Let a 2 Rp be a portfolio allocation and q+® (a0X) the corresponding quantile. Let ± 2 Rp be a modi…cation in
the portfolio allocation. q+® (a

0X) is left and right di¤erentiable in the direction ±, and the derivatives are in
between mini2Ia(®) ±

0xi and maxi2Ia(®) ±
0xi, where Ia(®) is the set of scenarios associated with the quantile

q+® (a
0X).

In the special case of an isolated scenario, mini2Ia(®) ±
0xi = maxi2Ia(®) ±

0xi and we …nd back the stated
di¤erentiability result.

Proof: let " > 0. We recall that q+® ((a+ "±)
0X) = supfx 2 R; P ((a+ "±)0X < x) · ®g and that the

sup is reached. On the other hand, for a discrete distribution, the quantiles belong to the support of the
distribution, and there exists a scenario i 2 f1; : : : ; ng such that q+® ((a+ "±)0X) = (a+ "±)0xi. We consider
a scenario i that is not in Ia(®). In this case, a0xi 6= q+® (a

0X). If a0xi < q+® (a
0X), by going back to the

proof of the previous lemma, there exists a neighbourhood of a, vi(a), such that for any portfolio b in vi(a),
b0xi < q+® (b0X). Similarly, if i is a scenario such that a0xi > q+® (a0X), there exists a neighbourhood of a,
v(a), such that for any portfolio b in vi(a), b0xi > q+® (b

0X). Let us now look at the neighbourhood of a,
v(a), where v(a) = [i6=Ia(®)vi(a). Let us choose " such that a+ "± is in v(a). All the scenarios associated
with q+® ((a+ "±)

0X) must be in Ia(®). We can then write the ® quantile of portfolio a+ "± as:

q+® ((a+ "±)
0X) = maxf(a+ "±)0xi; i 2 Ia(®); P ((a+ "±)0X < (a+ "±)0xi) · ®g:

Let 0 < " < inf
j 62Ia(®)

¯̄̄
a0(xj¡xi)
±0(xj¡xi)

¯̄̄
and i 2 Ia(®). Then,

fj 62Ia(®); (a+ "±)0xj < (a+ "±)0xig = fj 62Ia(®); a0xj < a0xig:

On the other hand, fj 2 Ia(®); (a+ "±)0xj < (a+ "±)0xig = fj 2 Ia(®); ±0xj < ±0xig. Eventually,

fj 2 f1; : : : ; ng; (a+ "±)0xj < (a+ "±)0xig = fj 2 Ia(®); ±0xj < ±0xig [ fj 62Ia(®); a0xj < a0xig

does not depend on ". We conclude that for " > 0 and small enough, P ((a+ "±)0X < (a+ "±)0xi) does not
depend on ". We can then write:

q+® ((a+ "±)
0X)¡ q+® (a0X)
"

= maxf±0xi; i 2 Ia(®); P ((a+ "±)0X < (a+ "±)0xi) · ®g;

and this quantity does not depend on ". This shows that q+® (a
0X) is right di¤erentiable in the direction

± and the derivative is locally constant. Similarly, q+® (a
0X) is left di¤erentiable in the direction ± and the

derivative is locally constant and equal to:

minf±0xi; i 2 Ia(®); P ((a+ "±)0X < (a+ "±)0xi) · ®g;

where:

fj 2 f1; : : : ; ng; (a+ "±)0xj < (a+ "±)0xig = fj 2 Ia(®); ±0xj > ±0xig [ fj 62Ia(®); a0xj < a0xig;
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for i 2 Ia(®) and ¡ infj 62Ia(®)
¯̄̄
a0(xj¡xi)
±0(xj¡xi)

¯̄̄
< " < 0. Let us remark that the right and left derivatives are in

the interval
£
minf±0xi; i 2 Ia(®)g;maxf±0xi; i 2 Ia(®)g

¤
. Di¤erentiability with respect to direction ± means

that ±0xi does not depend on the scenario i in Ia(®). Di¤erentiability in all directions then implies that all
scenarios in Ia(®) are equal (that is we deal with an isolated scenario associated with the ® quantile).

3.4 Quantile di¤erentiation and conditional expectations
It is well known that for absolutely continuous distributions, quantile derivatives are related to conditional
expectations of the asset returns. Under this assumption, from Gouriéroux, Laurent & Scaillet [2000],

Tasche [2000]:
@q+® (a

0X)
@aj

= E
£
Xj j a0X = q+® (a

0X)
¤
, for j = 1; : : : ; n where X = (X1; : : : ;Xp) denotes

the random vector of asset returns.

We can now consider the case of discrete distributions. We have shown that di¤erentiability only occurs
when the quantile is associated with a unique scenario which we have denoted by ia(®) for an allocation
a and a risk level ®. We can then readily check that q+® (a

0X) = a0xia(®) implies that X = xia(®) and
then E

£
Xj j a0X = q+® (a

0X)
¤
= xjia(®). As a consequence, the relationship between partial derivatives and

conditional expectations still holds in the discrete case, provided that the quantile is associated with a
unique scenario. In the case of multiple scenarios associated with q+® (a

0X)14, we know that q+® (a0X) is not
di¤erentiable with respect to a. However, we can still compute:

E
£
Xj j a0X = q+® (a

0X)
¤
=

P
i2Ia(®) pix

j
iP

i2Ia(®) pi
;

which is between mini2Ia(®) x
j
i and maxi2Ia(®) x

j
i corresponding to the stated bounds on left and right

derivatives.

4 Risk Measures for Discrete Distributions
We thereafter consider risk measures ½ which be written as ½(X) =

R 1
0 q

+
® (X)dF (®), where F is a non

decreasing function with F (0) = 0 and F (1) = 1. This set corresponds to the distortion risk measures and
also includes the spectral risk measures. The purpose of this section is to provide some characterization of
such risk measures for portfolios when the distribution of returns is discrete. We use the same notations as
above. X will denote the vector of portfolio returns, xi 2 Rp, i = 1; : : : ; n the possible returns, where P (X =

xi) = pi > 0 and a 2 Rp, the portfolio allocation. We denote by (a0x)i:n, i = 1; : : : ; n the sorted portfolios
values; thus (a0x)1:n · : : : · (a0x)n:n. As above, Pk = P (a0X · (a0x)k:n) =

Pn
j=1 pj1(a0x)j:n·(a0x)k:n for

k = 1; : : : ; n where we omit the dependence in a for notational simplicity; Ak = [Pk¡1; Pk[ for k = 2; : : : ; n,
A1 =]0; P1[ and i(®) =

Pn
i=1 i1Ai(®). For simplicity, we further denote P0 = 0. We are then going to

consider ½(a0X) =
R 1
0 q

+
® (a

0X)dF (®).

Proposition 4.13 Risk measure representation

14That is #Ia(®) > 1.
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Under the standing notations, we have:

½(a0X) =
nX
i=1

(a0x)i:n (F (Pi)¡ F (Pi¡1)) ; (4.17)

where (a0x)i:n, i = 1; : : : ; n, denotes the sorted portfolio returns associated with portfolio allocation a, i.e.
(a0x)1:n · : : : · (a0x)n:n.

Proof: since the Ai, i = 1; : : : ; n form a partition of ]0; 1[ and q+® (a
0X) = (a0x)i(®):n,

½(a0X) =
Z 1

0

q+® (a
0X)dF (®) =

nX
i=1

Z
Ai

(a0x)i(®):ndF (®):

On Ai, i(®) = i, thus ½(a0X) =
Pn
i=1

R
Ai
(a0x)i:ndF (®) =

Pn
i=1

R Pi
Pi¡1

(a0x)i:ndF (®), which provides the
stated result ¥

As can be seen from the previous proposition, the risk measure can be locally decomposed as a weighted
average of sorted portfolio values (or quantiles). Moreover, it can be immediately checked that the Pi are
order zero homogeneous in a, and thus the weights F (Pi¡1)¡F (Pi) are also order zero homogeneous in a. Let
us emphasize that in most practical applications (empirical measure, outcome of Monte Carlo simulations),
we get P (X = xi) = pi =

1
n , that is scenarios have equal probabilities. We can then state:

Proposition 4.14 Risk measure representation, uniform distributions
Under the standing notations, and assuming that P (X = xi) =

1
n , i = 1; : : : ; n, we have:

½(a0X) =
nX
i=1

(a0x)i:n

µ
F

µ
i

n

¶
¡ F

µ
i¡ 1
n

¶¶
; (4.18)

where (a0x)i:n, i = 1; : : : ; n, denotes the sorted portfolio returns associated with portfolio allocation a, i.e.
(a0x)1:n · : : : · (a0x)n:n.

Proof: we write,

½(a0X) =
Z 1

0

q+® (a
0X)dF (®) =

nX
i=1

Z i
n

i¡1
n

q+® (a
0X)dF (®):

We now check that for ® 2 £ i¡1n ; in£, q+® (a0X) = (a0x)i:n. From proposition (2.8), we need to check that:

P (a0X < (a0x)i:n) · ® < P (a0X · (a0x)i:n):

These inequalities hold since P (a0X < (a0x)i:n) · i¡1
n and P (a0X · (a0x)i:n) ¸ i

n (strict inequalities may
occur in case of multiple scenarios) ¥

Let us remark that the weights F
¡
i
n

¢¡ F ¡ i¡1n ¢ no longer depend on portfolio allocation a.
From now on, we will assume that all scenarios are isolated, which means that (a0x)1:n < : : : < (a0x)n:n.
We consider the di¤erentiability of the risk measure ½ with respect to portfolio allocation. We denote
by ³a the function de…ned on f1; : : : ; ng by (a0x)i:n = a0x³a(i); ³a(i) is the scenario associated with the
rank i portfolio value. For isolated scenarios ³a is locally invariant on a. We can then write ½(a

0X) =
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Pn
i=1 a

0x³a(i) (F (Pi)¡ F (Pi¡1)). For isolated scenarios, it results from the de…nition that the Pi, i =
1; : : : ; n are locally constant. This shows that the risk measure is locally linear in a. Moreover, we can state:

@½(a0X)
@aj

=
nX
i=1

xj³a(i)
(F (Pi)¡ F (Pi¡1)) : (4.19)

This shows that the risk measure sensitivity with respect to portfolio holdings in asset j is a weighted
average of asset j returns. Eventually, using the relationship between quantile derivatives and conditional
expectations and the decomposition of the risk measure ½, we can also write:

@½(a0X)
@aj

=
nX
i=1

E
£
Xj j a0X = (a0x)i:n

¤
(F (Pi)¡ F (Pi¡1)) ; (4.20)

which is another way to state the risk measure derivative as a weighted average of asset j returns.

5 Conclusion
For discrete distributions of asset returns, quantiles and thus VaR risk measures are piecewise linear with
respect to portfolio allocation. We can use this result for two purposes. Firstly, it should be easy to
check whether for a given joint distribution of asset returns, VaR is sub-additive with respect to portfolio
allocation. This results in solving linear programs. Secondly, while optimising under VaR constraints is
usually a hard work, our results provide some alternative route. Not surprisingly, spectral risk measures,
such as the Expected Shortfall being derived from quantiles, inherit the piecewise linear property with
respect to portfolio allocation. Being also convex, optimising under spectral risk measures constraints leads
to linear programs as was earlier noticed by Rockafellar&Uryasev [2000], Acerbi & Simonetti [2002].
Eventually, we can provide some invariant decomposition of risk measures for uniform probabilities, which
is extremely well suited for most portfolio applications. We also provide some generalization of earlier work
on sensitivity analysis of quantiles.
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