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Pricing CDOs with state dependent 
stochastic recovery ratesstochastic recovery rates

OutlookOutlook
Practical context : surge in super senior tranche 
spreadsspreads
Increase of risk for individual losses leads to increase 

f i k i t lof risk in aggregate losses
For proper positive dependence

Consequences of previous analysis
Comparing risks for granular portfolios sharing the p g g p g
same large portfolio limit

Stochastic recovery rate versus recovery markdowny y

Numerical issues
2



State dependent 
recovery ratesrecovery rates

Practical contextPractical context
Calibration of super senior tranches during the liquidity and 
credit crisis

Insurance against very large credit losses
[30-100] tranche on CDX starts to pay when (approximately) 50% of 
the 125 major companies in North America are in defaultj p

Contributed to the collapse of AIG
AIG reinsurer of major banks

Sold protection through AIG Financial Products (London) and Banquep g ( ) q
AIG (Paris)
Between 440 and 500 billion “CDS” outstanding
Issues with accounting, counterparty risk, collateral management and g p y g
liquidity.

Large MTM losses
Though no insurance payments were to be made
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State dependent recovery ratesState dependent recovery rates
Market tsunami on AAA & AA Asset Backed Securities

Increase in spreads induced more damage than actual defaults
Prices patterns are quite informative for financial modelling
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State dependent recovery ratesState dependent recovery rates

High spreads on super senior tranchesHigh spreads on super senior tranches
Fixed 40% recovery rate assumption used to be market standard
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State dependent recovery ratesState dependent recovery rates

i h d i hHigh spreads on super senior tranches
Could not be calibrated with the standard 40% recovery rate
[60 100] tranches traded at positive premiums[60-100] tranches traded at positive premiums …
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State dependent recovery ratesState dependent recovery rates

Practical contextPractical context
Steep “base correlations”
Implied dependence as measured by implied GaussianImplied dependence as measured by implied Gaussian 
copula correlation
Increases strongly with respect to attachment pointIncreases strongly with respect to attachment point

Reflecting “fat tails” in aggregate loss distributions
A bunch of issues of trading desksg

Negative or increasing tranchelet prices
Delta scattering and weird idiosyncratic gamma

These issues are (partly) solved in a stochastic recovery 
rate approach
M i i i 2008 f i b kMain issue since 2008 for investment banks
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State dependent recovery ratesState dependent recovery rates

Theoretical contextTheoretical context
Aggregate loss = sum of individual losses
Individual loss = default indicator times loss given defaultIndividual loss = default indicator times loss given default
Recovery rate = 1 – loss given default / credit notional
Recovery rates are stochasticRecovery rates are stochastic

Cross dependencies
A d f l ( l d l )Amongst default events (copula models, etc.)
Between default events and recovery rates
Amongst recovery rates

Dependence through common latent factors
For convenience
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State dependent recovery ratesState dependent recovery rates

When does an increase in individual risk leads to anWhen does an increase in individual risk leads to an 
increase in the risk on the aggregate portfolio (sum of 
individual risks) ?individual risks) ?

(Multivariate) Gaussian risks
Individual risks with same expectationIndividual risks with same expectation
Increase in risk = increase in variance
Increase in aggregate portfolio risk occurs if and only if pairwise
correlations are non negative

What about the general case ?
St h ti dStochastic orders

Univariate case : convex order (close to second order stochastic 
dominance)

Positive dependence between individual risks
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State dependent recovery ratesState dependent recovery rates

Positive dependencePositive dependence
MTP2: Multivariate Total Positivity of Order 2 (Karlin & 
Rinott (1980))Rinott (1980))

Log-density is supermodular

Conditionally Increasingy g
is CI if and only if                                   is 

increasing in                 for increasing 

( h & lk (196 ))
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Positive association (Esary, Proschan &Walkup (1967))
PSMD: positive supermodular dependent

Gaussian copula
Positive association = PSMD = positive pairwise 
correlations
MTP2 = CI (Müller & Scarsini (2001)) 10



State dependent recovery ratesState dependent recovery rates

Theoretical contextTheoretical context
Non Gaussian framework

Individual risks have a probability mass at 0Individual risks have a probability mass at 0
Increase of risk of individual risks: convex order
Theorem (Müller & Scarsini (2001))( ( ))

X and Y random vectors with common conditionally increasing copula
smaller than      for all i

h ll h i h d (di i ll ) d
iYiX

Then X smaller than Y with respect to dcx (directionally convex) order
Then X smaller than Y with respect to stop-loss order

Gaussian copula dependenceGaussian copula dependence
Conditionally increasing if and only if the inverse of covariance matrix 
is a M-matrix

non singular, entrywise non negative,        has positive non diagonal 
entries 
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State dependent 
recovery ratesrecovery rates

Dependence in large dimensionp g
Well known to finance people
Factor models

bi i i h i f liArbitrage pricing theory, asymptotic portfolios
Chamberlain & Rothschild (1983)

Large portfolio approximations (infinite granular 
portfolios)

Conditional law of large numbers
Qualitative data with spatial dependence

CreditRisk + (Binomial mixtures), CreditMetrics, Basel II 
(Gaussian copula)
Gordy (2000, 2003) Crouhy et al. (2000)

Factor models may not be related to a causal view upon 
dependence

De Finetti, exchangeable sequences of Bernoulli variables 
are Binomial mixtures
Mixing random variable latent factor
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State dependent recovery ratesState dependent recovery rates

Spatial dependence withSpatial dependence with 
qualitative data

Factor models have been used 
for long in other fields

IQ tests (differential psychology), 
B k & Li b (1970)Bock & Lieberman (1970), 
Holland (1981)
Item Response Models
Latent Monotone Univariate
Models, Holland (1981), Holland 
& Rosenbaum (1986)

Stochastic recovery rates
Modeling of cross 
dependencies
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State dependent 
recovery ratesrecovery rates

Stochastic recovery rates
Modeling of cross dependenciesModeling of cross dependencies

Individual loss = default indicator times loss given default
What is important for the computation of tranche premiums W at s po ta t o t e co putat o o t a c e p e u s
(or risk measures) is the joint distribution of individual losses
Direct approach: (discretized) individual loss seen as a 
polychotomous (or multinomial) variable

Multivariate Probit model (Krekel (2008))
Dual view of CreditMetrics (default side versus ratings)Dual view of CreditMetrics (default side versus ratings)

Sequential models
Probit or logit models for default events (dichotomous model)Probit or logit models for default events (dichotomous model)
Modeling of loss given default : Amraoui & Hitier (2008)
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State dependent
recovery ratesrecovery rates

Gaussian copula
When is it conditionally increasing?
One factor case (positive betas)

Gaussian copula is Conditionally Increasing (proof based on Holland & 
Rosenbaum (1986))Rosenbaum (1986))

Multifactor case : more intricate, even if all betas are positive, 
Gaussian copula may not be Conditionally Increasing

Counterexamples
Gaussian copula with positive pairwise correlation
Increase of marginal risk (convex order)
May lead to a decrease of convex risk measures on aggregate portfolio
Constraints on conditional covariance matrix

Hierarchical Gaussian copulasp
Intra and intersector correlations, Gregory & Laurent (2004)
Conditionally Increasing copula (proof based upon Karlin & Rinott (1980))
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State dependent recovery ratesState dependent recovery rates

Consequences of previous analysisConsequences of previous analysis
Other examples of Conditionally Increasing copulas

Archimedean copulas, Müller & Scarsini (2005)

Dichotomous models with monotone unidimensional
representation

Default indicators conditionally independent upon scalar V

Conditional default probabilities are non decreasing in V

Most known and used models

Includes additive factor copula models (Cousin & Laurent (2008)), 
such as generic one factor  Lévy model of Albrecher et al. (2007).

Most portfolio credit risk models associated with CI
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State dependent 
recovery ratesrecovery rates

Consequences of previous analysisConsequences of previous analysis
Non stochastic recovery rates
Analysis of a “recovery markdown”Analysis of a recovery markdown
Change recovery rate assumption from 40% to 30% (say)
Change marginal default probability so that expected lossChange marginal default probability so that expected loss 
unit is unchanged
Lemma : increase of marginal risk with respect to convexLemma : increase of  marginal risk with respect to convex 
order

Then given a CI copula increase of risk of theThen, given a CI copula, increase of risk of the 
aggregate portfolio with respect to convex order

Increase in senior tranche premiumsIncrease in senior tranche premiums
Or CDO senior tranche spreads
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State dependent recovery ratesState dependent recovery rates

Consequences of previous analysisConsequences of previous analysis
Stochastic recovery rate of Amraoui and Hitier (2008)
Depends only upon latent factor

As in Altman et al. (JoB 2005)
Specification of recovery rate is such that conditional upon 
latent factor is the same as in a recovery mark down caselatent factor is the same as in a recovery mark-down case
Same conditional expected losses

Same large portfolio approximations
Same “infinitely granular” portfolios
When number of names tends to infinity, strong convergence of aggregate 
losses to large portfolio limitsg p

Stochastic recovery rate (AH) versus recovery markdown
Same infinitely granular portfolios
But finitely granular portfolios behave (slightly) differently
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State dependent recovery ratesState dependent recovery rates

Stochastic recovery rate (AH) vs recovery markdownStochastic recovery rate (AH) vs recovery markdown
Main comparison result
Aggregate losses are ordered with respect to convex orderAggregate losses are ordered with respect to convex order
Smaller risks in stochastic recovery rate specification
Smaller spreads on senior tranchesSmaller spreads on senior tranches
Small numerical discrepancies

O i i k t d th ti l iOngoing risk management and theoretical issues
Spot recovery versus time to recovery

B i &M (2009) Li (2000)Bennani &Maetz (2009), Li (2000)

Risk management for distressed names in a stochastic 
recovery rate frameworkrecovery rate framework

Off the run series, bespoke portfolios
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State dependent recovery ratesState dependent recovery rates

Numerical issuesNumerical issues
Computational efficiency

Especially important when computingEspecially important when computing 
Greeks and risk managing CDOs

Needs to be reassessed in case of 
stochastic recovery models
Analytical computations of 
conditional moments

Gram Charlier expansions
S l d i ti thSame low order approximation than 
Stein’s method
Much quicker than recursions and q
Monte Carlo 
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