

3rd Financial Risks International Forum Risk Dependencies. Paris, March 25 & 26, 2010

Pricing CDOs with state dependent stochastic recovery rates

Jean-Paul Laurent ISFA Actuarial School, Université Lyon 1 Joint work with S. Amraoui, L. Cousot & S. Hitier (BNP Paribas)

Pricing CDOs with state dependent stochastic recovery rates

- Outlook
- Practical context : surge in super senior tranche spreads
- Increase of risk for individual losses leads to increase of risk in aggregate losses
 - For proper positive dependence
- Consequences of previous analysis
- Comparing risks for granular portfolios sharing the same large portfolio limit
 - Stochastic recovery rate versus recovery markdown
- Numerical issues

THE SECRET FORMULA That Destroyed Wall Street

 $P = \phi(A, B, \gamma)$

- Practical context
 - Calibration of super senior tranches during the liquidity and credit crisis
 - Insurance against very large credit losses
 - [30-100] tranche on CDX starts to pay when (approximately) 50% of the 125 major companies in North America are in default
 - Contributed to the collapse of AIG
 - AIG reinsurer of major banks
 - Sold protection through AIG Financial Products (London) and Banque AIG (Paris)
 - Between 440 and 500 billion "CDS" outstanding
 - Issues with accounting, counterparty risk, collateral management and liquidity.
 - Large MTM losses
 - Though no insurance payments were to be made

- Market tsunami on AAA & AA Asset Backed Securities
 - Increase in spreads induced more damage than actual defaults
 - Prices patterns are quite informative for financial modelling

- High spreads on super senior tranches
 - Fixed 40% recovery rate assumption used to be market standard

- High spreads on super senior tranches
 - Could not be calibrated with the standard 40% recovery rate
 - [60-100] tranches traded at positive premiums ...

Table 1: Tranche Quotes and Base Correlations for CDX.NA.IG Series 9 5Y		
Tranche	Spread (bps)	Base Correlation (%)
0-3%	500, Upfront 68.51 points	39.45
3-7%	773.99	67.12
7-10%	435.52	72.58
10-15%	240.05	85.18
15-30%	126.50	-
30-100%	69.57	-
	Source	e: Data from March 12, supplied by Markit

- Practical context
 - Steep "base correlations"
 - Implied dependence as measured by implied Gaussian copula correlation
 - Increases strongly with respect to attachment point
 - Reflecting "fat tails" in aggregate loss distributions
 - A bunch of issues of trading desks
 - Negative or increasing tranchelet prices
 - Delta scattering and weird idiosyncratic gamma
 - These issues are (partly) solved in a stochastic recovery rate approach
 - Main issue since 2008 for investment banks

Theoretical context

- \blacksquare Aggregate loss = sum of individual losses
- Individual loss = default indicator times loss given default
- $Recovery\ rate = 1 loss\ given\ default\ /\ credit\ notional$
- Recovery rates are stochastic

Cross dependencies

- Amongst default events (copula models, etc.)
- Between default events and recovery rates
- Amongst recovery rates
- Dependence through common latent factors
 - For convenience

- When does an increase in individual risk leads to an increase in the risk on the aggregate portfolio (sum of individual risks)?
 - (Multivariate) Gaussian risks
 - Individual risks with same expectation
 - Increase in risk = increase in variance
 - Increase in aggregate portfolio risk occurs if and only if pairwise correlations are non negative
 - What about the general case ?
 - Stochastic orders
 - Univariate case : convex order (close to second order stochastic dominance)
 - Positive dependence between individual risks

- Positive dependence
 - MTP2: Multivariate Total Positivity of Order 2 (Karlin & Rinott (1980))
 - Log-density is supermodular
 - Conditionally Increasing
 - $X = (X_1, ..., X_n)$ is CI if and only if $E\left[\phi(X_i)\middle|(X_j)_{j\in J}\right]$ is increasing in $(X_j)_{i\in J}$ for increasing ϕ
 - Positive association (Esary, Proschan & Walkup (1967))
 - PSMD: positive supermodular dependent
- Gaussian copula
 - Positive association = PSMD = positive pairwise correlations
 - *MTP2* = *CI* (*Müller & Scarsini* (2001))

Theoretical context

- Non Gaussian framework
 - Individual risks have a probability mass at 0
- Increase of risk of individual risks: convex order
- Theorem (Müller & Scarsini (2001))
 - *X* and *Y* random vectors with common conditionally increasing copula
 - X_i smaller than Y_i for all i
 - Then *X* smaller than *Y* with respect to dcx (directionally convex) order
 - Then *X* smaller than *Y* with respect to stop-loss order
- Gaussian copula dependence
 - Conditionally increasing if and only if the inverse of covariance matrix is a *M*-matrix
 - Σ non singular, entrywise non negative, Σ^{-1} has positive non diagonal entries

- Dependence in large dimension
- Well known to finance people
- Factor models
 - Arbitrage pricing theory, asymptotic portfolios
 - Chamberlain & Rothschild (1983)
 - Large portfolio approximations (infinite granular portfolios)
 - Conditional law of large numbers
 - Qualitative data with spatial dependence
 - CreditRisk + (Binomial mixtures), CreditMetrics, Basel II (Gaussian copula)
 - Gordy (2000, 2003) Crouhy et al. (2000)
 - Factor models may not be related to a causal view upon dependence
 - De Finetti, exchangeable sequences of Bernoulli variables are Binomial mixtures
 - Mixing random variable latent factor

STEPHEN A. ROSS*

Departments of Economics and Finance, University of Pennsylvania, The Wharton School, Philadelphia, Pennsylvania 19174

Received March 19, 1973; revised May 19, 1976

- Spatial dependence with qualitative data
 - Factor models have been used for long in other fields
 - IQ tests (differential psychology),
 Bock & Lieberman (1970),
 Holland (1981)
 - Item Response Models
 - Latent Monotone Univariate
 Models, Holland (1981), Holland
 & Rosenbaum (1986)
- Stochastic recovery rates
 - Modeling of cross dependencies

Stochastic recovery rates

- Modeling of cross dependencies
 - Individual loss = default indicator times loss given default
 - What is important for the computation of tranche premiums (or risk measures) is the joint distribution of individual losses
 - Direct approach: (discretized) individual loss seen as a polychotomous (or multinomial) variable
 - Multivariate Probit model (Krekel (2008))
 - Dual view of CreditMetrics (default side versus ratings)
 - Sequential models
 - Probit or logit models for default events (dichotomous model)
 - Modeling of loss given default : Amraoui & Hitier (2008)

- Gaussian copula
 - When is it conditionally increasing?
 - One factor case (positive betas)
 - Gaussian copula is Conditionally Increasing (proof based on Holland & Rosenbaum (1986))
 - Multifactor case: more intricate, even if all betas are positive,
 Gaussian copula may not be Conditionally Increasing
 - Counterexamples
 - Gaussian copula with positive pairwise correlation
 - Increase of marginal risk (convex order)
 - May lead to a decrease of convex risk measures on aggregate portfolio
 - Constraints on conditional covariance matrix
 - Hierarchical Gaussian copulas
 - Intra and intersector correlations, Gregory & Laurent (2004)
 - Conditionally Increasing copula (proof based upon Karlin & Rinott (1980))

- Consequences of previous analysis
 - Other examples of Conditionally Increasing copulas
 - Archimedean copulas, Müller & Scarsini (2005)
 - Dichotomous models with monotone unidimensional representation
 - lacktriangle Default indicators conditionally independent upon scalar V
 - Conditional default probabilities are non decreasing in V
 - Most known and used models
 - Includes additive factor copula models (Cousin & Laurent (2008)), such as generic one factor Lévy model of Albrecher et al. (2007).
- Most portfolio credit risk models associated with CI

- Consequences of previous analysis
 - Non stochastic recovery rates
 - Analysis of a "recovery markdown"
 - Change recovery rate assumption from 40% to 30% (say)
 - Change marginal default probability so that expected loss unit is unchanged
 - Lemma: increase of marginal risk with respect to convex order
- Then, given a CI copula, increase of risk of the aggregate portfolio with respect to convex order
 - Increase in senior tranche premiums
 - Or CDO senior tranche spreads

- Consequences of previous analysis
 - Stochastic recovery rate of Amraoui and Hitier (2008)
 - Depends only upon latent factor
 - As in Altman et al. (JoB 2005)
 - Specification of recovery rate is such that conditional upon latent factor is the same as in a recovery mark-down case
 - Same conditional expected losses
 - Same large portfolio approximations
 - Same "infinitely granular" portfolios
 - When number of names tends to infinity, strong convergence of aggregate losses to large portfolio limits
- Stochastic recovery rate (AH) versus recovery markdown
 - Same infinitely granular portfolios
 - But finitely granular portfolios behave (slightly) differently

- Stochastic recovery rate (AH) vs recovery markdown
 - Main comparison result
 - Aggregate losses are ordered with respect to convex order
 - Smaller risks in stochastic recovery rate specification
 - Smaller spreads on senior tranches
 - Small numerical discrepancies
- Ongoing risk management and theoretical issues
 - Spot recovery versus time to recovery
 - Bennani & Maetz (2009), Li (2000)
 - Risk management for distressed names in a stochastic recovery rate framework
 - Off the run series, bespoke portfolios

- Numerical issues
 - Computational efficiency
 - Especially important when computing Greeks and risk managing CDOs
 - Needs to be reassessed in case of stochastic recovery models
 - Analytical computations of conditional moments
 - Gram Charlier expansions
 - Same low order approximation than Stein's method
 - Much quicker than recursions and Monte Carlo

