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1. Motivation

e Framework

— regulatory environment
— proprietary Risk Measurement Models
— VaR = Synthetic Measure of Risk Portfolio

e Risk Management

— risk analysis

— risk control

— portfolio optimization

e Need to go further than a single number

e What are the risk drivers ?

1.

VaR of subportfolios

— ex-post analysis

— aggregation issues

— VaR is neigher additive or subadditive

. Statistical analysis of risk scenarios
. Incremental VaR (sensitivity analysis)

— ex-ante
— management of risk limits
— Large Portolios preclude online computations

—=—> Sensitivity of VaR w.r.t. portfolio alloca-
tion



e Why determine convexity of VaR w.r.t. portfolio allo-
cation 7

e Portfolio Selection under VaR Constraints

— Determination of Optimal Portfolios

— Need to check that the set of portfolios satisfying
VaR constraint is convex

e VaR may not be subadditive (i.e. a coherent measure
of risk)

— No bonus for diversification

— Poor internal risk management

— subadditivity can be statistically tested ...

— and depends on financial intermediaries policies ...

x Credit risk,

x Out of the money options



2. Main Theoretical Results
e VaR definition:

—n Financial Assets with Prices p;; at Date ¢

— Portfolio Value : Wy(a) = _é a;pir = a'py
— P [Wiii(a) — Wila) + VaR(a,a) < 0] = «

— Upper Quantile (1 — a)...
* since with y;.1 = pri1 — oy

x Py |—a'yi1 > VaRi(a,a)] =«

e First properties

— VaR is degree one positively homogeneous: A > 0

—VaRi(Aa,a) = A x VaR(a, a)

a’ Valifa, @) VaR(a,a) (Euler)

Oa

OVaR(a,a)
80@

— VaR is not always subadditive:
—VaRi(a+b,a) < VaRi(a,a)+ VaRi(b,a) ?

— subadditivity + positive homogeneity =- convexity
of VaR(a,a) (w.r.t portfolio allocation a)

— Risk contribution of i: a; X



e Sensitivities of VaR
i) 1st derivative of VaR

OVaR(a, )

9a = _Et[ytJrl‘a,ytJrl = _VaRt<a’7 04)]

ii) 2nd derivative of VaR

0*VaRy(a, ) B 8logga7t(

dada’ - Oz ~VaR(a,))Vilyir1la'yi = —Vali(a, a)]

0
— =V / — _ }
{82 t[yt+1|a Yt Z] 2=V aR;(a,q) ’

with g, the conditional p.d.f of a'y;1;



e Expected Shortfall definition:
—my(a, @) = E|—a'yi1 | —a'yr1 > Vara, o)

— Also known as Mean Excess Loss, as TailVaR or as
Lower Partial Moment.

— Another commonly used measure of risk

— Expected Shortfall is subadditive

i) 1st derivative of Expected Shortfall

omy(a, a)

Oa

= —Eifyr11| — d'yry1 > VaRy(a, a)]

Similar result to that obtained on sensitivity of VaR



3. Some Examples

= First example: Gaussian Distribution

® yri1 ~ N (pue, {)
o VaRi(a,a) = —a'p; + (a’'a) %2,

e 2;_, quantile of level 1 — a of Gaussian distribution.

Remark:

e (a'%a)'/?: standard dev. of portfolio absolute returns

e subadditivity of standard deviations:
¢ ((a + b)/Qt(CL + b))1/2 < (a’Qta)l/Q + (b/th)l/Q

e = In the Gaussian case, VaR is always subadditive

i) 1st derivative of VaR

OVaR(a, ) Oa
da

= — i+ (VaRi(a,a) + a’' )

a'Ca
= —Fk [yt+1‘a/yt+1 = —VaR(a, o)



ii) 2nd derivative of VaR

0?VaRy(a, o) B 21—a O _Qtaa’Qt
dada’ T (@) 2T dQa

PVaRi(a, o)  z1-a
dada’ - (a/ya)l?

V%[yt+1|a/yt+1 = —VaR(a,a)]

Remark :

a log ga,t
0z

VaRi(a,a) +d'py 214
a’Qa  (a/ya)t/?

(—VaR(a,a)) =

2nd term = 0 (conditional homoscedasticity)

e Expected Shorfall my(a, «)

° mt(a, Oz) = _a/,ut 4+ (a/Qta)1/2@

— ¢ : (Gaussian density

i) 1st derivative of Expected Shortfall




= Second example:

Gaussian with Unobserved Heterogeneity

® Yri1 ‘ un~ N (0, Qt(U))
e with heterogeneity factor u with distribution II

e Gaussian Random Walk with Stochastic Volatility

Check of VaR Convexity:

0log ga + 1

P (=VaRi(a,a)) = VaRy(a, o) By ) > ().
0 0 O (u)a
—g‘@[%ﬂ\al%ﬂ = —z] = "9 Vi _Za’Qt(u)a
O (u)a
= +2
22V a'Q(u)al’

which is nonnegative for z = VaR;(a, a) !



4. Application : VaR Efficient Portfolios

Budget w allocated among

n Risky Assets and 1 Riskfree Asset (7)

/
max, a Fyyii1

st. VaRia;a) <VaR, —w(l+7r)=VaR,

VaR, = Bound for Authorized Risk (CAD)
First Order Conditions :

oVaR;, .
By = —)\j#(at,a)

VaRi(a}, o) =VaR,

Proportionality between Global and Local Expectations :

Eiyi1 = A: Ei [yt+1|a7; Yt+1 = —VERO



5. Estimation Procedure

Nonparametric approach (kernel) : i.i.d. returns

e Estimation of VaR

Pl—d'y;s1 > VaR(a,a)] =

estimated by Gaussian Kernel

1 T
m(

1 —a'y; — VaR .
T i=1 B

h

Gauss-Newton Algorithm :

var?t) = par® + L

Starting values : Gaussian VaR or Empirical Quantile



e Convexity of VaR

0*VaR(a, )
dDada’

Hessian positive semidefinite

If, for negative z values

010g ga(2) < 0 and OV [yrs1]a’yi1 = 2]

0z 0z >0

Estimator of p.d.f. of portfolio value

A~ I T CL/yt—Z
ga(Z)—T—htZIQD( h )

Estimator of conditional variance

/

T ay, — z T ay —z\ & ay — z
Zytyéw( yth ) > Yip ( th ) > Yip ( th )
s / o t=1 t=1 t=1
Viyerila'ye = 2] = T ayr — 2 - T Ay — 2 2

h ;190 h

t=1




e Estimation of VaR efficient portfolio
Simple forms of 1st and 2nd derivatives of VaR

—> Gauss-Newton Algorithm

0*VaR OVaR
(p+1) _ (p) _ (p) - (p)
™) = o) — (TR0, ) 1 00, g
11/2
N 2(VaR, — VaR( ))+Q( , Q)
0*VaR 3
Eyt+1[2aaaa (a’( )7 )] lEyt—i‘l
0 VaR
a®? o E
with
) _ OVaR 0*VaR 4 OVaR
Q(a"”), ) = o (a”),a )[8a8a (¥, )] % (a?), a)

Theoretical recursion replaced by empirical counterpart



6. Empirical Illustration

French Stock Data from CAC 40

- Thompson-CSF (electronic devices)

- I’Oréal (cosmetics)

Daily Returns : 04/01/1997 to 05/04/1999 (546 obs.)
Empirical Results :

* Standard Normal VaR underestimate (Skew. and Kurt.)

*x Smoother patterns for Kernel estimates

« Nonmonotonicity of Sensitivities

x Check for Convexity fails for some allocations

x VaR Symmetry lost

x VaR Efficient Portfolios = Tangency Points of

aifi1 + asfly = cst with IsoVar curve of level VaR,



