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Outlook

Semi-analytical pricing of multiname credit derivatives
and CDO'’s

Use of probability generating functions and conditional

independence assumption

Copula approaches including Gaussian, Archimedean,

multivariate exponential models

Analytical pricing of multiname credit derivatives in

Duffie’s affine framework

Effective computation of risk parameters



What are we looking for ?

m A framework where:

s One can easily deal with a large number of names,

s Tackle with different time horizons,

s Compute quickly and accurately:

= Basket credit derivatives premiums

« CDO margins on different tranches

= Deltas with respect to shifts in credit curves

= Main technical assumption:

s Default times are independent conditionnally on a low

dimensional factor




Presentation Overview

m Probabilistic Tools

s Survival functions of default times
= Factor copulas

s Number of defaults

= Basket Credit Derivatives
s Valuation of premium leg
s Valuation of default leg: homogeneous baskets
s Valuation of default leg: non homogeneous baskets
s Example: first to default swap
s Risk management of basket credit derivatives

s Valuation of CDO Tranches

s Credit loss distributions
s Valuation of CDO’s
s Risk management of CDO tranches



Probabilistic Tools: Survival Functions

= ¢=1,...,n names
m T1,--.,7Tn default times
= Marginal distribution function Fi(t) = Q(7; < t)

= Marginal survival function S;(t) = Q(7; > t)
s Risk-neutral probabilities of default
= Obtained from defaultable bond prices or CDS quotes

s « Historical » probabilities of default

= Obtained from time series of default times



i Probabilistic Tools: Survival functions

= Joint survival function:
S(tlj .« . jt-n,) — Q(Tl >" tlj . e s :,Tn >‘ tn)
s Needs to be specified given marginals.

= (Survival) Copula of default times:
O(Sl(tl)ﬂ “ ey Sn,(tn)) = S(tlj . s jt?’l)
s C characterizes the dependence between default times.

= We need tractable dependence between defaults:
s Parsimonious modelling

s Semi-explicit computations for portfolio credit derivatives



Probabzlzstzc Tools

“This next recipe will invohee some calculus®



Probabilistic Tools: Factor Copulas

W

= Factor approaches to joint distributions:
s V low dimensional factor, not observed « latent factor »
s Conditionally on V default times are independent

s Conditional default probabilities

V V
—Qri<t|V), ¢V =Q(r;>t|V).

s Conditional joint distribution.:
V
Q(Tlgtlv'“ Tnftn|v H p?|

1<i<n
Joint survival function (implies integration wrt V):

It

. . . v
Qri>t,... ,Tp>1ty)=E Hff;|
i=1




Probabilistic Tools: Gaussian Copulas

= One factor Gaussian copula (Basel 2):
= V.Vi,i=1,....n independent Gaussian
Vi=p;V +1/1— ﬁ?f’}

s Default times: T; = Fé_l@(ﬂ))

v — P, O HF(t
s Conditional default probabilities: p = ( : Vifl — LE- m))

= Joint survival function:

po =0 FD\Y oo
S, .t /(Hd( — ))wwf

. O~ u;) — pv
Clug, ... yuy) = / o — w(v)duv
: ];!: v 1— p?

= Copula:




Probabilistic Tools : Clayton copula

s Davis & Lo ; Jarrow & Yu ; Schonbucher & Schubert
= Conditional default probabilities

pi =exp(V (1= F@)™)

s V: Gamma distribution with parameter

= Joint survival function:

1 v l f
S(tlr foen rtﬂ) — /H (]. — pf!,'l ) F(l/g) E',_L V{l—ﬂjfﬂdv
=1

= Copula:
Cluy, ... yuy,) = (“ul_ﬂ +...+u

4 —1/#

Ti

n—l—l)



Probabilistic Tools: Simultaneous Defaults

s Duffie & Singleton, Wong

= Modelling of defaut dates: 7; = min(7;, 7)
n Qi =17j) =2 Q (’T < min(7;, ’Tfj)) > 0 simultaneous defaults.

s Conditionally on T, T; are independent.

QUi <t,..., <ty |7)= [ Quri<t|7)
1<e<n

= Conditional default probabilities:
Q(m; <t | 7) = L=, Q(Ti < ;) + Lr<y,
s Copula of default times:

(1{“'. ._“-H}:E H {T,) (TE{_-:FI_I[”F}| T)




Probabilistic Tools: Affine Jump Diffusion

s Duffie, Pan & Singleton ;Duffie & Garleanu.
s N+ 1 independent affine jump diffusion processes:
X]_.J, . e ._,anXc

= Conditional default probabilities:

V
Qri>t|V) =4 =Vay(t)

x .f
V = exp (—/ Xf.{sjds) . ooilt) = FE [(}:{p (—/ X,{S:Idﬂ):| :
0 0

= Survival function:
Q1 >t,...,Tp>1) = VnXH&?

s Explicitely known.



Probabilistic Tools: Conditional Survivals

s Conditional survival functions and factors:

s Example: survival functions up to first to default time...;

s Conditional joint survival function easy to compute since:

Q11> t1, 72 > ta)
Q[Tl = fT,j.Iﬂ'ﬁ

Q1 >, Te >ty | T1 >t To > 1) =

Ql.ll ?fl T}}t;}—E[q!llr}{'QﬂI}

s However be cautious, usually:

Q{Tl}fl?’rg}fg|Jlﬂ?—p}f}%E[Q Tl}f]_ Tg}fg|7']_fﬁ’]'_;-}f1f"|



i Probabilistic Tools

1/ T SENSE THAT
A HAND 1S RAISED,

TURN AROUND. |5

S%f?xﬂu At




«Counting time is not so important as making time county

Probabilistic Tools: Number of Defaults

« N =D lp<y= Y Nlt) Number of defaults at t.

1<i<n 1<i<n

. TN kg default time.

. Sk(t) — Q(Tk > t) Survival function of k™ to default.

s Remark that: Tk > [ <<— N(t) < k

s Survival function of " Z QN
1<k—1
s Computation of Q(N(t) =1)

= Use of pgf of N(t): Unw(u) =E [u*‘“‘*’(ﬂ =) Q(N(t) = '
[=()



«Counting time is not so important as making time county

Probabilistic tools: Number of Defaults

Probability generating function of N(t): ¢y, = E {’“fﬁ{ﬂ]

= Yyplu)=E {‘MN“]] =L [E [“M‘wt} | V” iterated expectations

. E|uN0 |V} _ H 5 [um{t} | V} conditional independence

1<i<n

« E N0 | V] =1— pi'v + pi”; x u  binary random variable

T

11 (1 —p)V 4V x u)] polynomial in u

1=1

= hyp(u)=E

= One can then compute Q(N(t) = k)

L.

Since Vnw(u) = E [u‘m}} = Z Q(N(t) = k)u"

k=)



«the whole is simpler than the sum of its parts »

Basket Credit Derivatives Valuation

21004 Ted Coff

"Our eges are all in one basket, no milk has been
spilt, and we have plenty of dough."



Valuation of Premium Leg

m it to default swap, maturity T
s i1,...,t1,t,..., T premium payment dates
s Periodic premium p is paid until 7k
= /! premium payment
« T >t payment of p at date 1
= Present value: pB(t))S*(t))
s 41 < * < t; accrued premium of ('rk —t;_1)p at T+

t ﬁ
s Present value: / pB(t)(t — fﬂ—l)dsk(t)
tr—1

s PV of premium leg given by summation over /



Valuation of Default Leg: Homogeneous Baskets

= ;=1,...,n names
s Equal nominal (say 1) and recovery rate (say 0)

s Payoff : 1 at k-th to default time 1f less than T

= Credit curves can be different
= Si(t) = Q(1; > t) given from credit curves
2 Sk(t) = Q(TA > t) : survival function of Tk

o Sk(t) computed from pgf of N (t)



i Valuation of Default Leg: Homogeneous Baskets

s Expected discounted payoff
T
E [B(Tk)lTk{T] = — / B(t)dsk(t)
- 0

s From transfer theorem
s B(t) discount factor

= Integrating by parts

T
1 — B(T)S*(T) + [ SE)dB(t)
J )

s Present value of default payment leg
s Involves only known quantities

s Numerical integration is easy



Valuation of Default Leg: Non Homogeneous Baskets

= 1=1,... .1 names
= M; = (1 — 06;)N; loss given default for i
= Payment at k" default of M; if i is in default

s No simultaneous defaults

« Otherwise, payoffis not defined
m k' default iff k-1 defaults before 7
o NO(1,) number of defaults (i excluded) at T
o k-1 defaults before T; iff N'"D(r;)) =k — 1



Valuation of Default Leg: Non Homogeneous Baskets

s Guido Fubini




Valuation of Default Leg: Non Homogeneous Baskets

s (discounted) Payoff ZMB ;) {N[—i}(rrijzk—l}l{ni‘i’l“}

1=1

s Upfront Premium
= ... by itemted expectatlons theorem

Z ",IE[ [ J}l{"\,f (1;)=k— 1}1{”'#{}}|V”

= ... by Fubini + conditional independence

T . :
/ BOQINI(t) = k—1| V)dp
0
= Where p =Q(r; <t|V)

« QIN'U(t) =k = 1| V) : formal expansion of H (1 — pj:ll'r +p{|l'r-u)
i



i Example: First to Default Swap




Example: First to Default Swap

s Case where k£ =1

. O (N(—??) (t) =0 | v) -T1 (1 _ pg'“”’) no defaults for j # i

JF# _
= premium = ZME / H(l g|1/) ?W
1=1 i JF#1 |
e _ % dpt'
n = /[; ZM?;B(t)E H( p] | ) 7 dt (regular case)
=1 | J i

iV + ®1(E(t)))

s Archimedean pi_lv = exp (V (1 — Ff(t)_ﬂ))

. ilv
One factor Gaussian p = (



Example: First to Default Swap

= Dependence upon correlation parameter
= One factor Gaussian copula
=« 10 names, recovery rate = 40%, maturity = 5 years
= 5 spreads at 50 bps, 5 spreads at 350 bps

2000

1500 -

1000 -

500

0

0% 20% 40% 60% 80% 100%

= X axis: correlation parameter, y axis: annual premium



Risk Management of Basket Credit Derivatives

= Computation of greeks
s Changes in credit curves of individual names

s Changes in correlation parameters

= Greeks can be computed up to an integration over
factor distribution
s Lenghty but easy to compute formulas

s The technique is applicable to Gaussian and non Gaussian

copulas
s See « I will survive », RISK magazine, June 2003, for more

about the derivation.



Risk Management of Basket Credit Derivatives

A. Comparison of the semi-explicit formulas

= Example: S1X names with Monte Carlo simulations
f 1 First to default Second to default Third to default
SE MC SE MC SE MC
p Ort Ol10 0% 10751 1,075.9 248 2147 Ay
20% 927.0 9259 2472 2475 614 618
Ch . d . t f 0% BF9D 8579 I568 2576 776 7RO
rv 40% 796.6 7952 2633  264.2 g27 930
= anges m Credit curves o 60% 6796 €780 9688 2689 1195 1188
. L. 80% 5731 57L7 2662  266.1 141.0 1409
lndIVIdual names 1005% 5000 5000 2500 2500 1500 1500

Pramiums in basis points per annum as a function of cormalation for a five-
yoar maturity basket with cradit spreads of 26, 50, 100, 150, 250 and
S00bp and equal racovery rates of 40%

s  Amount of individual CDS

1. Deltas calculated using semi-explicit
to hedge the basket formulas and Monte Carlo approaches

. —a— 13t (BE) —=— 15t (MC)
—a—2nd (SE} —e—2nd (MC)
1 drd (SE) —s—3rd {MC)

S

100 200 400 400 500
Cradit spread (bp)

= Much quicker: about 25
Comparison of deltas calculated using the analytical formulas and 105

Monte Carlo Slmulatlons . Monte Carlo simulations for the example given in table A. The Monte

Carlo daltas are calculated by applying a 10bp parallel shift to each curve

= Semi-analytical more
accurate than 10° Monte

Carlo simulations.

Motional equivalent delta (3&)
oo B8 888838

(=]



Risk Management of Basket Credit Derivatives

= Changes 1n credit curves of individual names
s Dependence upon the choice of copula for defaults

2. Deltas using Gaussian and Clayton copula

F 90 —a— 121 (Gaussian)

m BO{ —=—1st (Clayton)

£ 701 _g 2nd (Gaussian) T

= 601 ——2nd (Clayton)

% 50 - ard (Gaussian)

% 401 —a— 3rd (Clayton)
ﬂﬂ-

T 20-

S 10-

g -

2 1 1 1 1 1

@ 100 200 300 400 S00

Cradit spread (bp)

Comparizon of deltas calculated using Gaussian (30% correlation)
and Clayton copulas (b = 0.27)



CDO Tranches

MIRALL E e i
5 o ? T ool e ™1
a1l (1] 2 ol Wi

; R g el

L] e
3 ThiIy

T TRNK oU SHOULD BE Moge Lic
He@E N STEP TWO . i

vk TR ILARATE Formemd. i Dhytomtind e Ui (s i

«Everything should be made as simple as possible, not simplery

Explicit premium
computations for tranches

Use of loss distributions

over different time horizons

Computation of loss

distributions from FFT

Involves integration par

parts and Stieltjes integrals



Credit Loss Distributions

Accumulated loss at t: L(t) = Z N;(1 — 6;)N;(t)
1<i<n

« Where N?(t) = lTigt, Ni(l — 0;) loss given default

Characteristic function ¢r)(u) =E [e?‘?‘uﬁ(ﬁ)]

1<j=n

By conditioning ¢ (u) = E { 11 (1 —pl" +P”§-|V%01_5J-('uﬁ“}))

If recovery rates follows a beta distribution:

orp(w) = E { I1 (1 —p!V 4 p!V M(a;,a; + bj,}suﬁrj))
1<j<n

= where M is a Kummer function, a,b; some parameters

Distribution of L(t) is obtained by Fast Fourier Transform




Credit Loss Distributions

s Beta distribution for recovery rates

densite

lo1 Beta

Ob=" =i m e Y
0 02 04 06 08 1

Shape 1,Shape .

1 —32



Credit Loss distributions

3. Loss distributi
= One hundred names, same

nominal.

—
v

b b 2= tnop = @ D

= Recovery rates: 40%

Probability {%s)
coooooo =

= Credit spreads uniformly
distributed between 60 and
250 bp.

o
= wmb

33 a5 38 '
Loss (%) 42 45 ﬂﬁﬁwm

= Gaussian copula, correlation:
50%

1.
0.
2t
zo
= 0
gu
H g
)
0
0

T

s 10> Monte Carlo simulations

Lozs distribution over tima for the table B example with 50% correlation
for the semi-explicit approach (top) and Monte Carlo simulation (bottom)



Valuation of CDO'’s

s Tranches with thresholds 0 <A< B <> N;
s Mezzanine: pays whenever losses are between A and B

s Cumulated payments at time t: M(t)

M(t) = (L(t) — A)) 1 p)(L(t)) + (B — A)jp o (L(E))

T
/ B(t)dM(t)}
0

= B(t) discount factor, T maturity of CDO

s Upfront premium: E

T
= Stieltjes integration by parts B(T)E[M(T)| + / E[M(t)|dB(t)
0
b

s where E[M(t) = (B — A)Q(L(t) > B) + / (z — A)dFy ()
JA



Valuation of CDO'’s

B. Pricing of five-year maturity CDO tranches

Equity (0-3%)  Mezzanine (3-14%)  Senior (14-100%)

SE MC SE MC SE MC
0% 221894 BIZEBS d816.2 8143 0.0 0.0
20% 4.321.1 43253 g084 BOBS 4B 4Ty 13.7
40% 26888 26967 7343 7314 33.4 33.2
B0% 17808 17385 g41.0 6378 54.1 237
B0 10775 10678 B28E B209 TT.0 6.6
100% 410.3 4066 J7l2 3Gl 110.4 109.6

Premiums in basis points par annum as a function of corralation for S-year
maturity CDO tranches on a portfolio with credit spreads uniformly
distributed betwaen 60 and 25060, The racovery rates ane 0%

s One factor Gaussian copula

s CDO tranches margins with respect to correlation
parameter



Risk Management of CDO'’s
= Hedging of CDO tranches

. . ETD-
with respect to credit curves %ED"'——___E :
. . . = il :Mﬂ;z::;nina
of individual names £ 40, Sanior
% 301 . e
= Amount of individual CDS &% jummssmsmse=="""
=3
E T T T 1
to hedge the CDO tranche W e
Cradit spread (bp)
= Semi-analytic : some 2 ?“M
5 60
3 50 & Equity
seconds : R azzanng
E .
g 30- IR LY Y
= Monte Carlo more than one 2 20 AN P
g 10-
hour and still shaky 2 . . | .
50 100 150 200 250
Cradit spread (op)

CDO tranche deltas using the analytical method (top) and Monte
Carlo (bottomn) for a correlation of 505



Conclusion

= Factor models of default times:
s Very simple computation of basket credit derivatives and
CDO'’s
s One can deal easily with a large range of names and

dependence structures



