

New approaches to the pricing of basket credit derivatives and CDO's

Quantitative Finance 2002

Jean-Paul Laurent
Professor, ISFA Actuarial School, University of Lyon
& Ecole Polytechnique
Scientific consultant, BNP Paribas

Laurent.jeanpaul@free.fr, http:/laurent.jeanpaul.free.fr

Paper « basket defaults swaps, CDO's and Factor Copulas » available on DefaultRisk.com

- Straightforward approach to baskets and CDO
 - Direct modelling of default times
 - Modelling of dependence through copulas
- Semi-explicit premiums
 - Factor copulas : dramatic dimension reduction
 - Fast computations for large baskets
 - No need of inaccurate Monte Carlo
- Semi-explicit loss distributions
 - Computation of VaR, expected shortfall, risk contributions

Overview

- Probabilistic tools
 - Survival functions of default times
 - Factor copulas
 - Moment generating functions
 - *Distribution of k-th to default time*
 - Loss distributions over different time horizons
- Valuation of basket credit derivatives
 - homogeneous
 - general case
- Valuation of CDO tranches
- How is it related to intensity approaches?

by Andrejs Dunkels

Probabilistic tools: survival functions

- $i = 1, \ldots, n$ names
- τ_1, \ldots, τ_n default times
- Marginal distribution function $F_i(t) = Q(\tau_i \le t)$
- Marginal survival function $S_i(t) = Q(\tau_i > t)$
- Joint survival function

$$S(t_1, \ldots, t_n) = Q(\tau_1 > t_1, \ldots, \tau_n > t_n)$$

- Needs to be specified given marginals
- (Survival) Copula of default times

$$C(S_1(t_1),\ldots,S_n(t_n))=S(t_1,\ldots,t_n)$$

C characterizes the dependence between default times

Probabilistic tools: factor copulas

- Tractable specification of dependence
 - Parsimonious modelling
 - Suitable for large baskets and CDO's
 - Semi-explicit computations
- Factor approaches
 - V factor (low dimension)
 - Conditionally on V default times are independent
 - Conditional default probabilities

$$p_t^{i\mid V} = Q\left(\tau_i \le t \mid V\right)$$

Conditional joint distribution

$$Q(\tau_1 \le t_1, \dots, \tau_n \le t_n \mid V) = \prod_{i=1}^n p_t^{i|V}$$

Probabilistic tools: Gaussian copulas

- One factor Gaussian copula (Basel 2)
 - $V, \bar{V}_i, i = 1, \ldots, n$ independent Gaussian

$$V_i = \rho_i V + \sqrt{1 - \rho_i^2} \bar{V}_i$$

- Default times: $\tau_i = F_i^{-1}(V_i)$
- Conditional default probabilities $p_t^{i|V} = \Phi\left(\frac{-\rho_i V + \Phi^{-1}(F_i(t))}{\sqrt{1-\rho_i^2}}\right)$
- Joint survival function

$$S(t_1, \dots, t_n) = \int \left(\prod_{i=1}^n \Phi\left(\frac{\rho_i v - \Phi^{-1}(F_i(t_i))}{\sqrt{1 - \rho_i^2}}\right) \right) \varphi(v) dv$$

Copula

$$C(u_1, \dots, u_n) = \int \left(\prod_{i=1}^n \Phi\left(\frac{\Phi^{-1}(u_i) - \rho_i v}{\sqrt{1 - \rho_i^2}}\right) \right) \varphi(v) dv$$

Probabilistic tools: Clayton copula

- Davis & Lo, Jarrow & Yu, Schönbucher & Schubert
- Conditional default probabilities

$$p_t^{i|V} = \exp\left(V\left(1 - F_i(t)^{-\theta}\right)\right)$$

Joint survival function

$$S(t_1, \dots, t_n) = \int \prod_{i=1}^n \left(1 - p_{t_i}^{i|V}\right) \frac{1}{\Gamma(1/\theta)} e^{-VV^{(1-\theta)/\theta}} dV$$

Copula

$$C(u_1, \ldots, u_n) = (u_1^{-\theta} + \ldots + u_n^{-\theta} - n + 1)^{-1/\theta}$$

Probabilistic tools: simultaneous defaults

- Modelling of defaut dates $\tau_i = \min(\bar{\tau}_i, \tau)$
 - Duffie & Singleton, Wong
 - $Q(\tau_i = \tau_j) \ge Q\left(\tau \le \min(\bar{\tau}_i, \bar{\tau}_j)\right) > 0$ simultaneous defaults
 - Conditionally on τ , τ_i are independent

$$Q(\tau_1 \le t_1, \dots, \tau_n \le t_n \mid \tau) = \prod_{1 \le i \le n} Q(\tau_i \le t_i \mid \tau)$$

- Conditional default probabilities
 - $Q(\tau_i \le t_i \mid \tau) = 1_{\tau > t_i} Q(\bar{\tau}_i \le t_i) + 1_{\tau \le t_i}$
- Copula of default times

$$C(u_1, \dots, u_n) = E\left[\prod_{1 \le i \le n} Q\left(\tau_i \le F_i^{-1}(u_i) \mid \tau\right)\right]$$

Probabilistic tools: k-th to default time

- $N(t) = \sum_{1 \le i \le n} 1_{\{\tau_i \le t\}} = \sum_{1 \le i \le n} N_i(t) \quad Number \ of \ defaults \ at \ t$
- au^k k-th to default time
- $S^k(t) = Q(\tau^k > t)$ Survival function of k-th to default
- Survival function of τ^k : $S^k(t) = \sum_{l \le k-1} Q(N(t) = l)$
- Computation of Q(N(t) = l)
- Use of pgf of N(t): $\psi_{N(t)}(u) = E\left[u^{N(t)}\right] = \sum_{l=0}^{n} Q(N(t) = l)u^{l}$

Probabilistic tools: number of defaults

- Probability generating function of N(t): $\psi_{N(t)} = E\left[u^{N(t)}\right]$
 - $\psi_{N(t)}(u) = E\left[u^{N(t)}\right] = E\left[E\left[u^{N(t)} \mid V\right]\right]$ iterated expectations
 - $E\left[u^{N(t)} \mid V\right] = \prod_{1 \leq i \leq n} E\left[u^{N_i(t)} \mid V\right]$ conditional independence
 - $\quad \boxed{ E\left[u^{N_i(t)} \mid V \right] = 1 p_t^{i|V} + p_t^{i|V} \times u \quad \textit{binary random variable} }$
- $\psi_{N(t)}(u) = E\left[\prod_{i=1}^{n}\left(1 p_t^{i|V} + p_t^{i|V} \times u\right)\right]$ polynomial in u
- One can then compute Q(N(t) = k)
- Since $\psi_{N(t)}(u) = E\left[u^{N(t)}\right] = \sum_{k=0}^{n} Q(N(t) = k)u^{k}$

Basket Valuation

9 1996 Ted Goff

"Our eggs are all in one basket, no milk has been spilt, and we have plenty of dough."

Valuation of homogeneous baskets

- $i = 1, \ldots, n$ names
 - Equal nominal (say 1) and recovery rate (say 0)
- Payoff: 1 at *k*-th to default time if less than *T*
- Credit curves can be different
 - $S_i(t) = Q(\tau_i > t)$ given from credit curves
 - $S^k(t) = Q(\tau^k > t)$: survival function of τ^k
 - $S^k(t)$ computed from pgf of N(t)

4

Valuation of homogeneous baskets

Expected discounted payoff

$$E\left[B(\tau^k)1_{\tau^k \le T}\right] = -\int_0^T B(t)dS^k(t)$$

- From transfer theorem
- *B*(*t*) *discount factor*
- Integrating by parts

$$1 - B(T)S^{k}(T) + \int_{0}^{T} S^{k}(t)dB(t)$$

- Present value of default payment leg
- Involves only known quantities
- Numerical integration is easy

Valuation of premium leg

- k-th to default swap, maturity T
 - $t_1, \ldots, t_{l-1}, t_l, \ldots, T$ premium payment dates
 - Periodic premium p is paid until τ^k
- *l*-th premium payment
 - $au^k > t_l$ payment of p at date t_l
 - Present value: $pB(t_l)S^k(t_l)$
 - $t_{l-1} \le \tau^k \le t_l$ accrued premium of $(\tau^k t_{l-1})p$ at τ^k
 - Present value: $\int_{t_{l-1}}^{t_l} pB(t)(t-t_{l-1})dS^k(t)$
- \blacksquare PV of premium leg given by summation over l

Non homogeneous baskets

- $i=1,\ldots,n$ names
- $M_i = (1 \delta_i)N_i$ loss given default for i
- Payment at k-th default of M_i if i is in default
 - No simultaneous defaults
 - Otherwise, payoff is not defined
- i k-th default iff k-1 defaults before τ_i
 - $N^{(-i)}(au_i)$ number of defaults (i excluded) at au_i
 - k-1 defaults before τ_i iff $N^{(-i)}(\tau_i) = k-1$

Non homogeneous baskets

- (discounted) Payoff $\sum_{i=1}^{n} M_i B(\tau_i) 1_{\{N^{(-i)}(\tau_i)=k-1\}} 1_{\{\tau_i \leq T\}}$
- Upfront Premium
 - ... by iterated expectations theorem

$$\sum_{i=1}^{n} M_{i} E\left[E\left[B(\tau_{i}) 1_{\{N^{(-i)}(\tau_{i})=k-1\}} 1_{\{\tau_{i} \leq T\}} \mid V\right]\right]$$

• ... by Fubini + conditional independence

$$\int_{0}^{T} B(t)Q(N^{(-i)}(t) = k - 1 \mid V)dp_{t}^{i\mid V}$$

- where $p_t^{i\mid V} = Q(\tau_i \leq t\mid V)$
- $Q(N^{(-i)}(t) = k 1 \mid V)$: formal expansion of $\prod_{j \neq i} \left(1 p_t^{j|V} + p_t^{j|V}u\right)$

First to default swap

- Case where k=1
- $\qquad \qquad Q\left(N^{(-i)}(t) = 0 \mid V\right) = \prod_{i \neq i} \left(1 p_t^{j|V}\right) \ \ no \ defaults \ for \ j \neq i$
- $premium = \sum_{i=1}^{n} M_i E \left[\int_0^{j \neq i} B(t) \prod_{j \neq i} \left(1 p_t^{j|V} \right) dp_t^{i|V} \right]$

$$= \int_0^T \sum_{i=1}^n M_i B(t) E\left[\prod_{j \neq i} \left(1 - p_t^{j|V}\right) \frac{dp_t^{i|V}}{dt}\right] dt \quad (regular \ case)$$

- One factor Gaussian $p_t^{i|V} = \Phi\left(\frac{-\rho_i V + \Phi^{-1}(F_i(t))}{\sqrt{1-\rho_i^2}}\right)$
- Archimedean $p_t^{i|V} = \exp\left(V\left(1 F_i(t)^{-\theta}\right)\right)$

First to default swap

- One factor Gaussian copula
- n=10 names, recovery rate = 40%
- 5 spreads at 50 bps, 5 spreads at 350 bps
- \blacksquare maturity = 5 years
- x axis: correlation parameter, y axis: annual premium

«Everything should be made as simple as possible, not simpler»

- Explicit premium computations for tranches
- Use of loss distributions over different time horizons
- Computation of loss distributions from FFT
- Involves integration par parts and Stieltjes integrals

Loss at t:
$$L(t) = \sum_{1 \le i \le n} N_i (1 - \delta_i) N_i(t)$$

- where $N_i(t) = 1_{\tau_i \leq t}$
- Characteristic function $\varphi_{L(t)}(u) = E\left[e^{iuL(t)}\right]$
- $\qquad \qquad By \ conditioning \qquad \varphi_{L(t)}(u) = E \left[\prod_{1 \leq j \leq n} \left(1 p_t^{j|V} + p_t^{j|V} \varphi_{1-\delta_j}(N_j) \right) \right]$
- If recovery rates follows a beta distribution:

$$\varphi_{L(t)}(u) = E\left[\prod_{1 \le j \le n} \left(1 - p_t^{j|V} + p_t^{j|V} M(a_j, a_j + b_j, iN_j)\right)\right]$$

- where M is a Kummer function, a_i, b_j some parameters
- Distribution of L(t) is obtained by Fast Fourier Transform

- Tranches with thresholds $0 \le A \le B \le \sum N_j$
- *Mezzanine: pays whenever losses are between A and B*
- Cumulated payments at time t: M(t)

$$M(t) = (L(t) - A) 1_{[A,B]}(L(t)) + (B - A) 1_{[B,\infty[}(L(t))$$

- Upfront premium: $E\left[\int_0^T B(t)dM(t)\right]$
 - $lackbox{\bullet}$ B(t) discount factor, T maturity of CDO
- Integration by parts $B(T)E[M(T)] + \int_0^T E[M(t)]dB(t)$
- where $E[M(t)] = (B-A)Q(L(t) > B) + \int_A^B (x-A)dF_{L(t)}(x)$

- One factor Gaussian copula
- n=50 names, all at 100 bps, recovery = 40%
- maturity = 5 years, x axis: correlation parameter
- 0-4%, junior, 4-15% mezzanine, 15-100% senior

