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1 Introduction

This paper aims at estimating and analysing the risk-neutral probability measures obtained from the prices

of foreign exchange derivative contracts. We shall �rst remind the various methodologies which permit to

recover this probability measure, and investigate the way they are used in practice.

1.1 Options prices and underlying assets

The pricing of derivative contracts is usually based on a speci�cation of the dynamics of the underlying

asset. In the Black and Scholes (1973) and Merton (1973) framework, markets are typically assumed

to be frictionless (i.e. no default risk, no short sale restrictions, no transaction costs) and the time-t price

of the underlying asset is supposed to follow a log-normal distribution. In this respect, the probability

distributions of the underlying prices are �rst speci�ed and derivative prices are then derived from these

underlying prices. As a consequence, these two prices play di�erent roles. As a matter of fact, this asymmetry

was really justi�ed at the beginning, essentially because of the illiquid and potentially ine�cient features

of these derivative markets. As an example, prices data were generally not available for markets analysts

and the Black and Scholes formula played then the role of a convenient benchmark.

Nowadays, options markets have become very liquid (sometimes more liquid than the underlying mar-

kets), large option prices data sets are available and the departures from the Black and Scholes formula,

though rather weak, cannot be neglected any longer. This fact has motivated a lot of research on how some

more complex models could take into account of the actual oberved prices: stochastic volatility models,

jump processes... are good examples of these tentatives.

Alternatively, others have tried to infer future prices of some assets from the joint probability dis-

tribution of these assets and the (most liquid) corresponding derivative contracts. These approachs are

often termed as reverse engineering methods of estimation of the risk-neutral probability measure. (see

Söderlind and Svensson (1997), Laurent (1998), Demonsant (1998)). This is the approach which is

investigated in the following sections.

1.2 Observed option prices

The pionnering papers which have �rst tried to use options prices are now relatively ancient (Breeden

and Litzenberger (1978)). They are in the spirit of Ross (1976)'s ideas which were building a bridge

between (european) options contracts and the Arrow-Debreu contingent prices. For the past few years,

the estimation of risk-neutral probability measures1 has progressed signi�cantly on both empirical and

theoretical matters. We now remind the most proeminent results obtained in this approach.

1.2.1 Interpolation

A �rst approach consists in interpolating the (european) option prices curve C(t;K) with respect to the

strike and the maturity. Indeed, we usually observe prices of call or put options for various strikes. Breeden
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and Litzenberger (1978) have shown that the state-price density f(t; e)2 can be computed from the price

curve C(t;K) through the following formula:

@2C(t; e)

@K2
= f(t; e); (1.1)

The interpolation of the C(t;K) for all t and all K can be for example achieved by using quadratic functions

(Shimko (1990)). However such a methodology depends greatly on the interpolation techniques used to

perform the computation. Dupire (1992, 1994), Derman and Kani (1994) have extended the previous

result by establishing the link between the local volatility of the underlying price and the partial derivatives

of the option prices. More speci�cally, if we assume that the short rate equals zero and that the price of

the underlying asset follows a di�usion process, then we can prove that:

�2(t;K) = 2

@C(t;K)

@t
@2C(t;K)

@K2

(1.2)

where �(t;K) is the local volatility of the underlying asset.

Dumas, Fleming and Whaley (1995) investigate the use of the previous formula in the context

of options written on stock indices. Rubinstein (1994), Derman and Kani (1994) use a binomial tree

to compute the local volatility. Finally, Laurent and Leisen (1998) extend these results to the case

of Markov chains and provide some necessary and su�cient conditions for the risk-neutral probability

distribution to be recovered.

1.2.2 Parametric distributions

Another approach consists in searching the unknown distribution in a class of parametric functions. The

distribution is such that the distance between theoretical and observed prices is minimized. As an example

Bahra (1997), Mellick and Thomas (1997), Söderlind and Svensson (1997), Campa, Chang and

Reider (1997), Jondeau and Rockinger (1997) use the class of linear convex combination of two

log-normal distributions. Alternatively Bates (1996a, 1996b) studies USD/DEM options in the context of

jump processes with possible stochastic volatility. The results show that observed prices are consistent with

a jump component of low frequency but large magnitude. Both papers estimate the underlying parameters

as well as the skewness and kurtosis parameters but do not investigate the overall shape of the distribution

nor the existence of several modes.

Madan and Milne (1994), Abken, Madan and Ramamurtie (1996) approximate the option with

polynomials. Then they are able to compute a polynomial approximation of the risk-neutral density with

respect to a gaussian measure.

Jarrow and Rudd (1982), Corado and Su (1996), Jondeau and Rockinger (1997) perform a

fourth-order Edgeworth development around the log-normal distribution and apply this technique to the

options written on exchange rates and stock indices.
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1.2.3 Semi-parametric approach

Eventually, semi-parametric approaches can be implemented for discrete and continuous models. Such

approaches do not arbitrarily constrain the shape of risk-neutral densities. Rubinstein (1994), Derman,

Kani and Chriss (1996) consider binomial and trinomial trees. Theoretical option prices computed under

these trees must be equal to observed option prices. Moreover, the estimated risk-neutral distribution of

the underlying asset must be close to a discretised version of the log-normal distribution. Proximity can be

measured with a quadratic, entropy or goodness of �t criterion. In the continuous case, Buchen et Kelly

(1996), Avellaneda, Friedman, Holmes et Samperi (1996) use the entropy criterion to estimate a risk-

neutral distribution from an a priori log-normal distribution. Magnien, Prigent et Trannoy (1996),

Laurent et Scaillet (1997) consider the quadratic criterion. Taking into account di�erent information

sets, Clément, Gouriéroux et Monfort (1997) build risk-neutral random measures from observed

option prices.

1.3 Practical implementation

Several central banks conduct quantitative analysis based on observed option prices. Malz (1995a, 1995b),

for the Fed of New-York, Jondeau et Rockinger (1997) for the Bank of France, estimate exchange rate

distributions from currency options. Abken, Madan et Ramamurtie (1996) for the Fed of Atlanta,

Bahra (1997) for the Bank of England, Coutant, Jondeau et Rockinger (1997) for the Bank of France

consider interest rate options. Campa, Chang et Reider (1997) discuss how to use these approaches to

assess the credibility of currency bounds within SME and how �nancial markets react to monetary policy.

Financial institutions trading derivatives also use these methods:

� local volatility estimation and implied trees are commonly used for the pricing and hedging of path-

dependent options. This approaches allow to price exotic options consistently with plain vanilla

options while being arbitrage free.

� Trading books often include non traded european options, i.e. that do not correspond to standard

maturities and exercise prices at mark to market date. The mark to market of these options is usually

done by interpolating liquid option prices. However this procedure is not always arbitrage free.

The paper is organised as follows. In Section 2, we present the currency options data that has been

used. Section 3 recalls Breeden and Litzenberger (1978) result relating option prices and state price

densities. Section 4 presents the Bayesian approach to estimating state price densities. Section 5 presents

the estimated risk-neutral densities and discusses some possible explanations. In Section 6, we assess the

reliability of our results. Section 7 concludes. Technical proofs are gathered in an Appendix.

2 The data

In the following, the underlying asset is a foreign currency and we thus consider european exchange rate

options. We denote by e(t), the exchange rate at date t, i.e. the amount of local currency to get one unit
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of foreign currency. B(t; T ) is the local currency price, at date t, of a zero-coupon bond paying one unit

of local currency at T . �B(t; T ) is the foreign currency price, at date t of a zero-coupon bond paying one

unit of foreign currency at date T . The forward exchange rate at date T seen from date t is de�ned by

e(t; T ) = e(t)
�B(t; T )

B(t; T )
.

At the current date t0 = 0, we observe a set of european calls with di�erent exercise dates t = t1; : : : ; tN

and exercise prices for each exercise date ti, Ki;j , j = 1; : : : ; Ji. The payo� of such an option is equal to

(e(ti)�Ki;j)
+ units of local currency3. We denote by C(ti;Ki;j) the price at date t0 of such an option4.

Several currency exchanges are operating around the world. We can think of:

� The Chicago Mercantile Exchange where currency futures and options on currency futures are traded.

Deutschemark and Yen contracts were the most actively traded in 1997, followed by Swiss Franc,

Canadian Dollar and Bristish Pound. The traded options are american style and have weekly, monthly

and quarterly maturities. The average daily traded volume on USD/DEM options contracts has been

3360 for the �rst three quarters of 19985. At the end of september 1998, the outstanding volume

was of 47 713 contracts. The market is thus rather liquid by not as liquid as the underlying futures

market6. Quotes on futures and options are available from CME by ftp.

� currency options are also traded on UCOM (United Currency Options Market) of the Philadelphia

Stock Exchange. These options can have standardised maturities7 (mid month, quarterly and, long-

term), and can be american or european type. For example, une USD/DEM option gives the right

to buy at a given date 62500 Deutschemarks at a predetermined price (see table 1). 65 494 currency

options contracts were traded in january 19998

Tableau 1 : options contracts on PHLX. Source : PHLX. User's Guide to Currency Options.

local currency underlying currency Nominal

U.S. Dollar Deutsche mark (USD/DEM) 62500 DEM

U.S. Dollar British Pound (USD/GBP) 31250 GBP

U.S. Dollar French Franc (USD/FRF) 250 000 FRF

U.S. Dollar Yen (USD/JPY) 6 250 000 JPY

Deutsche Mark Yen (DEM/JPY) 62 500 DEM

British Pound Deutsche Mark (GBP/DEM) 31250 GBP

Currency options traded on exchanges remain less liquid that OTC options. The trading volume on

exchanges is about one tenth of volume traded on OTC markets. Several criteria are used to choose

quotes. The trading volume should be important, the bid-ask spreads small. Getting synchronous option

and underlying prices is also an important issue in order to get unbiased implied volatilities.

For the previous reasons, we have chosen OTC prices. To ease further comparisons of methods, we

have used the dataset of Avellaneda, Friedman, Holmes and Samperi (1996). We have prices cor-

responding to twenty �ve options categories associated with �ve exercise dates and �ve exercise prices.

Maturities are one, two, three, six and nine months. The data consist in bid and ask prices and as usual

(see e.g.Buchen and Kelly (1996), Avellaneda et al. (1996), Malz (1995a, 1995b)), we have been

working with mid-prices.
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Tableau 2 : currency options prices. 23 août 1995. Source : Avellaneda et al.

Maturité Type Strike Bid O�er Volat.

Call 1.5421 0.0064 0.0076 14.9

Call 1.5310 0.0086 0.0100 14.8

30 jours Call 1.4872 0.0230 0.0238 14.0

Put 1.4479 0.0085 0.0098 14.2

Put 1.4371 0.0063 0.0074 14.4

Call 1.5621 0.0086 0.0102 14.4

Call 1.5469 0.0116 0.0135 14.5

60 jours Call 1.4866 0.0313 0.0325 13.8

Put 1.4312 0.0118 0.0137 14.0

Put 1.4178 0.0087 0.0113 14.2

Call 1.5764 0.0101 0.0122 14.1

Call 1.5580 0.0137 0.0160 14.1

90 jours Call 1.4856 0.0370 0.0385 13.5

Put 1.4197 0.0141 0.0164 13.6

Put 1.4038 0.0104 0.0124 13.6

Call 1.6025 0.0129 0.0152 13.1

Call 1.5779 0.0175 0.0207 13.1

180 jours Call 1.4823 0.0494 0.0515 13.1

Put 1.3902 0.0200 0.0232 13.7

Put 1.3682 0.0147 0.0176 13.7

Call 1.6297 0.0156 0.0190 13.3

Call 1.5988 0.0211 0.0250 13.2

270 jours Call 1.4793 0.0586 0.0609 13.0

Put 1.3710 0.0234 0.0273 13.2

Put 1.3455 0.0173 0.0206 13.2

Figure 1 plots the implied volatilities corresponding to di�erent exercise prices and dates. We obtain

the standard U-shape smiles that tend to �atten for longer maturities.

Figure 1 : Smiles de volatilité
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3 State price densities and option prices

In this section, we relate state price densities and option prices; in a �rst step, we proceed heuristically,

then we recall Breeden et Litzenberger (1978) result.

3.1 Butter�y premia

Let us consider some option prices, the corresponding payo�s having the same exercise date but di�erent

exercise prices.

Figure 2 : butter�y pro�le

Let us assume that we can trade three options, with exercise date t, and exercise price K � ";K;K + "

(" > 0). A butter�y payo� can be synthetised by holding 1
"2

options with exercise price K � ", �2
"2

options with exercise price K and 1
"2

options with exercise price K + ". The butter�y price is then equal

to
C(t;K � ")� 2C(t;K) + C(t;K + ")

"2
.

The butter�y provides a positive payo� only if the exchange rate at exercise date t is located around

K. The price of such a �nancial product is positively related to the probability for the exchange rate to

be close to K at date t is high and to the risk-premia corresponding to that exchange rate level. Let us

remark that the butter�y price is close to
@2C(t;K)

@K2
9. We will further consider the market price of a payo�

contingent on the exchange rate to be around K at date t.

3.2 Asset prices and option premia

At this stage, we assume that we can trade european calls with exercise date t whatever the exercise price

K. The corresponding option premia is denoted by C(t;K). We moreover assume that:

i. C(t;K) is positive, decreasing and convex.

ii. C(t;K) is twice di�erentiable in K, for all K � 0.

iii.
@C

@K
(t; 0) = �B(0; t).
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iv. limb!1C(t; b)� b
@C

@K
(t; b) = 0.

Assumption (i) is a consequence of the absence of arbitrage opportunities. Thus, an option price is

positive, a call spread option price 10 is positive and, the butter�y prices are positive since the associated

payo�s are positive.

Under �xed exchange rate regimes or in discrete state space models such as binomial or trinomial trees,

assumption (ii) is not ful�lled. There then exist some exchange rate levels, where the �rst derivative is

discontinuous11. These discontinuities correspond to probability masses at given exchange rate levels. The

regularity assumption is thus ful�lled for �continuous" models.

To interpret the third assumption, we recall that � @C

@K
(t; 0) is the price of a digital call with exercise

price equal to zero, i.e. a payo� that pays 1 for any strictly positive value of the exchange rate. Assumption

(iii) thus means that a contract that pays 1 only if the exchange rate is equal to zero, is traded at a zero

price. From a �nancial point of vue, the exchange rate being equal to zero means that the foreign currency

has no value and is closely related to country bankruptcy and the disappearance of this foreign currency.

Similarly, it can be shown (see Appendix) that assumption (iv) means that one can be insured against

the disappearance of local currency at a zero price12.

We can then show (see Appendix):

C(t;K) =

Z
(e�K)+

@2C

@K2
(t; e)de (3.3)

Option premia thus appear as integrals of the associated option payo�s, (e �K)+, w.r.t. the measure
@2C
@e2

(t; e)de. Breeden and Litzenberger (1978) relate more general payo�s and prices. Let us consider

a payo� g(e) at date t, where g is a smooth function of exchange rate e equal to zero above some given

exchange rate level. We can then write the price at date t0 of this payo� as (see Appendix):

Z
g(e)

@2C

@K2
(t; e)de (3.4)

We will further denote by f(t; e) =
@2C(t; e)

@K2
, the state price density for exercise date t13. This state

price density is some kind of discounting function conditional on the future exchange rate e(t). Indeed, let

us consider a payo� at date t equal to a Dirac measure �(e0) at the level e0 (this is the limit of the above

butter�y). Its price is

Z
�(e0)f(t; e)de = f(t; e0). The state price density f(t; e) thus provides the market

price of a payo� at time t contingent on the exchange rate being equal to an arbitrary predetermined value.

Thanks to Assumption (iii), on can check that:

B(0; t) =

Z
@2C

@K2
(t; e)de (3.5)

1

B(0; t)

@2C

@K2
(t; e)de is thus a probability measure. We denote by

1

B(0; t)

@2C

@K2
(t; e), the risk-neutral den-

sity (with respect to the Lebesgue measure). Let us remark that state price density and risk-neutral

density only di�er by a multiplicative discounting term.
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4 Risk-neutral density estimation

From a practical point of vue, we never start with a continuous record of option prices but only with a

discrete set of observed data for liquid options. Since the information set is smaller, it is not possible to

fully determine the state price density. A state price density must ful�ll:Z
(e(ti)�Ki;j)

+f(ti; e)de = C(ti;Ki;j);

ti = t1; : : : ; tN ; 8Ki;j; j = 1; : : : ; Ji. Let us remark that we deal with linear constraints on f and that the

unknown quantity is a function. We thus deal with a non parametric estimation problem. In the remaining

of the paper, we will consider independently the functions f(ti; e); f(tj ; e), ti 6= tj and our approach will

be purely static. Without going into technical details, the existence of state price densities is guaranted

when markets are frictionless and arbitrage-free.

As a consequence of the estimation of state price densities, we will be able to estimate options prices.

Indeed, given a time horizon ti, and an estimated density f̂(ti; e) for this horizon, we obtain the following

estimate, Ĉ(ti;K) for the option price:

Ĉ(ti;K) =

Z
(e�K)+f̂(ti; e)de

Since state price densities are usually not unique, we need some criterion to decide how to choose one.

We rely here upon the Bayesian approach to estimating state price densities introduced by Jackwert and

Rubinstein (1995), Buchen and Kelly (1996).

The core idea is to choose the state price density, consistent with observed option prices, the closest as

possible, according to some criteria discussed below, to an a priori (or reference) state price density. In the

remaining of the paper, the exchange rate will be log-normally distributed under the a priori probability

measure. Let us denote by f0(t; e) the corresponding state price density.
f(t; e)

f0(t; e)
is the density with respect

to the reference probability measure. If the two probability measures are equal, the previous quantity is

equal to one. We will more particularly use the quadratic criterion:

1

2

Z �
f(t; e)

f0(t; e)
� 1

�2
f0(t; e)de;

the weighting f0(t; e) means that the di�erences between f and f0 have more importance when f0 is large,

that is in regions with large a priori probabilities. Another commonly used criterion is the entropy criterion:

Z
f(t; e)

f0(t; e)
log

�
f(t; e)

f0(t; e)

�
f0(t; e)de:

Once the criterion has been chosen, the estimation problem, for horizon ti consists in solving the

following optimisation problem14 :

min
f

J (f(ti; :); f0(ti; :)) ;
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where J is the proximity criteria between state price densities, under the consistency with observed option

prices (with exercise date ti) constraints, C(ti;Ki;j), j = 1; : : : ; Ji, and consistency constraints with the

underlying asset price15, �B(t0; ti)e(t0) and with the riskless asset, B(t0; ti) :8>>>>><
>>>>>:

C(ti;Ki;j) =

Z
(e�Ki;j)

+f(ti; e)de;

�B(t0; ti)e(t0) =

Z
ef(ti; e)de;

B(t0; ti) =

Z
f(ti; e)de:

The existence of a solution can be easily proved for the quadratic criterion (from the projection theorem)

and is more di�cult to state for the entropy criterion. The Lagragian L(f(ti; :); �i) can be written as:

J �

Z 0@�i;0 +

JiX
j=1

�i;j(e�Ki;j)
+

1
A f(ti; e)de:

where �i = (�i;0; �i;1; : : : ; �i;Ji
)0 are the Lagrange multipliers. The �rst order conditions provide the

following expressions, f�i
(ti; e), respectively for the quadractic and the entropy criteria:

f0(ti; e)

0
@1 + �i;0 +

JiX
j=1

�i;j(e�Ki;j)
+

1
A ;

f0(ti; e) exp

0
@�i;0 � 1 +

JiX
j=1

�i;j(e�Ki;j)
+

1
A :

The Lagrange multipliers �i;j are determined from the consistency with observed option prices con-

straints: Z
(e�Ki;j)

+f�i
(ti; e)de = C(ti;Ki;j);

8j = 1; : : : ; Ji. This is a set of linear equations for the quadratic criterion and non linear in the case of the

entropy criterion.

5 Multimodal densities

Figures 3 to 7 represent a priori and estimated risk-neutral densities for 30, 60, 90, 180 and 270 days. We

get probability distributions with two or three modes16. Thus multimodality may be surprising. We now

discuss this point more in detail.
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Figure 3 : a priori and estimated densities with L2 criteria

Let us �rst notice that in a number of empirical studies, the risk-neutral density is chosen among a set

of distributions that are unimodal. This is for example the case with most stochastic volatility models.

This precludes a priori the presence of several modes. However, if this implicit constraint is removed, it

is not uncommon to get multimodal risk-neutral densities (Jackwert et Rubinstein (1995), Abken,

Madan, et Ramamurtie (1996), Jondeau et Rockinger (1997)).

Figure 4 : a priori and estimated densities with L2 criteria

We may also remark that the presence of several modes is not inconsistent with some standard option

pricing models:

� jump-di�usion models of Merton (1976) type are usually associated with multimodal distributions

for short term horizons.

� When the exchange rate is modeled by a di�usion process, we may think of non linear dependence of

the local volatility coe�cient w.r.t. the underlying exchange rate. The exchange rate will then tend

to stay during longer periods around levels associated with low volatility. There is thus an inverse

relationship between density and local volatility as can be seen from the (1.2) de Derman, Kani,

Dupire expression. The square of the local volatility is inversely proportional to the density. Based
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upon the same dataset, Avellaneda et al. (1996) obtain irregular shapes for local volatiliy, which

is consistent with our own results on risk-neutral densities.

Figure 5 : a priori and estimated densities with L2 criteria

Figure 6 : a priori and estimated densities with L2 criteria
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Figure 7 : a priori and estimated densities with L2 criteria

Skewness and excess kurtosis of asset returns are a standard stylised fact. GARCH models, such as

E-GARCH or T-GARCH, and stochastic volatility models (when volatility is negatively correlated with

underlying asset) are consistent with these stylised facts. The same applies for the estimated densities with

the Bayesian approach. However, excess kurtosis is now a consequence of the presence of two secondary

modes (the density is �thinner" around its mean) and is not due to fat tails. Similarly, the skewness is due

to the asymetry between these two modes.

Lastly, the modes are located around the same exchange rate levels, whatever the horizon, while the

estimations have been conducted independently. Hopefully, this is a preliminary sign that the above results

are not purely arti�cial and will provide some relevant information.

6 Assessing the steadiness of multimodality

We now consider in detail how the previous results depend on our methodology. We study the conse-

quences of observed option prices uncertainty, the choice of a priori probability density function, benchmark

numéraire and the proximity criteria between pdf.

6.1 observed option prices and implied probability density functions

In OTC markets, traded option prices may be mid, bid or ask prices and di�er among various market-

makers. Though short-term currency options are rather liquid, there thus remains uncertainty in the input

option prices. In �gure 8, we assess the sensitivity of the estimated pdf w.r.t. a change in observed option

prices. The put USD/DEM price, with exercise date 1.43 and exercise date 60 days is updated from

1.27% to 1.37%, other option prices remaining unchanged. This has a signi�cant e�ect on the estimated

risk-neutral density: input option prices do bring some information that leads us to modify the a priori

log-normal distribution. The e�ects on the estimated density are located in a neighbourhood of the exercise

price of the modi�ed input option. The qualitative features of the estimated density such as multimodality

remain unchanged.
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Figure 8 : assessing the sensitivity to input option prices

The quadratic criterion allows a more detailed theoretical analysis of the previous e�ect. In appendix

C, we show that the relative di�erence between a priori and estimated densities,
f�(t; e)

f0(t; e)
�1 can be written

as:

(C(t;K)� C0(t;K))0V0[(e(t) �K)+]�1(e�K)+;

where C(t;K) is the vector of observed option prices with exercise date t, C0(t;K) the vector of Black

and Scholes option prices with exercise date t, (e�K)+ the vector of option payo�s with maturity t and,

V0[(e(t) � K)+], the payo� variance-covariance matrix, assuming that e(t) is (log-normally) distributed

under the a priori model. The di�erence between estimated and a priori densities thus depends linearly on

the di�erences between observed option prices and option prices computed under the a priori model.

6.2 Choice of a priori density

Due to the practical relevance of Black and Scholes pricing formula, we have considered that the

future exchange rate was log-normally distributed with mean the forward exchange rate. It is indeed the

benchmark modeling, and we will deviate from it only if it is strongly required by observed data. Let us

remark that empirical studies of more sophisticated option pricing models (stochastic volatility, interest

rates, presence of jumps) usually study relative improvements w.r.t. Black and Scholes model. The

log-normal prior is the most common one in these Bayesian approaches to the estimation of risk-neutral

densities17.

However, let us remark that the Black and Scholes is parametrised by some volatility coe�cient �.

Under the forward (a priori) probability measure, future exchange rate are modelled by:

e(t) = e(0; t) exp

 
��2

2
t+ �Wt

!
;
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where Wt is centered Gaussian with variance equal to t. The density f0;�(t; e), 8e > 0, is now written as:

1

e
p
2��2t

exp

2
4� 1

2�2t

 
�2t

2
+ log

e

e(0; t)

!2
3
5 :

This implies that the estimated state price density f�(�);�(t; e) depends on the volatility parameter in

the a priori model, both through f0;� and indirectly through the Lagrange multipliers �(�).

In Figure 9, we show three estimated risk-neutral densities corresponding to � = 14%, �� 3%,� +3%.

Let us remark that, even for large modi�cations of the volatility parameter, the overall shape of estimated

densities remains unchanged.

Figure 9 : estimated densities with di�erent volatility parameters

Using �the" implied volatility seems the simplest idea; we see in table two implied volatilities range

from 13,8% to 14,5% and depend on exercise prices. We can then consider an optimal implied volatility

parameter, which is the solution of:

min
�

Z  
f�i(�);�(t; e)

f0;�(t; e)
� 1

!2

f0;�(t; e)de:

Thus, we look for a volatility parameter such that the modi�cation of the a priori model (Black and

Scholes) is the smallest possible. It can be shown (see appendix) that the previous optimisation problem

is equivalent to:

[(C � C0;�)(t;K)]
0

V0;�[(e(t)�K)+]�1 [(C � C0;�)(t;K)] ;

where C(t;K) is the vector of observed option prices for exercise date t, C0;�(t;K) the vector of Black

and Scholes option prices computed under volatility �, V0;�[(e(t)�K)+] the variance-covariance matrix

of option payo�s, e(t) being log-normally distributed with volatility �. The optimal implied volatility

parameter is in fact a non linear least square estimate and is chosen in order to minimise a the deviations

between observed prices and Black and Scholes prices.

6.3 Choice of benchmark numéraire

The previous quantities are expressed in some arbitrary currency or numéraire. If e(t) is the number of

USD to be paid to get one DEM, we can equivalently say that e(t) is the price of one DEM in numéraire

14



DEM. The USD payo� of the call DEM is equal to (e(t) � K)+, while the payo� of the same �nancial

product expressed in DEM is equal to

�
1� K

e(t)

�+
(it is a put USD). Similarly, we know that risk-neutral

densities are not invariant by change of numéraire (Geman, El Karoui, et Rochet (1995)). Laurent

et Scaillet (1997) show the Bayesian approach provides estimated densities that also depend upon the

chosen numéraire. To assess this dependence e�ect, we have plot the estimated densities taken either USD,

either DEM as the benchmark numéraire. Figure 10 shows that, from an empirical point of view, the two

densities are almost identical.

Figure 10 : estimated densities with two di�erent numéraires

6.4 Dependence upon the chosen proximity criterion

Several criteria can be used to measure the proximity between two densities. One may try to choose

between quadratic, entropy or other criteria for economic reasons, or from a theoretical point of view, but

the �nal choice remains whatever arbitrary. Figure 11 plots the estimated risk-neutral densities obtained

with the quadratic and entropy criteria. We see that these are quite close and from a practical point of

view, at least given our dataset, the choice of criterion is not a critical issue.

Figure 11 : estimated densities with L2 and entropy criteria

This is encouraging since the scarcity of our observed option prices is a rather adverse situation. In

the extreme case where one would observe a single option price, the a priori model would allow a perfect
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calibration thanks to the volatility parameter. The estimated density would then always correspond to

Black and Scholes, whatever the proximity criterion. In the opposite case where one would observe

option prices for all exercise prices, the estimated density would not either depend upon the chosen criterion.

This results from the Breeden and Litzenberger property.

7 Conclusion

We have considered how a posteriori implied probability density functions of USD/DEM exchange rates

deviate from log-normal a priori pdf's. In most cases, we obtain multimodal distributions. As a consequence

of the presence of several modes, estimated probability distributions exhibit skewness and excess kurtosis.

Let us remark that multimodality precludes GARCH or stochastic volatility models in their simplest form.

However, our results might be explained by the presence of jumps or by strong non-linearities in the

exchange rate di�usion coe�cient.

In order to assess the reliability of our results, we study how estimated densities depend on the method-

ology. We consider both the quadratic and entropy criteria, the e�ects of the choice of the benchmark

numéraire or of the a priori volatility parameter. We �nd that these have small impact on the estimated

densities, which is an indication of good speci�cation. We also consider how estimated risk-neutral densities

depend on input observed option prices. The overall shape, including the presence of several modes, is not

modi�ed when observed option prices remain within the bid-ask spreads.

However, our results must be handled with caution. We used only observations for one day and one

given couple of currencies. It should be interesting to con�rm these preliminary results by further empirical

studies based upon larger datasets.

Notes
1In our framework, a risk-neutral probability measure is equivalent to the historical probability measure and is such that

current asset prices are equal to their expected discounted payo�s.
2When the state space is continuous, the state price density is the analogue of the prices of Arrow-Debreu state contingent

claims in discrete models. Up to a discouting coe�cient, state price densities and risk-neutral densities w.r.t. the Lebesgue

measure are equal.
3Here, we do not take into account lags between exercise and e�ective payments.
4This price also depends on t0 ; thereafter, t0 is �xed, say t0 = 0 and we omit the dependence upon t0 when it is not

necessary.
5Most of the activity in 1998 was related to the Yen and the volume on DEM options have decreased by half compared

the 1997 �gures.
6Over the tree �rst quarters of 1998, the average daily volume on DEM futures contracts was 29 251 contracts.
7Special maturities can also be traded and the PHLX tries to promote customised contracts.
8515 150 currency options were thus traded in 1998, to be compared with the 2 952 700 contrats traded on the CME for

three quarters of 1998.
9We thereafter assume that this second derivative is well de�ned.
10A call spread with exercise prices K1 and K2, K1 < K2 pays (e(t)�K1)

+
� (e(t)�K2)

+ at date t.
11Since we have assumed convex option prices, there exist left and right limits.
12Let us remark that assumption (i) is quite general, while assumptions (ii), (iii), (iv) might be questionned. It is possible

to get of these assumptions ; For instance, Jackwerth and Rubinstein (1995) remain in a discrete state space framework

where assumption (ii) is not ful�lled.
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13As for option prices, the state price density depends on the current date t0 ; to simplify notations, we omit this dependence.
14We proceed here heuristically, without detailing the optimisation sets ; see Luenberger (1969) for a presentation of the

functional optimisation techniques.
15Since the underlying asset can be viewed as a call option payo� with a zero exercise price, we will not further isolate this

constraint.
16A mode corresponds to a local maximum of the risk-neutral density.
17Some authors also use a uniform distribution; this a priori is implicit in the B-spline interpolation approach of Magnien,

Prigent et Trannoy (1996)).
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Appendix A : Interpretation of assumption (iv)

� Let us consider a european put option with exercise date t and exercise price K. The payo� of this option is

equal to (K � e(t))+ units of local currency. Let us denote by P (t;K) the price of this option at t0 = 0. We

recall put-call parity for currency options:

C(t;K)� P (t;K) = e(0) �B(0; t)�KB(0; t):

� (K � e(t))+ units of local currency have the same value than
1

e(t)
(K � e(t))+ of foreign currency, where

1

e(t)

is the price of one unit of local currency expressed in foreign currency; K

�
1

e(t)
�

1

K

�+
now appears as a call

payo� on the local currency with exercise date t and exercise price
1

K
. Let us denote by �C(t; u) the price in
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foreign currency of a call option on the local currency with exercise price u. Since a put on foreign currency

is equal to a call on local currency, we get:

P (t;K) = Ke(0) �C

�
t;

1

K

�
:

� From the two previous equations and using
@ �C(t; u = 0)

@u
= � �B(0; t) (which is equivalent to assumtion (iii)

when the benchmark numéraire is the foreign currency), we obtain Assumption (iv). This assumption thus

means that the local currency will not vanish before date t.

Appendix B : Proof of equation (3.3)

� Since C(t; u) is positive and non decreasing, C(t; u) has a limit when u!1.

� As
@C(t; u)

@K
is negative and non decreasing, it admits a limit when u ! 1. Morevover, since C(t; u) has a

limit when u!1, the limit of
@C(t; u)

@K
must be equal to zero: limu!1

@C(t; u)

@K
= 0.

Integrating by parts, we get:

Z b

0

(e�K)+
@2C

@K2
(t; e)de = C(t;K)� C(t; b) + (b�K)

@C

@K
(t; b); 8b > K:

We eventually obtain the stated result by letting b going to in�nity, by using the above result about the limit of

the derivative of the option price, limb!1

@C(t; b)

@K
= 0 and assumption (iv), limb!1 C(t; b)� b

@C

@K
(t; b) = 0.

Appendix B : Proof of equation (3.4)

Integrating by parts, we can express the payo� as:

g(e) = g(0) + eg0(0) +

Z +1

0

g00(u)(e� u)+du (7.6)

The �rst term g(0) corresponds to a constant payo�(a zero-coupon bond with maturity t and nominal value g(0)),

the second term corresponds to a holding of g0(0) units of foreign currency at t. The last term can be seen as an

in�nite sum of call payo�s with exercise price u, (e�u)+, and holding amounts g00(u)du. From the law of one price,

the prices of these three payo�s are respectively, g(0)B(t0; t), g
0(0)e(t0) �B(t0; t) and

Z
g00(u)C(t; u)du. Thanks to a

repeated integration by parts, we can write the previous integral as g(0)
@C

@K
(t; 0)�g0(0)C(t; 0)+

Z
g(u)

@2C

@K2
(t; u)du.

Since a call option with zero exercise price is always exercised, we get C(t; 0) = e(t0) �B(t0; t). The stated result is

now obtained thanks to assumption (iii).

Appendix C : Lagrance Multipliers

Let us consider the quadratic criterion; the Lagrange multipliers are the solution of a set of linear equations:8><
>:
Z

f�(t; e)de =

Z
f0(t; e)de;Z

(e�Kl)
+f�(t; e)de = C(t;Kl); 8l = 1 : : : J:
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with

f�(t; e) = f0(t; e)

0
@1 + �0 +

JX
j=1

�j(e�Kj)
+

1
A :

Let us assume that the a priori model is consistent with the observed underlying prices; the �rst equation can then

be written as:

�0B(0; t) +
JX

j=1

�jC0(t;Kj) = 0:

The remaining equations then provide:

(1 + �0)C0(t;Kl) +

JX
j=1

�j

Z
(e�Kl)

+(e�Kj)
+f0(t; e)de = C(t;Kl); 8l = 1::J

Substituting �0 gives:

C(t;Kl)� C0(t;Kl) =
JX

j=1

�j

�Z
(e�Kl)

+(e�Kj)
+f0(t; e)de�

C0(t;Kl)C0(t;Kj)

B(0; t

�

The running term between brackets is equal to B(0; t)Cov 0[(e(t)�Kj)
+; (e(t)�Kl)

+]. This provides :

B(0; t)� = Var0;� [(e(t)�K)+]�1[C(t;K)� C0(t;K)]

The �nal result is obtained by using f� expression.

Appendix D : Expression of f�(�);�(t; e)

From the expression of f�(�);� , we can write

Z �
f�(�);�(t; e)

f0;�(t; e)
� 1

�2
f0;�(t; e)de as:

Z 0@�0(�) +

JX
j=1

�j(�)(e �Kj)
+

1
A�f�(�);�(t; e)

f0;�(t; e)
� 1

�
f0;�(t; e)de

Moreover, from the consistency of f�(�);� with observed option prices, we can write the criterion as:

JX
j=1

�j(�)(C(t;Kj )� C0;�(t;Kj))

Substituting the expression of Lagrange multipliers provides the stated result.
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