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Key messages for regulation

» Hidden impacts of risk modelling choices on financial
stability and pro-cyclicality under Basel Il FRTB

» Even when considering simple exposures (S&P500)

» And complexity (optional products, correlations) left aside

» Backtesting / Quantitative Impact Studies poorly
discriminates among models under calm periods

» Danielsson (2002)

» Questionable benchmarking on hypothetical portfolios
» Highly unstable ranking of risk models

» Promote smart supervision, model risk validation and
enhanced disclosure on risk methodologies

» Fed SR 11-7 (2011), BCBS239 (2013)

Messages for market risk managers

» Favour Volatility Weighted Historical Simulation
(VWHS) over Historical Simulation (HS) for VaR and
Expected Shortfall computations?

» Standard backtesting procedures are of little help

» Historical Simulation works poorly in stressed periods

» Hidden procyclicality: patterns of VaR exceptions under

stress and fall-back to costly Standard Approach

» BUT large estimation errors when computing the
decay factor in VWHS

» Challenge the .94 golden risk number?

» Consider smaller values of decay factor(s)?

The best and worse out of VaR in
a Basel Il context: outlook

» Market risks: regulatory outlook
» The rise of historical simulation
» Backtesting and VaR exceptions
» Pointwise volatility estimation: The conundrum
» Assessment of risk models under Basel lll
p Limited usefulness of econometric techniques
» Hypothetical Portfolio Exercises useless?

» Lower decay factors to mitigate disruptions in the
computation of Risk Weighted Assets?




Market risks: regulatory outlook

» Market risks are not the main driver of banks’ risks

» But are prominent for large dealer banks
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Market risks: regulatory outlook

» Computing market RWA (Risk Weighed Assets)
» Basel amendment for market risks (1996)
» JP Morgan’s RiskMetrics (1996)

» Fixing Basel Il after 2008 turmoil
» Stressed VaR based on year 2008
» Credit risk: IRC, CRM, VaR on CVA, ...

» Minimum capital requirements for market risk
(2016)

» Implementation scheduled in 2019

> Laurent (2016) for an overview of ongoing issues :

Market risks: regulatory outlook

» Basel lll: Internal Models Approach (IMA) still
applicable
» 97.5% Stressed Expected Shortfall (ES)
» liquidity horizons : 10 days or more
» No scaling from 1D to 10D (Danielsson & Zigrand (2006))
» Backtesting based on 97.5% and 99% 1 day VaR
» Not directly on ES as in Du & Escanciano (2016)
» Number of VaR exceptions over past year

» At trading desk level: Danciulescu (2010), Wied et al.
(2015)

P VaR exception if « loss » greater than VaR

» BCBS QIS also requests reporting of 1D 97.5% ES +
p —values

The rise of Historical Simulation (HS)
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The rise of historical simulation

» Backtesting: compare 1 day VaR with both
hypothetical and actual daily Profit and Loss (P&

» Hypothetical P&L

» Banks holdings frozen over risk horizon

» « Uncontaminated P&L »: not accounting for banks” -

fees (Frésard et al. (2011)).

» Computed according to all risk factors and pricing =~

tools being used by Front Office (FO)

» full revaluation is implicit when computing
hypothetical P&L

The rise of historical simulation

» Use of risk-theoretical P&L to compute VaR

» Changes in P&L according to bank’s internal risk
model (which includes risk representation and pricing
tools)

» Use of modellable risk factors within risk systems
(FRTB/Basel 3) or risks in VaR when applicable

» Subset of risk factors used in Front Office
systems.

» Delta/gamma approximations, PV grids or full
revaluation might be used in repricing books

» Rank daily P&L over past 250 trading days (1Y)
» In between 2nd and 3rd worst loss provides 99% VaR

The rise of historical simulation

» Huge litterature to compare approaches to VaR/ES

» Historical, FHS, VWHS, EWMA, Parametric (multivariate
Gaussian), GARCH family, EVT, CAViaR, ...

» To quote a few: Kupiec (1995) Hendricks (1996), Christoffersen (1998),
Berkowitz (2001), Berkowitz, & O’Brien (2002), Yamai & Yoshiba (2002)
Kerkhof & Melenberg (2004), Yamai & Yoshiba (2005), Campbell (2006),
Hurlin & Tokpavi (2008), Alexander (2009), Candelon et al. (2010), Wong
(2010), BCBS (2011), Rossignolo et al. (2012), Rossignolo et al. (2013),

Abad et al. (2014), Ziggel et al. (2014) Kramer & Wied (2015). Siburg et aI i

(2015), Pelletier & Wei (2015), Nieto & Ruiz (2016)
» Focus on backtesting performance

» Lack of implementation details, choice of backtest
portfolios, historical periods make comparisons difficult
» Dealing with operational issues is also of importance
» large dimensionality: several thousands of risk factors,
» Costly to price optional products,
» Data requirements.

The rise of historical simulation

Market-risk practices at 18 financial institutions, 2011, %
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The rise of historical simulation

» Volatility Weighted Historical Simulation (VWHS

» Hull & White (1998), Barone-Adesi et al. (1999),
not to be confused with Boudoukh et al. (1998)

» Volatility not constant over VaR estimation period

» Rescale returns by ratio of current volatility to
past volatility

» o, volatility at time t, r._j returnatt — h
ot

> Rescaled past returns X Tt—n

Ot—h
» VWHS: empirical quantile of rescaled returns

The rise of historical simulation

» (Location) scale models: 1 = g, X &
» GARCH: & has a given stationary distribution
P Such as t(v): parametric approach to &;
> VaR: qo (1) = 0¢ X qq(&r)

» EVT could be used to assess q, (&), McNeil & Frey
(2000), Diebold et al. (2000), Jalal & Rockinger (2008)

» VWHS: same approach to VaR

» BUT q, (&) empirical quantile of standardised
returns ;. /¢

» Above decomposition shows two sources of model
risk: volatility estimation oy, tails of standardized
returns &

The rise of historical simulation

» Issues with previous approaches
» Standardised returns &; = r, /g, not directly
observed
> Since &; depends on volatility estimates o

» Use of Diebold & Mariano (2002) to compare
predictive accuracy questionable.

> Large uncertainty when deriving g;?
> See page 29 when using EWMA
» Issues with GARCH(1,1) modelling: Pritsker (2006)

» Misspecification of &; distribution?

» Tail dynamics only driven by volatility o,

\
(Var1%/VaR2.5%)/ (®~1(99%)/® ! (97
EWMA volatility estimates, decay factor?

Descriptive statistics of
standardised returns &;, 1

14

VaR ratos over standard normal guantile ratios

For Gaussian & and well-specified decay
factor, ratio should be equal to one
Ratio higher than 1 means fat tails




(Var1%/VaR2.5%)/ (®~1(99%)/® 1 (97.
EWMA volatility estimates, decay factor 3

& = 1./ 0, show some left tail dynamics.

Descriptive statistics of
standardised returns &;

16

aR ratios ower siandard normal quantile ratios
12 14
L

Daily 97.5% ES (black) vs 99% VaR (red),
A=.97

Expected Shortfall computations:
ES,(r;) = oy X ES,(&p)
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Backtesting and VaR exceptions

» Basel lll regulatory reporting
» 10 days Expected Shortfall (capital requirement)

» Computed over different subsets of risk factors
(partial ES), scaled-up to various time horizons

» Computed over stressed period, averaged and
submitted to multiplier (in between 1.5 and 2)

» Computation of 10D ES from daily data and VWHS:

Giannopoulos & Tunaru (2005), Righi & Ceretta (2015}

» 1 day 99% and 97.5% VaR (backtesting)
» Qoo (1) = 0; X qoo(€r)

» qo75(1t) = 0p X qo75(€r)

Backtesting and VaR exceptions

» VaR exception: whenever loss exceeds VaR

» For 250 trading days and 1% VaR, average number of
VaR exceptions = 2.5

» For well-specified VaR model, number of VaR
exceptions follows a Binomial distribution

» So-called « unconditional coverage ratios » or traffic
light approach (Kupiec, 1995, Basel 1, 2016)

» Regulatory thresholds at bank’s level: green zone, up
to 4 exceptions, yellow zone, in between 5 and 9
exceptions, red zone, 10 or above

» At desk level: 12 exceptions at 1%, 30 at 2.5%

Volatily Weigthed Historical Simulation
outperforms Historical Simulation

» Number of VaR exceptions over past 10 years
(S&P 500)

|| 1% VaR || 2,5%VaR |

Historical Simulation 40 I 89

Volatility Weighted

Historical Simulation 28 e
(RiskMetrics)
Expected 25 I 63

Volatility estimation: the
conundrum

» EWMA (Exponentially Weighted Moving Average)

> ol =AXof, + (A=) X1

» A:decay factor, 1 — A speed at which new returns are

taken into account for pointwise volatility estimation

b RiskMetrics (1996), A = 0.94 « »
» Single parameter model

» EWMA is a special case of GARCH(1,1)
» With no mean reversion of volatility.

» o7 is not floored and become quite close to zero in calm
periods (Murphy et al. (2014))




Volatility estimation: the
conundrum
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Volatility estimation: the
conundrum

» Numerous techniques to estimate decay factor A

» RiskMetrics (1996): minimizing the average squared
error on variance estimation

|
Ag(0,1) i

T
1= arg min — Z[(rf(,l) - rf]2
=]

,'_

» Other approaches:
> Guermat & Harris (2002) to cope with non Gaussian returns
» Pseudo likelihood: Fan & Gu (2003) ’

» Minimization of check-loss function: Gonzalez-Rivera et al.
(2007)

Volatility estimation: the
conundrum

» For S&P500, Estimates of decay factor are highly
unstable and could range from 0.8 to 0.98 wild
around the 0.94 RiskMetrics « golden number »

» Note that A = 1 corresponds to plain HS

Estimation method/ length of historical data | 10 years | First 5 years | Second 5 years
Squared error method 0.8092854 | 0.8207192 | 0.9030331
Pseudo likelihood method 0.9331466 | 0.9525035 | 0.9146036
Check loss method at 1% level 0.0010042 | 0.9406649 | 0.8398029

eck loss method at 2.5% level 0.8%20008 | 0.9557358 | 0.8634200 |

» Building volatility filters is even more intricate when
considering different risk factors (Dave & Stahl (1998))

Volatility estimation: the
conundrum

» Lopez (2001), Christoffersen & Diebold (2000),
Angelidis et al. (2007), Gurrola-Perez & Murphy
(2015) point out the issues with determining o;

» Recall that high values of A results in slower
updates of VaR when volatility increases

> Murphy et al. (2014) suggest that CCPs typically use
high values (.99) for decay factor.

> In case of Poisson type event risk (no memory),
higher values of 4 would be a better choice.

» No obvious way to decide about the optimal 1




Volatility estimation: the
conundrum

Ratios of daily volatility estimates
over past 10Y with decay factor 0.94
and 0.8 are highly volatile
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Assessment of VaR (risk) models

VaR1%/VaR1% for decay factors .8 and .94
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Assessment of risk models

» Number of VaR Exceptions over past 10 years

(S&P 500)
|| 1% VaR || 2,5%VaR |
VWHS
PR 8 || e
VWHS
A=0.94 eE e
(RiskMetrics)
|  Expected || 25 || 63

p» Almost same results for tests based on number
of VaR exceptions (unconditional coverage)

Assessment of risk models

» Smaller decay factors imply prompter VaR
increases when volatility rises and slightly better
behaviour during stressed periods

Number of Exceptions for
99% VaR over period

January 2008 - January 2011 @'jﬁ

I A=0.94 I 8 | Note: Stressed period
— based on high levels of
I A=0.97 I 11 I VaR and of VIX

» Similar results in Boucher et al. (2014), where
plain HS (A = 1) provides poor results under
stress. See also O'Brien & Szerszen (2014).




Assessment of risk models

» PIT (Probability Integral Transform)
adequacy tests

» Crnkovic and Drachman (1995), Diebold et al.
(1997), Berkowitz (2001)

» Regulators: Fed, ongoing BCBS QIS

» Check whether the loss distribution (instead of
a single quantile) is well predicted.

» If F; is the well-specified (predicted)
conditional loss distribution, F;(r;41)~U[0,1]

» Fi(rp41) : p-values

PIT adequacy tests

Sample Quantile

QQ plot for p-values for
VWHS with lambda=.8
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2.5%:good fit with VWHS

(2014). Colletaz et al. (2016) for more on the use of different confidence internals

Hurlin & Tokpavi (2006), Pérignon & Smith (2008), Leccadito, Boffelli, & Urga




Focusing on tails: VWHS vs plain HS

Frequancy

Histogram of p-values for plain HS, =1
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Expected values: 25 exceptions at 1% level, 38
in between 1% and 2.5%:bad fit with HS

Assessment of risk models

» Clustering of VaR exceptions, i.e. several blows
in a row might knock-out bank’s capital

» Are VaR exceptions clustered during stressed
periods?

» “We are seeing things that were 25-standard deviation
moves, several days in a row”

» Quoted from David Viniar, Goldman Sachs CFO, August
2007 in the Financial Times

» Crotty (2009), Danielsson (2008), Dowd (2009), Dowd -
et al. (2011) -

» Tests based on duration between VaR exceptions

» Christoffersen & Pelletier (2004), Haas (2005),
Candelon et al. (2010)

Overshoots for VaR exceptions using VWHS
and lambda=.8 at 1% confidence level
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Assessment of risk models

» Conditional coverage tests

» [, =1,0 depending on occurrence of an exception
> E¢lli41] = 1%, 2.5%

> E; conditional expectation
» Conditional probability of VaR exception

consistent with confidence level

» Engle & Manganelli (2004), Berkowitz et al. (2008),
Cenesizoglu & Timmermann (2008), Gaglianone et al.
(2012), Dumitrescu et al. (2012), White et al. (2015).

» Instrumental variables: past VaR exceptions and
current + past level of the VIX volatility index

» Leads to GMM type approach




Assessment of risk models

>l =ag+ Xl ol + Y50 BiVIXe_j +up
» Engle & Manganelli (2004)

» VaR model is well-specified if ay = 1%, 2.5% and f8; =
0,0; =0,i =1

» We rather follow the logistic regression approach
» Berkowitz et al. (2008) :
» Choosing number of lags I, K is uneasy

» Number of lags depend on confidence level
» And considered portfolio/trading desk ==

» Bayesian Information Criteria (BIC), backward model
selection, partial autocorrelation function (PACF) are
not discriminant

Assessment of risk models

» Results for S&P500 2.5% confidence level

» Red cells are acceptable: no lag for VIX, but lags
2,3,4 or (3,4) for I;_; could be considered

CMM model [ (10) [ (1)) | (1]2) (2/0) (2|1) (22)
BIC| 67.18 | 72.25| 69.70 65.07 70.21 67.80
CGMM model | (3]0) [ (3]1) | (3]2) (4]0) (4]1) (]2)
BIC | 65.07| 70.16 | 67.71 65.07 70.14 67.56
GMM model | (1,20) [ (1,2[1) | (1.2)2) | (2.3]0) | (2.3]1) | (2.3]2)
BIC| 7033 75.44| 73.02 67.86 73.08 70.66
GMM model | (3,4)0) | (3,4]1) | (3,42) | (1,3[0) | (1,3]1) | (1,3]2)
BIC| 67.86| 73.01]| 70.43 69.07 75.05 72.73

Assessment of risk models

» Preliminary results suggests that A < 0.9
» Would reject A = 0.94 (Riskmetrics standard)

Parameters (two regressors, I;_3,I;—4) | Estimate | Std. Error | z value Pr(> 2]) |

ap [ —4.0561 0.5043 | —8.043 [ 8.77¢ — 16" |
ag | 24467 1.2060 | 2.029 0.0425° |

iy 2.4467 1.2060 2.029 0.0425*

p But results of statistical tests are difficult to
interpret (depend on the chosen lags)

» Rejection for lags (3,4) acceptance for lag 3 only

Parameters (one regressor, I;_3) | Estimate | Std. Error | z value Pr(> |z|)
ap | —3.8544 0.4519 | —8.529 | < 2e — 16***

g 2.2450 1.1850 1.894 0.0582

Estimation results based on March 2008 to February 2009 daily/

Assessment of risk models

» Vast litterature on model risk due to parameter
uncertainty, choice of estimation method.

» Christoffersen & Goncalves (2005), Alexander & Sarabia
(2012), Escanciano & Olmo (2012), Escanciano & Pei
(2012), Gourieroux & Zakoian (2013), Boucher & Maillet
(2013), Boucher et al. (2014), Danielsson & Zhou (2015),
Francq, & Zakoian (2015), Danielsson, et al. (2016).

» Our focus is more narrow: concentrate on a key
parameter left in the shadow, i.e. decay factor, and
implications for risk management under Basel llI

» Recall that Historical Simulation, EWMA/Riskmetrics and
FHS/VWHS are quite different




Tackling RWA (Risk Weighted
Assets) variability
» VaR models with strinkingly different
outputs would not fail backtests
» Not new! But what to do with this?
» This can feed suspicion on internal models
» Hidden model complexity, tweaked RWAs?
» Standardized Basel lll risk models

» Floors based on Hypothetical Portfolios
Exercises

Floors based on Hypothetical
Portfolio Exercises (HPE)?

» Basel 2013 RCAP (Regulatory Consistency
Assessment Programme) BCB5240, BCBS267 &
EBA (2013) show large variations across banks
regarding VaR outputs for hypothetical portfolios

» Partly related to discrepancies under various
jurisdictions
» Partly due to modelling choices

» Lenght of data sample to estimate VaR, relative
weights on dates in filtered historical simulation

» And as shown in our study HS vs VWHS

Floors based on Hypothetical

Portfolio Exercises (HPE)?
» Our controlled experiment shows that ranking
of models varies dramatically through time

» Model A can much more conservative than model B
one day, the converse could be observed next day

» Though in average models A and B provide the same
VaRs
» This is problematic regarding the interpretation
of HPE and RWA variability

» Above approach would favour the use of the same
possibly misspecified 0.94 golden number...

Tweaking internal models?

» Strategic/opportunistic choice of decay factor?

» Danielsson (2002), Pérignon et al. (2008), Pérignon & Smith
(2010), Colliard (2014), Mariathasan & Merrouche (2014)

» Sticky choice of decay factor: supervisory
process

» Does not change average capital requirements
» Could change the pattern of VaR dynamics

» Higher decay factor leads to smoother patterns and
ease management (risk limits)

» Regulatory capital requirements are based on stressed
period only and on averages over past 60 days

» No procyclicality issue with using smaller decay factors




Undue internal model
complexity?

» Haldane and Madouros (2012), Dowd (2016)
tackle undue model complexity

» Our approach is simple and widely documented

» No correlation modelling or pricing models of exotic
produts is involved

» No sophisticated econometric methods
» However, HS can be fine tuned

» Making things simpler (Standard Approaches,
output floors based on SA, leverage ratio) might
reduce risk sensitivity

Traps in market risk capital
requirements

» Procyclical trap when using today’s risk models
> Ratio of IMA to SA quite large in a number of cases

» Plain historical simulation or use Riskmetrics decay
factor results in large number of VaR exceptions
under stress and fallback to SA

» If a IMA desk is disqualified, huge increase in capital
requirements :

» Issue not foreseen: QIS are related to a calm period

» Use of outfloors based on a percentage of SA
would not solve above issue

Traps in market risk capital
requirements

» Avoiding the procyclical trap

» Using lower values of decay factor for prompter
updates in volatility prediction

» Smaller number of VaR exceptions in volatile periods
» Resilience of internal models against market tantrum

» Managing reputation (see above Goldman’s case
study)

» Lowering decay factor should not increase capital
requirements

» No bias in average variance estimates

» ES computed on a stressed period only + averaging

Traps in market risk capital
requirements

» Avoiding the FRTB procyclical trap?
» Banks are currently faced with other top priorities
regarding desk eligilibility to IMA
» Data management to reduce NMRF scope

» PnL attribution tests: reconciliation of risk and front office
risk representations and pricing tools, dealing with reserves
and fair value adjustements

» Threshold number of VaR exceptions at desk level is high.

» BUT large number of desks (100?) and local or global
market tantrums might be devastating

» Forget about unfrequent recalibration of risk models!




Conclusion

» Focus on decay factor impacts for risk
measurement in the new Basel Il setting

» Desk-level validation and back-testing

» Beware of plain historical simulation methods
and challenge the .94 golden number

» Further research with internal bank data might
prove useful

» Lower decay factors for dedicated trading desks

» Challenge the outcomes of Hypothetical
Portfolio Exercises on RWA variability
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