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Changes in our environment
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CDO in Europe

Year | 1996 1997 1998 1999 2000 2001 2002
Number 1 3 3 24 50 133 144
Volume ($ bn) | 5 5.7 4.5 29.2 63.2 106 143 .4

Source: Moody's Investor Service

s from Thierry Roncalli, GRO Crédit Lyonnais




Changes in our environment

s « We are witnessing an impressive escalation in analytical resources
devoted to more effective management of credit risk

s ...the new millenium has a fast paced start to further new
developments and techniques for the analytical treatment of credit-
risk management. »

n From Edward L. Altman
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Changes in our environment

= What are we looking for ?

s Not really a new model for defaults
« Already a variety of modelling approaches to default

s Rather a framework where:

= one can easily deal with a large number of names,
= Tackle with different time horizons,
« Compute loss distributions, measures of risk (VaR, ES) ...

= And credit risk insurance premiums (pricing of credit derivatives).

» Straightforward approach:
s Direct modelling of default times
s Modelling of dependence through copulas

s Default times are independent conditionnally on factors



Overview

m Probabilistic tools

s Survival functions of default times
= Factor copulas

s Credit loss distributions and risk measures
= Loss distributions over different time horizons
s Information flow and credit migration
» Risk measures : retail and corporate portfolios
s Valuation of basket credit derivatives

= Moment generating functions
» Distribution of k-th to default time

= k™ to default swaps
= Valuation of CDO tranches

» Valuation of default swaps on OTC derivatives
n  Counterparty risk on credit default swaps



Probabilistic tools
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Probabilistic tools: survival functions

= ¢=1,...,n names
m T1,--.,7Tn default times
= Marginal distribution function Fi(t) = Q(7; < t)

= Marginal survival function S;(t) = Q(7; > t)
s Risk-neutral probabilities of default
= Obtained from defaultable bond prices or CDS quotes

s « Historical » probabilities of default

= Obtained from time series of default times



i Probabilistic tools. survival functions

= Joint survival function
S(tlj .« . jt-n,) — Q(Tl >" tlj . e s :,Tn >‘ tn)
s Needs to be specified given marginals

= (Survival) Copula of default times
O(Sl(tl)ﬂ “ ey Sn,(tn)) — S(tlj . e s jt?’l)
s C characterizes the dependence between default times

= We need tractable dependence between defaults
s Parsimonious modelling

s Semi-explicit computations for portfolio credit derivatives



Probabilistic tools: factor copulas

W

= Factor approaches to joint distributions
s V low dimensional factor, not observed « latent factor »
s Conditionally on V default times are independent

s Conditional default probabilities

V V
—Qri<t|V), ¢V =Q(r;>t|V).

s Conditional joint distribution
V
Q(Tlgtlv'“ Tnftn|v H p?|

1<i<n
Joint survival function (implies integration wrt V)

It

. . . v
Qri>t,... ,Tp>1ty)=E Hff;|
i=1




Probabilistic tools: Gaussian copulas

= One factor Gaussian copula (Basel 2)
= V.Vi,i=1,....n independent Gaussian

Vi=p;V +1/1— ﬁ?f’}

= Default times: T; = F_é_l((li'(ﬂ))
= Conditional default probabilities v/ =

—p;V + @‘1(1'5}(1&))
1 —p;

= Joint survival function

To [P =2 (E(t))
S(ty,... .t,) = / ( P (*’ o(v)dv
. ];!: A p?

. O~ u;) — pv
Clug, ... yuy) = / o — w(v)duv
: ];!: v 1— p?

s Copula




Probabilistic tools : Clayton copula

s Davis & Lo ; Jarrow & Yu ; Schonbucher & Schubert
= Conditional default probabilities

pi =exp(V (1= F@)™)

s V: Gamma distribution with parameter

= Joint survival function

1 v l f
S(tlr foen rtﬂ) — /H (]. — pf!,'l ) F(l/g) E',_L V{l—ﬂjfﬂdv
=1

s Copula
Cluy, ... yuy,) = (“ul_ﬂ +...+u

4 —1/#

Ti

n—l—l)



Probabilistic tools: simultaneous defaults

s Duffie & Singleton, Wong

= Modelling of defaut dates 7; = min(7;, 7)
n Qi =175) 2 Q (’T < min(7;, ’Tfj)) > (0 simultaneous defaults

s Conditionally on T, T; are independent

QUi <t,..., <ty |7)= [ Quri<t|7)
1<e<n

= Conditional default probabilities
Q(m; <t | 7) = L=, Q(Ti < ;) + Lr<y,
s Copula of default times

(1{“'. ._“-H}:E H {T,) (TE{_-:FI_I[”F}| T)




Probabilistic tools: Affine Jump Diffusion

s Duffie, Pan & Singleton ;Duffie & Garleanu.
s N+ 1 independent affine jump diffusion processes:

X]_.J, ° o ._,anXc
= Conditional default probabilities:
1%

Qri>t|V)=q' =Vt

x .f
V = exp (—/ Xf.{sjds) . ooilt) = FE [(}:{p (—/ X,{S:Idﬂ):| :
0 0

= Survival function:
Q1 >t,...,Tp>1) = VnXH&?

s Explicitely known



Credit loss distributions and risk measures

Accumulated loss at t: L(t) = Z N;(1 — 6;)N;(t)
1<i<n

= Where N?(t) = lTigt, Ni(l — 0;) loss given default
Characteristic function @) u) =E [e?‘?‘uﬁ(ﬁ)]

By conditioning  ¢,nw)=E | |] ( =gV +p "m,(ﬁm)]
1<j<n

If recovery rates follows a beta distribution:

1=<3<n

"ijL{f](u]I = F [ H (1 o p}l W _I_p_rﬂ1,.-'i,l.‘(i]r(ﬂ:"ll_1 a; + E}Jj E-JMJ))

= where M is a Kummer function, a,b; some parameters

Distribution of L(t) is obtained by Fast Fourier Transform

|



Credit loss distributions and risk measures

s Beta distribution for recovery rates

lo1 Beta

] Shape 1,Shape
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Credit loss distributions and risk measures

= Modelling of information
H-?I,t =0 (Lr?;gs: S K t) , Hy = \/ Hi,t

I<i1<n
s Information provided by observation of default times

= Credit migration:

s modelling of conditional survival functions

Q(m; =T | Hy)
= involves partial derivatives of the survival function:
.08 ./ OS x
ST |7 >tTo=ty) = —(T,ty) | —(t,1
Q(r1>T |11 >1t,72=1) {%( 2) 81&2( 2)

s can be computed analytically under factor assumption



i Credit loss distributions and risk measures

= market value of survived loans (credit migration)
> NiB;(t)(1— Ni(t))
1<i<n
s IN; nominal exposure on name i

s B;(t) market value of survived loan on name i

= involves conditional survival distributions Q) (7; > T | Hy)
m Total loss
= > Nil(1=6)Ni(t) + Bi(t)(1 — Ny(t))
1<i<n
= Need of some Monte Carlo simulation for L(t)



Credit loss distributions and risk measures

s Coherent risk measures :

X <Y = p(X) < (Y)

VA >0, pAX)=Ap(X),

pX +Y) < p(X)+pY)

VaeR, p(X+a)=pX)-—a.
= VaR (not sub-additive)

VaR, (i(t)) — inf (::: Q (ii(t) < :1’:) >1— af)

s Expected Shortfall (coherent risk measure)

ESq (f}(t)) — é /U Vak, (f}(t)) du



Credit loss distributions and risk measures

m Credit loss distributions and risk measures

s Retail portfolios: continuous smooth distributions
ES, (f,(t)) _E [i;(t) | L(t) > VaR, (I’;(t))}

s more details in « aggregating Basel II »

s corporate portfolios: discrete distributions

m Risk contributions for continuous distributions
IES, (i-{r.})
aN,

_E [(1 — 8)N:(E) + Bi(t)(1 — Ni(t)) iL(r] > VaR, (iqx})]

s Differentiability issues for discrete distributions



«the whole is simpler than the sum of its parts »
i Basket Valuation

21004 Ted Coff

"Our eges are all in one basket, no milk has been
spilt, and we have plenty of dough."



«Counting time is not so important as making time county

Valuation of basket credit derivatives

s Nt =D ligmey= > Nilt) Number of defaults at t

1<i<n 1<i<n

. T kg0 default time

0 Sk(t) — Q(q—k > t) Survival function of k™ to default

s Remark that Tk > [ <<— N(t) < k

s Survival function of " Z QN
1<k—1
s Computation of Q(N(t) =1)

= Use of pgf of N(t): Unw(u) =E [u*‘“‘*’(ﬂ =) Q(N(t) = '
[=()



«Counting time is not so important as making time county

Valuation of basket credit derivatives

Probability generating function of N(t): Yyu =E {,ﬂ"(ﬂ]
= Yyp(u) =FE {uﬁ”‘r{ﬁ'] =k [E [HN{” | V” iterated expectations

« B |uY V} = H E [fu,"ﬂ”rfm | V} conditional independence
] 1<i<n

. B[N0 | V] —1—p)" +p" xu binary random variable

T

H (1 - IJi' Y+ I}iw X u)

1=1

n Yyp(u)=E polynomial in u

—_ 1

= One can then compute ()(N(t) = k)

L.

Since )y (u) = E [u‘w(ﬂ = Z Q(N(t) = k)u"

k=)



Valuation of homogeneous baskets

= ;=1,...,n names
s Equal nominal (say 1) and recovery rate (say 0)

s Payoff : 1 at k-th to default time 1f less than T

= Credit curves can be different
= S;(t) = Q(1; > t) given from credit curves
o Sk(t) — Q(TA > t) : survival function of Tk

n Sk(t) computed from pgf of N (t)



Valuation of homogeneous baskets

= Expected discounted payoff
T
E [B(Tk)lTk{T] = — / B(t)dsk(t)
- 0

s From transfer theorem
s B(1) discount factor

= Integrating by parts

T
1 — B(T)S*(T) + [ SE)dB(t)
J )

s Present value of default payment leg
s Involves only known quantities

s Numerical integration is easy



Valuation of premium leg

s it to default swap, maturity T
s l1,...,t_1,t;,..., T premium payment dates
s Periodic premium p is paid until 7k
= /M premium payment
« T >t payment of p at date 1
= Present value: pB(t))S*(t))
s 41 < * < t; accrued premium of ('rk —t;_1)p at T+

t ﬁ
s Present value: / pB(t)(t — fﬂ—l)dsk(t)
tr—1

s PV of premium leg given by summation over /



i Non homogeneous baskets

= 1 =1,... .1 names
= M; = (1 — 6;)N; loss given default for i
= Payment at k" default of M; if i is in default

s No simultaneous defaults

« Otherwise, payoff'is not defined
m | kh default iff k-1 defaults before 7
o N=O(1,) number of defaults (i excluded) at T
o k-1 defaults before T; iff N'"D(r;)) =k — 1



Non homogeneous baskets

s (discounted) Payoff ZMi’?B(Ti)1{N[—i}(Ti)=k—1}l{Ti£T}
=1

=
s Upfront Premium

= ... by iterated expectations theorem
n

> ME [’E’ [B{T” LNi(ry=k-1y Hri<T} F”

1=1
= ... by Fubini + conditional independence
T - A%
| BOQW 0 =k~ 1| Vydy,
e where plV = Q(r; <t | V)

E fo‘"ﬂ'_ﬂ[ﬂ =k —1|V) : formal expansion of H (1 - pj:“'r +p{|l'r-u)
j#i



Non homogeneous baskets

m Guido Fubini




First to default swap

s Case where k£ =1

e, (N(—'i)(t) =0 | V) — H (1 —pﬂv) no defaults for j # 1

i# _
= premium = iM?:E / H (1 E?IV) :r|V
1=1 i 7 |
T n I d iV
- :/D > MiB(E H(l—Pﬂv) E;t dt (regular case)
1=1 | j#i |

. 1V — ).:'V + (I)_l F? 1
One factor Gaussian " =@ ( f — ; ( )))

s Archimedean piw =exp (V (1— F.r'(t)_ﬂ))



First to default swap

s One factor Gaussian copula

s n=10 names, recovery rate = 40%

s 5 spreads at 50 bps, 5 spreads at 350 bps
= maturity = 5 years

s X axis. correlation parameter, y axis. annual premium
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1500 -

1000 -
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0
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Valuation of CDO'’s

«Everything should be made as simple as possible, not simplery

s Explicit premium
computations for tranches

s Use of loss distributions

N ., over different time horizons
- THEN 4 "_T_ ke

e R

L B AR
4 MIRACLe ; TR ) TR
{!u:l:'._l_q_._;[: -“‘P\ Il ':_-I:_ T
; e

\* & Bl s Computation of loss

e i T S =
il distributions from FFT

= Involves integration par

parts and Stieltjes integrals
¢T THINK MoU SHOULD BL MORE EXPLICIT
He@E N STEP TWO .

vk TR ILARATE Formemd. i Dhytomtind e Ui (s i



Valuation of CDO'’s

s Tranches with thresholds 0 <A< B <> N;
s Mezzanine: pays whenever losses are between A and B

s Cumulated payments at time t: M(t)

M(t) = (L(t) — A)) 1 p)(L(t)) + (B — A)jp o (L(E))

T
/ B(t)dM(t)}
0

» B(t) discount factor, T maturity of CDO

= Upfront premium: E

T
= Stieltjes integration by parts B(T)E[M(T)| + / E[M(t)|dB(t)
0
b

s where E[M(t) = (B— A)Q(L(t) > B) + / (z — A)dFy ()
JA



* Valuation of CDO'’’s

s Thomas Stieltjes




Valuation of CDO'’s

One factor Gaussian copula

s n=50 names, all at 100 bps, recovery = 40%

= maturity = 5 years, x axis: correlation parameter
n 0-4%, junior, 4-15% mezzanine, 15-100% senior

3000

2500

2000

——junior

1500 ——mez

senior

1000

500

0 - h—’_#
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waw Contingent default swaps

m Credit protection on OTC derivatives

o ('(t)market value of a (portfolio of) OTC derivatives

» credit protection payment of C(7) at default
« T maturity of the contract, B(t) discount factor

s Discounted payment on default leg

C(r) Lir<m B(r)

= Premium of default protection

T
/0 E(C(H)B(r) | 7 = t)dQ(r = 1)

s requires the computation of conditional distribution of
market value at default time



Counterparty risk on credit default swaps

= Let us consider a defaultable CDS
s 71 : default date of underlying name
s 79 ! default date of CDS counterparty
= Default payment if T1 < 79 N1’
= Discounted default payment

Ni(1 = 01)1 g7 <ron1 B(71)

= Present Value of default payment
:_ Ni(1— 61)B(t1) 1 ctonmyd@Q(11 <ty | T2 = 12)dQ(72 = 1)
B2
s Can be computed explicitely in the factor model

= One also needs to take into account the case T9 < T1



Conclusion

s Factor models of default times:

s Very simple computation of basket credit derivatives and
CDO'’s
s One can deal easily with a large range of correlations

s Computation of loss distributions with credit migration
often requires Monte Carlo approaches

s Computation of risk measures
= Explicit for corporate portfolios
= Monte Carlo for retail portfolios
s Integration of market and credit risk

= Difficult in default time models
= Difficult either in structural models



