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Abstract 
 

We compare some popular CDO pricing models. Dependence between default times is 
modelled through Gaussian, stochastic correlation, Student t, double t, Clayton and 
Marshall-Olkin copulas. We detail the model properties and compare the semi-analytic 
pricing approach with large portfolio approximation techniques. The ability of the models 
to fit the correlation skew observed in CDO market quotes is also assessed. Eventually, 
we relate CDO premiums and the distribution of conditional default probabilities which 
appears as a key input in the copula specification. 
 

 
Introduction 
 
This paper provides a comparison of some popular CDO pricing models. We use a factor approach 
leading to semi-analytic pricing expressions that ease model risk assessment. We focus on “copula 
models” since there are predominantly used in the credit derivatives markets, though the factor 
approach also applies to various intensity models (see Mortensen [2006] for an example). The pricing 
of synthetic CDOs involves the computation of aggregate loss distributions over different time 
horizons. In our “bottom-up” approach, CDO tranche premiums depend upon the individual credit risk 
of names in the underlying portfolio and the dependence structure between default times.  
 
There are currently several approaches to CDO pricing. One may start from a specification of 
dependent default intensities. A typical example is Duffie and Gârleanu [2001]. An alternative route is 
the structural approach, corresponding to a multivariate hitting time model, as illustrated by Hull et al. 
[2005]. The previous approaches involve a calibration to marginal default distributions. On the other 
hand, the copula approach directly specifies the dependence structure, though in a somehow ad-hoc 
way. While the Gaussian copula model, introduced to the credit field by Li [2000] has become an 
industry standard, its theoretical foundations, such as credit spread dynamics may be questioned. For 
this purpose, copulas such as Clayton, Student t, double t, or Marshall-Olkin copulas have been 
proposed. 
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The factor approach is quite standard in credit risk modelling (see for instance Crouhy et al. [2000], 
Merino and Nyfeler [2002], Pykhtin and Dev [2002], Gordy [2003] and Frey and McNeil [2003]). In 
the case of homogeneous portfolios, it is often coupled with large sample approximation techniques. In 
such a framework, Gordy and Jones [2003] analyse the risks within CDO tranches. In order to deal 
with numerical issues, Gregory and Laurent [2003] and Laurent and Gregory [2005] have described a 
semi-analytical approach, based on factor models, for the pricing of basket credit derivatives and 
CDOs. This topic is also discussed by, among others, Andersen et al. [2003] and Hull and White 
[2004]. We will further rely on this factor approach, which also provides an easy to deal framework for 
model comparisons. Other contributions dedicated to comparing various copulas in the credit field are 
Das and Deng [2004] or the book by Cherubini et al. [2004]. The models studied here are the 
following: 
 

- The Gaussian copula, more precisely, its one factor sub-case. This model is widely used by the 
financial industry. 

- A stochastic correlation extension of the Gaussian copula. 
- The Student t extension of the Gaussian copula with six and twelve degrees of freedom. 
- A double t one factor model as introduced by Hull and White [2004]. 
- The Clayton copula model, that can also be seen as a frailty model with a Gamma distribution. 
- A multivariate exponential model associated with multiple defaults. The associated copula is 

the Marshall-Olkin copula. 
 
We refer to Andersen [2007] within this book for a discussion of other recent extensions of the factor 
copula approach. 
 
For simplicity and to ease model comparisons, we will thereafter restrict to cases where the copula of 
default times is a symmetric function with respect to its coordinates. For instance, in the Gaussian 
copula case, this means that the correlation parameter is constant, whatever the couples of names4. 
Comparing CDO pricing models is easier due to the small number of parameters involved. We study 
the dependence of CDO tranche premiums with respect to the choice of dependence parameter. This 
involves some results in the theory of stochastic orders. For example, we can show that first to default 
swaps or base correlation CDO tranche premiums are monotonic with respect to the relevant 
dependence parameter. We also discuss some extreme cases such as independence and comonotonicity 
(or “perfect positive dependence”) between default times. The theory of stochastic orders also provides 
some comparison results between CDO tranche premiums depending on the granularity of the 
reference credit portfolio.  
 
We then compare CDO pricing models based under different copula assumptions. We show that 
popular indicators such as Kendall’s τ  or the tail dependence parameter poorly explain the differences 
between CDO tranche premiums. On the other hand, the distribution of the conditional default 
probabilities appears as the key input. This explains for instance that, for a given time horizon, the 
Clayton copula and the one factor Gaussian copula almost lead to the same CDO tranche premiums. 
The conditional default probabilities are also of first importance in large portfolio approximations that 
dramatically simplify the computation of CDO tranche premiums. 
  
Eventually, we study the ability of the studied models to fit market quotes. Double t and stochastic 
correlation models appear to provide the better fits, while for instance the Clayton and the Gaussian 
copula provide some strikingly similar CDO tranche premiums. 
 
The paper is organized as follows: we firstly recall the semi-analytical pricing approach of basket credit 
derivatives or CDO tranches in a factor framework. The second section reviews the models under 
study. The third section is devoted to applications of the theory of stochastic orders to the pricing of 
CDO tranches. Though the third section is more theoretical in nature, it has quite important practical 
implications: we are able to show the existence of a unique implied dependence correlation parameter 
in most cases. For instance, we give a formal proof of the uniqueness of implied base correlations, a 
result of importance for practitioners. Some comparison results between large portfolio approximations 
                                                           
4 Practitioners then talk of “flat correlation”. The symmetry assumption does not preclude the case of 
heterogeneous credit spreads for different names. 
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and semi-analytic approaches are provided and granularity issues are discussed. The fourth section 
contains empirical investigations. Our comparison methodology relies on the uniqueness of implied 
dependence parameters for base correlation tranches. We firstly study how the different models at hand 
differ as far as the pricing of basket default swaps and CDO tranches is concerned. We then discuss the 
ability of the different models to reproduce market quotes on standardized CDO tranches based on the 
iTraxx index. Eventually, we provide an analysis of the differences between the studied models based 
on the distribution of conditional default probabilities. 
 
I) Semi-analytical pricing of basket default swaps and CDOs 
 
In this section, we recall how the factor or conditional independence approach can be associated with 
tractable computations for basket default swaps and CDO tranches (see Laurent and Gregory [2005]). 
 
Throughout the paper, we will consider n obligors and denote the random vector of default times as 
( )1, , nτ τ… . We will denote by F and S respectively the joint distribution and survival functions such 

that for all ( )1, , n
nt t ∈… \ , ( ) ( )1 1 1, , , ,n n nF t t Q t tτ τ= ≤ ≤… …  and ( ) ( )1 1 1, , , ,n n nS t t Q t tτ τ= > >… …  

where Q represents some pricing probability measure. 1, , nF F…  represent the marginal distribution 
functions and 1, , nS S…  the corresponding survival functions. C denotes the copula of default times5 
which is such that ( )1 1 1( , , ) ( ), , ( )n n nF t t C F t F t=… … . We denote by iE , 1, ,i n= …  the nominals 

associated with n credits, with iδ  being the corresponding recovery rates and by ( )1i i iM E δ= −  the 
loss given default for name i. We will thereafter assume that recovery rates are deterministic and 
concentrate upon the dependence of default times. 
 
We will consider a latent factor V such that conditionally on V, the default times are independent. The 
factor approach makes it simple to deal with a large number of names and leads to very tractable 
pricing results. We will denote by ( )VtQp i

Vi
t ≤= τ|  and ( )VtQq i

Vi
t >= τ|  the conditional default and 

survival probabilities. Conditionally on V , the joint survival function is:  
 

∏
≤≤

=
ni

Vi
tn i

qVttS
1

|
1 ),,( "  

Basket Default Swaps and CDO tranches are now standardized products. As for the pricing of the CDO 

tranche, we need to consider the aggregated loss process defined as 
1

( ) ( )
n

i i
i

L t M N t
=

= ∑ , where ( )iN t  

are the default indicators processes associated with the different names and iM  the corresponding 
losses given default. It can be shown that we only need the marginal distributions of ( )L t  up to 
maturity in order to price the default and the premium leg of a CDO tranche. The computation of the 
default payment leg involves ( )( )E L t K +⎡ ⎤−⎣ ⎦  where K are the attachment points of the tranches. Semi-

analytical techniques allow for quick computation of the aggregated loss distribution. This is usually 
done by considering its characteristic function. Thanks to the conditional independence assumption, 
and since recovery rates are deterministic, the characteristic function of the aggregated loss can be 

written as: ( )( )
( )

1

( ) jiuMj V j ViuL t
L t t t

j n

u E e E q p eϕ
≤ ≤

⎡ ⎤
⎡ ⎤= = +⎢ ⎥⎣ ⎦

⎣ ⎦
∏ . The computation of the expectation 

involves a numerical integration over the distribution of the factor V, which can be easily achieved 
                                                           
5 Let F be a joint distribution function defined on n\  and 1, , nF F…  be the corresponding marginal 

distribution functions. Then, there exists a distribution function C over [ ]0,1 n  such that for all 

( )1, , n
nx x x= ∈… \ , ( )1 1( ) ( ), , ( )n nF x C F x F x= … . If 1, , nF F…  are all continuous, then C is uniquely 

defined. Conversely, if C is an n-copula and 1, , nF F…  are univariate distribution functions, 

( )1 1( ), , ( )n nx C F x F x→ …  defines a joint distribution function.  
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numerically provided that the dimension of V  is small6. Eventually, the distribution of the aggregated 
loss is provided by inversion of the characteristic function or recursion techniques. For more details 
about these approaches, we refer to Laurent and Gregory [2005], Andersen et al. [2003], Hull and 
White [2004]. Jackson et al. [2007] discuss the efficiency of different methods for the computation of 
loss distributions. 
 
For modelling purpose, it is important to notice that the only inputs to the model are the conditional 
default probabilities |i V

tp , which include all model specification. 

 
II) The models under study 
 
There are now a number of books dedicated to copulas such as Joe [1997], Nelsen [1999] or Cherubini 
et al. [2004]. As for the insurance case, we can also refer to the paper by Frees and Valdez [1998]. We 
detail below some “factor copulas” that are useful in the pricing of basket credit derivatives and CDOs. 
We will thereafter restrict ourselves to one parameter copulas to ease comparisons. The symmetry 
assumption is made about the copula of default times and not about the joint distribution of default 
times. This assumption can be related but is weaker than the exchangeability assumption. For instance, 
we may have constant correlations in a Gaussian copula but different marginal default probabilities and 
recovery rates. For an analysis of heterogeneity effects within the Gaussian copula, we refer to Gregory 
and Laurent [2004]. 
 
II.1 One factor Gaussian copula 
 
The default times are modelled from a Gaussian vector ( )1, , nV V… . As in Li [2000], the default times 

are given by: ( )( )iii VF Φ= −1τ  for ni ,,1…=  where 1
iF −  denotes the generalized inverse of iF  and Φ  

is the Gaussian cdf. In the one factor case, 21i iV V Vρ ρ= + −   where iVV ,  are independent Gaussian 
random variables and 0 1ρ≤ ≤ 7. Then: 

( )1
|

2

( )

1
ii V

t

V F t
p

ρ

ρ

−⎛ ⎞− +Φ
⎜ ⎟= Φ
⎜ ⎟−⎝ ⎠

. 

0ρ =  corresponds to independent default times while 1ρ =  is associated with the comonotonic case8. 
When 1ρ = , we simply have 

( ){ }1
|

( )
1

i

i V
t V F t

p −≤Φ
= . 

  
There is no upper or lower tail dependence when 1ρ <  while the coefficient of tail dependence is 
equal to 1 when 1ρ = 9. The relation between Kendall’s τ 10 and linear correlation parameter 2ρ  is 
                                                           
6 In the examples below, the dimension of V  will be equal to one or two.  Gössl [2007] considers some 
factor reduction techniques in a Gaussian copula framework. 
7 As a consequence, the correlation between iV  and jV  is equal to 2ρ . Let us remark that some papers 

rather write the latent variables as 1i iV V Vρ ρ= + − . 
8 Let ( )1, , nX X X= …  be a random vector with marginal distribution functions 1, , nF F… . X is said to 

be comonotonic if it has the same distribution as ( ) ( )( )1 1
1 , , nF U F U− −…  where U is a [ ]0,1  uniform 

random variable and 1
iF −  is the generalized inverse of iF . Moreover, a random vector is comonotonic 

if and only if the associated copula is the upper Fréchet copula, such that for all ( ) [ ]1, , 0,1 n
nu u u= ∈… , 

( ) ( )1 1, , min , ,n nC u u u u+ =… … . The Fréchet copula acts as an upper bound, since for any copula C, we 

have ( ) ( )C u C u+≤  for all [ ]0,1 nu∈ . 
9 Let X and Y be two random variables, with distribution functions ,X YF F , and let C denote the copula 
associated with ( ),X Y . The coefficient of upper tail dependence is such that: 
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given by: 22 arcsinKρ ρ
π

= . An important result is that the one factor Gaussian copula is increasing in 

the supermodular order11 with respect to the correlation parameter ρ . This result was proved by 
Bäuerle and Müller [1998] and further generalized by Müller and Scarsini [2000], Müller [2001]. Since 
default times are increasing functions of the 'iV s , the default times do also increase, with respect to the 
supermodular order, as the correlation parameter increases. Loosely speaking, default times are more 
dependent when the correlation parameter increases, which is rather intuitive, though the formal proofs 
are quite involved. The notion of dependence with respect to the supermodular order makes sense 
especially for non Gaussian vectors, such as default times, as will be detailed below. We refer to the 
books by Müller and Stoyan [2002] or Denuit et al. [2005] for detailed comments about stochastic 
orders. 
 
II.2 Stochastic Correlation 
 
There has been much interest in simple extensions of the Gaussian copula model (see Andersen and 
Sidenius [2005], Schloegl [2005]) in order to match “correlation smiles” in the CDO market. Let us 
present the simplest version of such a model. The latent variables are given by: 
 

( ) ( )( )2 21 1 1i i i i iV B V V B V Vρ ρ β β= + − + − + − , 

for 1, ,i n= … , where iB  are Bernoulli random variables, iVV ,  are standard Gaussian random 
variables, all these being jointly independent and ,ρ β  are some correlation parameters, 0 1β ρ≤ ≤ ≤ . 
We denote by ( )1ip Q B= = . The above model is a convex sum of one factor Gaussian copulas, 
involving a mixing distribution over factor exposure. In our examples, there are here two states for each 
name, one corresponding to a high correlation and the other to a low correlation. We could equivalently 
write the latent variables as: 

( )( ) ( )( )2
1 1 1i i i i i iV B B V B B Vρ β ρ β= + − + − + − , 

This makes clear that we deal with a stochastic correlation Gaussian model. We have a factor exposure 
ρ  with probability p  and β   with correlation 1 p− . It can be easily checked that the marginal 

distributions of the iV ’s are Gaussian. As above, we define the default dates as ( )( )iii VF Φ= −1τ  for 
ni ,,1…= . 

 

                                                                                                                                                                      

( )1 1
1 1

( , ) 1 2lim ( ) ( ) lim
1u X Y u

C u u uQ X F u Y F u
u

− −
→ →

+ −
> > =

−
, 

whenever the limit exists. We say that there is upper tail dependence if the coefficient is positive. From 
the definition, it can be seen that the coefficient of upper tail dependence is always less or equal to 1. It 
is equal to 1 for the upper Fréchet copula C+ . We can also consider the coefficient of lower tail 
dependence defined as: 

( )1 1
0 0

( , )lim ( ) ( ) limu X Y u
C u uQ X F u Y F u

u
− −

→ →≤ ≤ = . 

This coefficient is also less or equal to 1 and is equal to one for the upper Fréchet copula C+ . 
10 Given a bivariate copula C , Kendall’s τ  is given by 

[ ]20,1
4 ( , ) ( , ) 1K C u v dC u vρ = −∫∫ . 

11 Let : nf →\ \ . We consider the difference operators ( ) ( ) ( )i if x f x e f xε εΔ = + − , where ie is the 

i-th unit vector and 0ε > . f is said to be supermodular, if ( ) 0i j f xε δΔ Δ ≥  holds for all 

,1nx i j n∈ ≤ ≤ ≤\  and , 0ε δ > . A random vector ( )1, , nX X X= …  is said to be smaller than the 

random vector ( )1, , nY Y Y= … , with respect to the supermodular order, if ( ) ( )E f X E f Y≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  for all 
supermodular functions such that the expectation exists. This means that the coordinates of Y  are more 
dependent in a rather strong mathematical sense than the coordinates of X .  
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The default times are independent conditionally on V and we can write the conditional default 
probabilities 

( ) ( )1 1
|

2 2

( ) ( )
(1 )

1 1
i ii V

t

V F t V F t
p p p

ρ β

ρ β

− −⎛ ⎞ ⎛ ⎞− +Φ − +Φ
⎜ ⎟ ⎜ ⎟= Φ + − Φ
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

. 

We denote by GCγ  the bivariate Gaussian copula with covariance term γ . We can check that the 
bivariate copula of default times can be written as: 

( ) ( ) ( )2 2
2 2, 2 (1 ) , (1 ) ,G G Gp C u v p p C u v p C u vρβρ β

+ − + − , 

for ,u v  in [ ]0,1 . As a consequence, the previous model might be seen as a mixture of Gaussian 
copulas, involving all combinations of correlations. The tail dependence coefficient is equal to zero if 

1β ρ≤ < , to 2p  if 1β ρ< =  and to 1 if 1β ρ= = . It is also possible to provide an analytical though 
lengthy expression for Kendall’s τ  as: 

( ) ( ) ( )4 2 2 2 4 2

2 2 2 2
3 2 2 3

arcsin 2 (1 ) arcsin (1 ) arcsin
2

    4 (1 )arcsin 2 (1 ) arcsin 4 (1 ) arcsin
2 2 2

p p p p

p p p p p p

ρ ρβ β

ρ ρβ ρ β β ρβπ

⎛ ⎞+ − + −
⎜ ⎟

×⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +
+ − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
Since the supermodular order is closed under mixtures, it can be proved that increasing ( ), , pρ β  leads 
to an increase in dependence in the supermodular sense. The proof is postponed in the appendix. 
 
The previous two state model can be easily generalized. Let us consider the following modelling of 
latent variables iV : 

21  ,  1, ,i i i iV V V i nρ ρ= + − =� � … , 
where 1, , nρ ρ� �…  are independent stochastic correlations with distribution function F. We still have 
independent default times conditionally on V and:  

( )11
|

2
0

( )
( )

1
ii V

t

V F t
p dF

ρ
ρ

ρ

−⎛ ⎞− +Φ
⎜ ⎟= Φ
⎜ ⎟−⎝ ⎠

∫  

We can rather easily compare two stochastic correlation models in a fairly general framework. Let us 
consider another stochastic correlation model associated with distribution function G. We denote by 

1, , nβ β� �…  the corresponding stochastic correlation parameters:  
21  ,  1, ,i i i iW V V i nβ β= + − =� � …  

Let us assume that [ ]( ) ( ), 0,1G u F u u≤ ∀ ∈ . This means that 1 1, , n nρ β ρ β≤ ≤� �� �…  with respect to first 
order stochastic dominance. As a consequence, there exists non-negative random variables 1, , nv v…  

independent from 1, , , nV V V…  such that: 1 1 1, , n n nv vβ ρ β ρ= + = +� �� �… 12, where the previous equalities 
hold in distribution. ( )1 1 1, , , , , , ,n n nW W v vρ ρ� �… … …  and ( )1 1 1, , , , , , ,n n nV V v vρ ρ� �… … …  are Gaussian 

with correlation parameter respectively equal to 1 1 1, , n n nv vβ ρ β ρ= + = +� �� �…  and 1, , nρ ρ� �… . This 
ensures that: 

( ) ( )1 1 1 sm 1 1 1, , , , , , , , , , , ,n n n n n nV V v v W W v vρ ρ ρ ρ≤� � � �… … … … … … , 

and eventually ( ) ( )1 sm 1, , , ,n nV V W W≤… … . Ordering of stochastic correlation models is related to the 
first order stochastic dominance of the mixing correlation parameter.  
 
The reader can find further examples of the stochastic correlation approach in Burtschell et al. [2007]. 
  
II.3 Student t copula 
 
                                                           
12 We simply set ( )( )1

i i iv G F ρ ρ−= −� � , 1, ,i n= … .  
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The Student t copula is a simple extension of the Gaussian copula. It has been considered for credit and 
risk issues by a number of authors, including Andersen et al. [2003], Demarta and McNeil [2005], 
Embrechts et al. [2003], Frey and McNeil [2003], Greenberg et al. [2004], Mashal and Zeevi [2003], 
Mashal et al. [2003],  Schloegl and O’Kane [2005].  
 
In the Student t approach, the underlying vector ( )1, , nV V…  follows a Student t distribution with ν  

degrees of freedom. In the symmetric case which we are going to consider, we have i iV W X=  where 
21i iX V Vρ ρ= + − , iVV ,  are independent Gaussian random variables, W is independent from 

( )1, , nX X…  and follows an inverse Gamma distribution with parameters equal to 
2
ν  (or equivalently 

W
ν  follows a 2

νχ  distribution). Let us remark that the covariance between iV  and jV , i j≠   is equal to 

2

2
ν ρ

ν −
  for 2ν > . We further denote by tν  the distribution function of the standard univariate 

Student t, that is the univariate cdf of the iV ’s. We then have ( )( )1
i i iF t Vντ −= . It can be seen that 

conditionally on ( ),V W  default times are independent and: 

( )1/ 2 1
| ,

2

( )

1
ii V W

t

V W t F t
p νρ

ρ

− −⎛ ⎞− +
⎜ ⎟= Φ
⎜ ⎟−⎝ ⎠

. 

Thus we deal with a two factor model.  As for the Gaussian copula, we have Kendall’s  τ  expressed 

as: 22 arcsinKρ ρ
π

= . The Student t copula has upper and lower tail dependence with equal 

coefficients, being equal to 
2

1 2

12 1
1

tν
ρν
ρ+

⎛ ⎞−
⎜ ⎟− + ×
⎜ ⎟+⎝ ⎠

. Let us remark that even for 0ρ = , we still have 

tail dependence. Thus, 0ρ =  does not correspond to the independence case. In fact, there is always tail 
dependence whatever the parameters ρ  and ν . Thus, we cannot match the product copula13 by using 
the Student t copula. However, when 1ρ = , all the iV ’s are equal and this corresponds to the 
comonotonic case. Since the supermodular order is closed under mixtures and using the supermodular 
order of Gaussian copulas, we readily obtain that the Student t copula is positively ordered with respect 
to the parameter ρ  in the supermodular sense. 
 
II.4 Double t copula 
 
This model is also a simple extension of the one factor Gaussian copula. It has been considered for the 
pricing of CDOs by Hull and White [2004]. As for the Gaussian copula, it belongs to the class of 
additive factor copulas. We refer to Cousin and Laurent [2007] and the references therein for further 
examples and discussion. 
 
The default times are modelled from a latent random vector ( )1, , nV V… . The latent variables are such 

that 
1/ 2 1/ 2

22 21i iV V Vν νρ ρ
ν ν
− −⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  where iVV ,  are independent random variables 

following Student t distributions with ν  and ν  degrees of freedom and 0ρ ≥ . Since the Student 
distribution is not stable under convolution, the iV ’s do not follow Student distributions; the copula 
associated with ( )1, , nV V…  is not a Student copula. Thus, this model differs from the previous one. As 

                                                           
13 Random variables 1, , nX X…  are independent if and only if the associated copula is the product 

copula C⊥  such that: ( ) [ ]1, , 0,1 n
nu u∀ ∈… , ( )1 1, , n nC u u u u⊥ = × ×… … . 
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for the one factor Gaussian copula model, 0ρ =  is associated with independent default times and 
1ρ =  with comonotonic default times. 

 
The default times are then given by: ( )( )1

i i i iF H Vτ −=  for ni ,,1…=  where iH  is the distribution 

function of iV 14. Then: 

( )
1/ 2

1
1/ 2

|

2

2( )

2 1

i i
i V
t

H F t V
p tν

νρ
ν ν

ν ρ

−
⎛ ⎞−⎛ ⎞−⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟= ⎜ ⎟⎜ ⎟−⎝ ⎠ −⎜ ⎟⎜ ⎟
⎝ ⎠

. 

It is possible to derive some tail dependence parameters in the double t model. Using Malevergne and 
Sornette [2004], we can express the coefficient of tail dependence (the coefficients of upper and lower 
tail dependence are equal) as:  

2

1

1
1

νλ
ρ

ρ

=
⎛ ⎞−
⎜ ⎟+
⎜ ⎟
⎝ ⎠

, 

when ν ν= . If ν ν< , then the tail of the factor V is bigger than the tail of the idiosyncratic risk iV . As 
a consequence, the coefficient of tail dependence is equal to one. In the tails, the idiosyncratic risk can 
be neglected, and extreme movements are driven solely by the factor. On the other hand, if ν ν> , then 
the tail of the factor is smaller than the tail of the idiosyncratic risk and there is no tail dependence 
between the default times. 
 
II.5 Clayton copula 
 
Schönbucher and Schubert [2001], Schönbucher [2002], Gregory and Laurent [2003], Rogge and 
Schönbucher [2003], Madan et al. [2004], Laurent and Gregory [2005], Schloegl and O’Kane [2005], 
Friend and Rogge [2005] have been considering this model in a credit risk context.  
 
Let us proceed to a formal description of the model. We consider a positive random variable V , which 
is called a frailty, following a standard Gamma distribution with shape parameter 1/θ  where 0θ > . 

Its probability density is given by 
( )

(1 ) /1( )
1/

xf x e x θ θ

θ
− −=

Γ
 for 0x > . We denote by Ψ  the Laplace 

transform of f . We get ( ) 1/

0

( ) ( ) 1sxs f x e dx s θψ
∞

−−= = +∫ . We then define some latent variables iV ’s 

as: 
ln i

i
U

V
V

ψ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 

where 1, nU U…  are independent uniform random variables also independent from V . Eventually, the 
default times are such that: 

( )1 ,   1, ,i i iF V i nτ −= = …  
The previous equations imply a one factor representation where V  is the factor. The conditional 
default probabilities can be expressed as: 

( )( )| exp 1 ( )i V
t ip V F t θ−= −  

Low levels of the latent variable are associated with shorter survival default times. For this reason, V is 
called a “frailty”. 
 

                                                           
14 iH  must be computed numerically and depends upon ρ . 
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Let us remark that the iV ’s have uniform marginal distributions. Since the default times are increasing 
functions of these iV ’s, the copula of default times is the joint distribution of the iV ’s. We readily 

check that ( ) ( ) ( ) 1/1 1
1 1 1 1, , ( ) ( ) 1n n n nQ V u V u u u u u n

θθ θψ ψ ψ
−− − − −< < = + = + + − +… " " , for any 

( ) [ ]1, , 0,1 n
nu u ∈… . The distribution function of the iV ’s is known as the Clayton copula. The Clayton 

copula is Archimedean and the generator of the copula is ( ) 1t t θϕ −= − , i.e.   
 
( )1

1 1( , , ) ( ) ( )n nC u u u uθ ϕ ϕ ϕ−= + +… " . 

From Embrechts et al. [2003], we obtain Kendall’s τ  for a Clayton copula as: 
2K

θρ
θ

=
+

 where 

[ )1,θ ∈ − ∞ { }0 . The Clayton copula exhibits lower tail dependence for 0θ > , 1/2L
θλ −=   and no 

upper tail dependence i.e. 0Uλ = . When 0θ = , we obtain the product copula, i.e. default times are 
independent. When θ = +∞ , the Clayton copula turns out to be the upper Fréchet bound corresponding 
to the case where default times are comonotonic.  
 
As the parameter θ  increases, the Clayton copula increases with respect to the supermodular order 
(Wei and Hu [2002]). 
 
II.6 Multivariate exponential models and the Marshall-Olkin copula 
 
The reliability theory denotes these as “shock models”. There are also known as multivariate 
exponential models as in Marshall and Olkin [1967]. They were introduced to the credit domain by 
Duffie and Singleton [1998] and also discussed by Li [2000], Wong [2000]. More recently, 
Elouerkhaoui [2003a,b], Giesecke [2003], Lindskog and McNeil [2003] considered the use of such 
models. 
 
We present here the simplest form of the model corresponding to a single fatal shock15. We consider 
some latent variables ( )min ,i iV V V= , 1, ,i n= …  where , iV V , 1, ,i n= …  are independent 

exponentially distributed random variables with parameters ,1α α− , ] [0,1α ∈ . The corresponding 
survival copula16 belongs to the Marshall-Olkin family (see Nelsen [1999], pages 46-49) and can be 
expressed as:  

( ) ( ) 1
1 1

1

ˆ , , min , ,
n

n n i
i

C u u u u uα α α−

=

= ∏… …  

The default times are then defined as:  

( )( )( )1 exp min ,i i iS V Vτ −= −  

Since ( )( )1 expit S t−→ −  are increasing functions, the copula of default times is the same as the copula 

of ( )min , iV V . We can also check that the survival function of iτ  is indeed iS . From the definition of 
default times, we readily see that default times are conditionally independent upon V and the 
conditional survival probabilities are given by: 

1
ln ( )1 ( )

i

i V
t V S t iq S t α−

>−= . 
There is upper and lower tail dependence with the same coefficient equal to α . It can be shown (see 

Embrechts et al. [2003]) that Kendall’s τ  is given by: 
2K
αρ
α

=
−

. 0α =  corresponds to the 

independence and 1α = , implies that ( )1
i iS Vτ −=  i.e. default dates are comonotonic. 

 

                                                           
15 The reader can find some extensions to the case of non fatal shocks in Cousin and Laurent [2007]. 
16 The survival copula of default times, Ĉ  is such that ( )1 1 1

ˆ( ,..., ) ( ), , ( )n nS t t C S t S t= … . 
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Let us consider the case of equal marginal distributions of default times. Then, 
( ) ( )( )min , 0i j i jQ Q V V Vτ τ= ≥ < > . Thus the model allows for simultaneous defaults with positive 

probability. 
 
It can be proved that increasing  α  leads to an increase in the dependence between default dates with 
respect to the supermodular order. The proof is postponed in the appendix. 
 
III Ordering of CDO tranche premiums 
 
III.1 Monotonic CDO premiums with respect to dependence parameters 
 
Increasing the correlation parameter ρ  within Gaussian and Student t copula, increasing the parameter 
θ  in the Clayton copula or increasing the parameter α  (that represents the relative magnitude of the 
common shock) in the exponential model leads to an increase in dependence between default times. As 
a consequence, it can be proven that CDO tranche premiums of equity or senior type, i.e. either with an 
attachment point equal to zero or a detachment point equal to 100% are monotonic with respect to the 
dependence parameter. We will thereafter concentrate on equity tranches (i.e. first loss tranches) that 
are usually associated with the base correlation approach. In the Gaussian copula case, we can formally 
prove that equity tranche premiums are decreasing with respect to the correlation parameter. This has a 
great practical importance, since it guarantees the uniqueness of base correlations whatever the 
maturity of the CDO or the marginal distributions of default times. 
 
Let us consider the Gaussian copula case. To emphasize the dependence of the aggregate loss 
distributions upon the correlation parameter, let us denote by ( )L tρ  the aggregate loss for time t, 
associated with some correlation parameter ρ . Then, for all time horizons t, and attachment points K, 
we have: 

( ) ( )'' ( ) ( )E L t K E L t Kρ ρρ ρ
+ +⎡ ⎤ ⎡ ⎤≤ ⇒ − ≤ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

17. 

Let us also remark that in all the studied models, [ ]
1

( ) ( )
n

i i
i

E L t M F t
=

= ∑ . Thus, the expected loss on the 

reference portfolio is the sum of the expected losses on the names and is invariant with respect to the 
correlation structure. From call-put parity, we have: 

( ) ( )'' min , ( ) min ( ),E K L t E L t Kρ ρρ ρ ⎡ ⎤ ⎡ ⎤≤ ⇒ ≥⎣ ⎦ ⎣ ⎦  

Since the present value of the default leg of an equity tranche involves a discounted average of such 
expectations (see Laurent and Gregory [2005]), we conclude that the value of the default leg of an 
equity tranche decreases when the correlation parameter increases. Such a result also holds for the 
Student t, Clayton and Marshall-Olkin copulas with respect to the corresponding dependence 
parameter. We could not yet prove such a result for the double t  model, though numerical results show 
that the value of the default leg of an equity tranche decreases with respect to the dependence 
parameter ρ .  
                                                           
17 An important result from actuarial theory states that if two sets of default times are ordered with 
respect to the supermodular order then the corresponding aggregate losses are ordered with respect to 
the stop-loss order.  Let X  and Y  be two scalar positive random variables with finite mean. We say 
that X  precedes Y  in stop-loss order if ( ) ( )E X K E Y K+ +⎡ ⎤ ⎡ ⎤− ≤ −⎣ ⎦ ⎣ ⎦  for all 0K ≥ . It can readily be 

shown that if two random vectors with positive coordinates ( )1, , nX X X= …  and ( )1, , nY Y Y= …  are 

ordered for the supermodular order, then 
1

n

i
i

X
=
∑  is smaller than 

1

n

i
i

Y
=
∑  for the stop-loss order. We refer 

to Müller [1997], Dhaene and Goovaerts [1997], Hu and Wu [1999], Denuit et al. [2001] for some 
discussion about this topic. The usefulness of the supermodular order is made clear from the above 
discussion: it provides some monotonicity results on CDO tranche premiums with respect to the copula 
dependence parameter. 



11 

 
To complete the analysis, we also need to consider the behaviour of the premium leg of a CDO tranche 
with respect to the dependence parameter. As above, to ease the exposition and notations, we detail the 
Gaussian copula case, though the analysis is exactly the same for the Student t, Clayton and Marshall-
Olkin copulas. We recall that the premium paid is proportional to the outstanding nominal of the 
tranche, that is ( )( )K L tρ

+
−  in the case of an equity tranche with detachment point K . Using the same 

line of reasoning as above, we have: 

( ) ( )'' ( ) ( )E K L t E K L tρ ρρ ρ
+ +⎡ ⎤ ⎡ ⎤≤ ⇒ − ≤ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

We conclude that the value of the premium leg increases with the correlation parameter. Since 
meanwhile, the value of the default leg decreases, the equity tranche premium actually decreases when 
the correlation parameter increases. 
 
III.2 Comonotonic case 
 
We study possible bounds on CDO tranche premiums. Tchen [1980] proved that the random vector of 
default times ( )1, , nτ τ… is always smaller, with respect to the supermodular order, that the 

comonotonic vector of default times ( ) ( )( )1 1
1 , , nF U F U− −… . As a consequence, the case of perfect 

dependence or “comonotonicity” actually provides a model free lower bound on equity tranche 
premiums. 
 
III.3 Independence case 
 
The dual case of independence case leads to upper bounds on equity tranche premiums in the studied 
models. For all models at hand, except for Student t (see below), this is a consequence of corollary 
(3.5) in Bäuerle and Müller [1998]. The Student t copula must be treated slightly differently (see 
Appendix). 
 
Moreover, the independence bound is reached respectively for 0ρ =  (Gaussian and double t), 0θ =  
(Clayton) and for 0α = (Marshall-Olkin).  
 
It is well known that the factor structure and the exchangeability property lead to “positive 
dependence”. For instance, one can easily state that the covariances between default indicators 

{ } { }( ) ( ).cov 1 ,1 var 0
i j

V
tt t

pτ τ≤ ≤
= ≥ . Thus, it is not surprising that equity tranche premiums computed in 

factor models are lower than those computed under the assumption of independent default times. 
 
One issue is whether the independence case is associated with a model free upper bound on equity 
tranche premiums. The answer is negative. For instance, let us consider a Gaussian copula with 

constant negative correlation equal to 1
1n

−
−

. This leads to admissible correlation matrix; as a 

consequence of Müller and Scarsini [2000], the corresponding copula is smaller than the product 
copula with respect to the supermodular order. Thus the equity tranche premium will be greater than 
when computed under the independence assumption. 
 
From the previous remarks, we can state some important properties of base correlations. Whenever it 
exists, the base correlation is unique. This results from the monotonicity of equity tranche premiums 
with respect to the Gaussian correlation parameter stated in subsection III.1. However, in the case of 
negative association between default times, it may be that no base correlation can be found18. Since 
                                                           
18 Let us consider the following counterexample involving three names with equal credit curves. We 
consider a Gaussian copula model such that the correlation between the first two names is equal to 

100%− . One could think of two competitors, only one could survive. Thus, 1 2,V V V V= = − . If we 
assume that marginal default probabilities 1 2( ), ( )F t F t  are less than 0.5, we can indeed check that only 



12 

base correlation may not exist, even for arbitrage-free CDO tranche premiums, it differs from the 
implied volatility in the Black-Scholes model. 
 
III.4 Large portfolio approximations 
 
Large portfolio approximations are well known in the credit portfolio field (see Vasicek [2002], 
Schönbucher [2002] or Schloegl and O’Kane [2005]). The Basel II agreement talks about “infinitely 
granular” portfolios. In this subsection, we show that true equity tranche premiums are smaller that 
those computed under a large portfolio approximation. 
 
We now recall a useful result from Dhaene et al. [2002]. Let ( )1, , nZ Z Z= …  be a random vector and V 
a random variable. Then: 

1 1n cx nE Z V E Z V Z Z⎡ ⎤ + ⎡ ⎤ ≤ + +⎣ ⎦ ⎣ ⎦… … , 

where cx≤  is the convex order19.  
 
Let us apply this result to the credit case. Here,  { }1

ii i tZ M τ ≤=  and 1( ) nL t Z Z= + +…  are respectively 

the individual loss on name i  and the aggregated loss at time t . As above iM  denotes the 

deterministic loss given default on name i . We have: i V
i i tE Z V M p=⎡ ⎤⎣ ⎦  where ( )i V

t ip Q t Vτ= ≤  
denotes the conditional default probability of name i . Then, the approximation of the loss is provided 

by 
1

( )
n

i V
i t

i
E L t V M p

=

=⎡ ⎤⎣ ⎦ ∑  which is a deterministic function of the factor V 20. As a consequence the 

computation of the expected loss on an equity tranche 
1

min ,
n

i V
i t

i
E K M p

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑  can be done by a simple 

quadrature without any inversion of the characteristic function or recursion techniques. Moreover, since 

1
( )

n
i V

i t cx
i

M p L t
=

≤∑ , we have ( )
1

min , ( ) min ,
n

i V
i t

i
E K L t E K M p

=

⎡ ⎤⎛ ⎞≤⎡ ⎤ ⎢ ⎥⎜ ⎟⎣ ⎦
⎝ ⎠⎣ ⎦
∑ . Thus, the true value of the 

                                                                                                                                                                      
one of the first two names can default: ( )1

1 1( ) 0t V F tτ −≤ ⇔ ≤ Φ <  and ( )1
2 2 ( ) 0t V F tτ −≤ ⇔ − ≤ Φ < . 

This implies that { } { }1 2t tτ τ≤ ∩ ≤ = ∅ . The third name is uncorrelated with the first two names: 

3 3V V= . The nominals are equal to 1 for the first two names and 0.5 for the third name. We assume 
zero recoveries. Let us consider a [ ]1.5 3− senior tranche. Since names 1 and 2 cannot default 
altogether, the maximal loss on the credit portfolio is equal to 1.5. Thus, the premium associated with 
the previous tranche is equal to zero. On the other hand, the lowest admissible flat correlation is 

50%− . For smaller values, the covariance matrix would not be semi-definite positive. Thanks to the 
previous ordering results on Gaussian vectors, such a correlation structure leads to the lowest senior 
tranche premium consistent with a flat correlation matrix. Let us remark that there is a positive 
probability that names 1 and 2 default altogether leading to a loss of at least 0.5 on the [ ]1.5 3−  
tranche. As a consequence, the senior tranche premium is positive for any base correlation. Since the 
arbitrage free premium of the senior tranche is equal to zero, it is not possible to find a base correlation 
(even allowing for negative base correlations) that matches this premium. Of course, this case is rather 
unlikely, but it shows that base correlation cannot be assimilated to implied volatility which is always 
defined. 
19 Let X  and Y  be two random variables. We say that X  is smaller than Y  with respect to the 
convex order and we denote cxX Y≤  if [ ] [ ]( ) ( )E f X E f Y≤ , for all convex functions such that the 
expectations are well defined.   
20 If we assume that the iZ ’s are independent conditionally upon V  and identically distributed, we 

have: 
. .1

1 n

i ia si
Z E Z V

n =

→ ⎡ ⎤⎣ ⎦∑ . The right-hand term is known as the large homogeneous portfolio 

approximation. 
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default leg of an equity tranche is smaller than the one computed under the large portfolio 

approximation. Using the same reasoning, we also have ( )
1

( )
n

i V
i t

i
E K M p E K L t

+
+

=

⎡ ⎤⎛ ⎞ ⎡ ⎤− ≤ −⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
∑ . 

Therefore, the true value of the premium leg on an equity tranche is larger than the one computed under 
the large portfolio approximation. We conclude that true equity tranche premiums are smaller that 
those computed under a large portfolio approximation. Clearly, this is a model dependent upper bound. 
 
III.5 The case of basket default swaps 
 
Let us consider the case of a homogeneous first to default swap, i.e. all names have the same nominal 
and recovery rate21. It can be treated as a homogeneous CDO equity tranche with detachment point 
equal to the common loss given default. Thus, the previous results stated for CDO tranches apply. For 
instance, increasing the correlation parameter in the one factor Gaussian copula model always leads to 
a decrease in the first to default swap premium.  
 
IV) Comparing Basket Default Swaps and CDO premiums 
 
In order to conduct model comparisons, we proceeded the following way. Since the studied copulas 
depend upon a one dimensional parameter, we have chosen that parameter so that either first to default 
(for basket default swaps) or equity tranches premiums (for CDO tranches) are equal. Such a 
correspondence between parameters is meaningful since equity tranche premiums are monotonic with 
respect to the relevant dependence parameter (see previous section). We then compute the premiums of 
basket default swaps and various CDO tranches and study the departures between the different models 
and also between model and market quotes. 
 
IV.1 First to default swaps with respect to the number of names 
 
We firstly computed first to default swap premiums under different models as a function of the number 
of names in the basket, from 1 to 50. We assumed flat and equal CDS premiums of 80 bps, recovery 
rates of 40% and 5 year maturity. The default free rates are provided in the appendix. The dependence 
parameters were set to get equal premiums for 25 names. They are reported in Table 1.  
 

 Gaussian Student (6) Student (12) Clayton MO 
dependence 2 30%ρ =  2 11.9%ρ = 2 21.6%ρ = 0.173θ = 49%α =  

Table 1: dependence parameters for the pricing of first to default swaps. 
 
Table 2 reports the first to default premiums. Let us remark that Gaussian, Student t and Clayton 
copulas lead to quite similar premiums, while the Marshall-Olkin deviate quite significantly. The 
second line in the table corresponds to a plain CDS on a single name and thus all models provide the 
same input premium of 80 bps. We can also notice that the premiums always increase with the number 
of names22.  

 

Names Gaussian Student 
(6) 

Student
(12) Clayton MO

1 80 80 80 80 80 
5 332 339 335 336 244 

10 567 578 572 574 448 
15 756 766 760 762 652 
20 917 924 920 921 856 
25 1060 1060 1060 1060 1060
30 1189 1179 1185 1183 1264

                                                           
21 We refer to Laurent and Gregory [2005], for a general analysis of basket default swaps. 
22 This feature is model independent: the survival function of first to default time in a homogeneous 
basket is given by: ( ) ( )1 1

1 1 1 1( ) , , , , , ( )n n n n nS t Q t t Q t t t S tτ τ τ τ τ + += > > ≥ > > ≥ =… … . 
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35 1307 1287 1298 1294 1468
40 1417 1385 1403 1397 1672
45 1521 1475 1500 1492 1875
50 1618 1559 1591 1580 2079

Table 2: First to default premiums with respect to the number of names (bps pa). 
 
Table 3 provides Kendall’s τ  for the different models. As can be seen, even once the models have 
been calibrated on a first to default swap premium with 25 names, the non linear correlations are quite 
different.  
 

 Gaussian Student (6) Student (12) Clayton MO
Kρ  19% 8% 14% 8% 32%

Table 3: Kendall’s τ  for the studied models. 
 

IV.2 k-th to default swaps 
 
We then considered 10 names with credit spreads evenly distributed between 60 bps and 150 bps, a 
constant recovery rate of 40% and maturity still equal to 5 years. Table 4 reports the dependence 
parameters. They are set so that the first to default premiums are equal for all models. 
 

Gaussian Clayton Student (6) Student (12) MO 
2 30%ρ =  0.1938θ = 2 16.5%ρ = 2 23.6%ρ = 36%α =  

Table 4: dependence parameters for the pricing of k-th to default swaps. 
 
The columns of Table 5 provides first, second… until last to default premiums. As in the previous 
example, the differences between Gaussian, Student t and Clayton copulas are minor while the 
Marshall-Olkin copula leads to strikingly different results for higher order basket default swaps. 

 

Rank Gaussian Clayton Student
(6) 

Student
(12) MO

1 723 723 723 723 723
2 275 274 278 276 173
3 122 123 122 122 71 
4 55 56 55 55 56 
5 24 25 24 25 55 
6 11 11 10 10 55 
7 4.7 4.3 3.5 4.0 55 
8 1.5 1.5 1.1 1.3 55 
9 0.39 0.39 0.25 0.35 55 

10 0.06 0.06 0.04 0.06 55 
Table 5: First to last to default swap premiums (bps pa) for different models. 

 
Once again, Kendall’s τ  is poorly related to the premium structure (see Table 6). 
 

 Gaussian Clayton Student (6) Student (12) MO
Kρ  19% 9% 11% 15% 22%

Table 6: Kendall’s τ  for the studied models. 
 
IV.3 CDO tranche premiums under different models 
 
As a practical example, we considered 100 names, all with a recovery rate of 40%δ =  and equal unit 
nominal. The credit spreads are all equal to 100 bps. They are assumed to be constant until the maturity 
of the CDO. The attachment points of the tranches are 3%A =  and 10%B = . The CDO maturity is 
equal to five years. The default free rates are provided in the appendix. 
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We considered CDO margins for equity, mezzanine and senior tranches23 for the different models. We 
firstly considered the Gaussian model and computed the margins with respect to the correlation 
parameter 2ρ . These results show a strong negative dependence of the equity tranche with respect to 
the correlation parameter, a positive dependence of the senior tranche and a bumped curve for the 
mezzanine, which is not as sensitive to the correlation parameter. 

 
2ρ  equity mezzanine Senior

0 % 5341 560 0.03 
10 % 3779 632 4.6 
30 % 2298 612 20 
50 % 1491 539 36 
70 % 937 443 52 
100% 167 167 91 

Table 7: CDO margins (bp pa) Gaussian copula with respect to the correlation parameter. 
 
In order to compare the different pricing models, we set the dependence parameters to get the same 
equity tranche premiums. This gives the following correspondence table: 
 
 

2ρ  0% 10% 30% 50% 70% 100%
θ  0 0.05 0.18 0.36 0.66 ∞  

2
6ρ    14% 39% 63% 100%
2
12ρ    22% 45% 67% 100%

2ρ  t(4)-t(4) 0% 12% 34% 55% 73% 100%
2ρ t(5)-t(4) 0% 13% 36% 56% 74% 100%
2ρ  t(4)-t(5) 0% 12% 34% 54% 73% 100%
2ρ  t(3)-t(4) 0% 10% 32% 53% 75% 100%
2ρ  t(4)-t(3) 0% 11% 33% 54% 73% 100%

α  0 27% 53% 68% 80% 100%
Table 8: correspondence between parameters for the pricing of CDO tranches. 

 
For instance, when the Gaussian copula parameter is equal to 30%, we must set the Clayton copula 
parameter to 0.18 in order to get the same equity tranche premium24. 
 
Once the equity tranches were matched, we computed the premiums of the mezzanine and senior 
tranche with the different models. It can be seen that Clayton and Student t provide results that are 
close to the Gaussian case. For instance, for a Gaussian correlation of 30%, the senior tranche premium 
computed under the Gaussian assumption is equal to 20bps, while we obtained 18 bps under the 
Clayton assumption and 19 bps with a Student t with 12 degrees of freedom. 
 

ρ  0% 10% 30% 50% 70% 100%
Gaussian 560 633 612 539 443 167 
Clayton 560 637 628 560 464 167 

Student (6)   637 550 447 167 
Student (12)   621 543 445 167 

t(4)-t(4) 560 527 435 369 313 167 

                                                           
23 Corresponding to [ ]0 3%− , [ ]3 10%−  and [ ]10 100%−  tranches.   
24 We could not match the independence case with the Student t copula. Even for a zero correlation 
parameter, there is still tail dependence. As a consequence, no correlation parameter in the Student t 
copula allows a fit to the equity tranche premium computed under Gaussian copula and correlation 
equal to 0 or 10%. 
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t(5)-t(4) 560 545 454 385 323 167 
t(4)-t(5) 560 538 451 385 326 167 
t(3)-t(4) 560 495 397 339 316 167 
t(4)-t(3) 560 508 406 342 291 167 

MO 560 284 144 125 134 167 
Table 9: mezzanine tranche premiums (bps pa) computed under the various models for different levels 

of Gaussian copula correlation. 
 
 

ρ  0% 10% 30% 50% 70% 100%
Gaussian 0.03 4.6 20 36 52 91 
Clayton 0.03 4.0 18 33 50 91 

Student (6)   17 34 51 91 
Student (12)   19 35 52 91 

t(4)-t(4) 0.03 11 30 45 60 91 
t(5)-t(4) 0.03 10 29 45 59 91 
t(4)-t(5) 0.03 10 29 44 59 91 
t(3)-t(4) 0.03 12 32 47 71 91 
t(4)-t(3) 0.03 12 32 47 61 91 

MO 0.03 25 49 62 73 91 
Table 10: senior tranche premimus (bps pa) computed under the various models for different levels of 

Gaussian copula correlation. 
 

As for the basket default swap premiums, the premiums computed under the Marshall-Olkin copula are 
fairly different, except of course for the extreme cases of independence and comonotonicity. The 
double t model lies between these two extremes, i.e. Gaussian and Marshall-Olkin copulas. 
 
Let us now consider a non-parametric measure of dependence such as Kendall’s τ . We used the 
analytical formulas for the Gaussian, Clayton, Student and Marshall-Olkin copulas. Table 11 shows 
that the level of dependence associated with the Marshall-Olkin copula is bigger than in the Gaussian, 
Clayton or Student t copulas. Though Gaussian and Clayton copulas lead to similar CDO premiums, 
Kendall’s τ  are quite different. 
 

2ρ  0% 10% 30% 50% 70% 100%

Gaussian 0% 6% 19% 33% 49% 100%
Clayton 0% 3% 8% 15% 25% 100%

Student (6)   9% 25% 44% 100%
Student (12)   14% 30% 47% 100%

MO 0% 16% 36% 52% 67% 100%
Table 11: Kendall’s τ  (%) for the studied models and for different levels of Gaussian copula 

correlation. 
 
Let us remark that Kendall’s τ  increases with the correlation parameter. Since the copulas are 
positively ordered with respect to the dependence parameter, 1 2θ θ≤  implies that 

1 2, ,K C K Cθ θ
ρ ρ≤   where 

,K Cρ   denotes Kendall’s τ  associated with copula C . Moreover, 
,

1
K C

ρ + = . 
 
Table 12 provides the tail dependence coefficients associated with the different models. The different 
columns in the table correspond to the different Gaussian correlation coefficients involved in the 
previous tables, i.e. 0%, 10%, 30%, 50%, 70% and 100%. Since the copulas are positively ordered with 
respect to the dependence parameter (as a consequence of the supermodular order), 1 2θ θ≤  implies 

1 2
C Cθ θ≺  which in turn implies that the tail dependence coefficients are positively ordered with respect 
to the relevant dependence parameter. We can check the increase of the tail dependence coefficients 
from 0 to 100% on each row.  
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2ρ  0% 10% 30% 50% 70% 100%

Gaussian 0% 0% 0% 0% 0% 100%
Clayton 0% 0% 2% 15% 35% 100%

Student (6)   5% 12% 25% 100%
Student (12)   1% 4% 13% 100%

t(4)-t(4) 0% 0% 1% 10% 48% 100%
t(5)-t(4) 0% 0% 0% 0% 0% 100%
t(4)-t(5) 0% 100% 100% 100% 100% 100%
t(3)-t(4) 0% 100% 100% 100% 100% 100%
t(4)-t(3) 0% 0% 0% 0% 0% 100%

MO 0% 27% 53% 68% 80% 100%
Table 12: coefficient of lower tail dependence (%) for the studied models and for different levels of 

Gaussian copula correlation. 
 
It can be noticed that for a typical 30% Gaussian correlation, the level of tail dependence is rather small 
for Gaussian, Clayton and Student t copulas. This is also the case for the t(4)-t(4) model which 
however leads to quite different senior tranche premiums. The tail dependence is much bigger for the 
Marshall-Olkin copula. The previous table shows no obvious link between tail dependence and the 
price of the senior tranche. The reason for this is rather simple. It can be seen that the probability of a 
default payment occurring on the senior tranche over a 5 year time horizon, ( )(5) 10% 30%Q L ≥ � . 
Thus, we are still far way from the tail of the loss distribution. 
 
We also considered the bivariate default probabilities corresponding to the CDO maturity, 
( )5, 5i jQ τ τ≤ ≤  for i j≠ . From the symmetry of the distributions, these do not depend of the chosen 

couple of names. The univariate default probability for a five years horizon is ( )5 8.1%iQ τ ≤ = . In the 

independence case, the bivariate default probability is ( )28.1% 0.66%= . The bivariate default 
probabilities are very close for the Gaussian, Clayton and Student t copulas. We have stronger bivariate 
default probabilities for the double t models and even larger for the Marshall-Olkin copula. Let us 
remark that since the marginal default probabilities are given, the variance of the loss distribution and 
the linear correlation between default indicators only involve the bivariate default probability. The 
larger the bivariate default probabilities, the larger will be the variance of the loss distribution and the 
linear correlation between default indicators. 
 

2ρ  0% 10% 30% 50% 70% 100% 

Gaussian 0.66% 0.91% 1.54% 2.41% 3.59% 8.1% 
Clayton 0.66% 0.88% 1.45% 2.24% 3.31% 8.1% 

Student (6)   1.41% 2.31% 3.52% 8.1% 
Student (12)   1.49% 2.36% 3.56% 8.1% 

t(4)-t(4) 0.66% 1.22% 2.38% 3.49% 4.67% 8.1% 
t(5)-t(4) 0.66% 1.16% 2.27% 3.38% 4.57% 8.1% 
t(4)-t(5) 0.66% 1.18% 2.28% 3.37% 4.54% 8.1% 
t(3)-t(4) 0.66% 1.34% 2.57% 3.69% 5.02% 8.1% 
t(4)-t(3) 0.66% 1.31% 2.55% 3.70% 4.87% 8.1% 

MO 0.66% 2.63% 4.53% 5.65% 6.53% 8.1% 
Table 13: bivariate default probabilities (5 year time horizon) for the studied models and for different 

levels of Gaussian copula correlation. 
 
To further study some possible discrepancies between Gaussian, Clayton and Student t copulas, we 
kept the previous correspondence table between parameters and recomputed the tranche premiums for 
different input credit spreads. We want here to check whether the Gaussian copula can provide a good 
fit to Clayton and Student t copula premiums uniformly over credit spread curves. In tables 14, 15, 16  
below, credit spreads have been shifted from 100 bps to 120 bps. 
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2ρ  0% 10% 30% 50% 70% 100%

Gaussian 6476 4530 2695 1731 1085 200 
Clayton 6476 4565 2748 1781 1132 200 

Student (6)   2765 1765 1104 200 
Student (12)   2730 1748 1093 200 

Table 14: equity tranche premiums (bps pa) after a shift of credit spreads. 
 
 

2ρ  0% 10% 30% 50% 70% 100%

Gaussian 853 857 765 652 527 200 
Clayton 853 867 794 687 564 200 

Student (6)   807 672 537 200 
Student (12)   782 661 531 200 

Table 15: mezzanine tranche premiums (bps pa) after a shift of credit spreads. 
 

2ρ  0% 10% 30% 50% 70% 100%

Gaussian 0.2 8 28 46 64 109 
Clayton 0.2 7 25 42 60 109 

Student (6)   23 44 63 109 
Student (12)   26 45 64 109 

Table 16: senior tranche premiums (bps pa) after a shift of credit spreads. 
 
We can see that the same set of parameters still enables to provide quite similar premiums for the 
different models, especially for the senior tranche. These overall results are not surprising keeping in 
mind the results in Greenberg et al. [2004]. Demarta and McNeil [2005] also use some proximity 
between the t-EV copula and Gumbel or Galambos copulas for suitable choices of parameters. 
Breymann et al. [2003] show some similarity between Student t and Clayton copulas as far as extreme 
returns are concerned25. 
 
IV.4 Market and model CDO tranche premiums 
 
While the previous results relied on constant credit spreads, we now consider another example related 
to the Dow Jones iTraxx Europe index. The CDO maturity is equal to five years. The attachment 
detachment points correspond to the standard iTraxx CDO tranches, i.e. 3%, 6%, 9%, 12% and 22%. 
The index is based on 125 names. The 5 year credit spreads of the names lie in between 9 bps and 120 
bps with an average of 29 bps and a median of 26 bps. The credit spreads and the default free rates are 
detailed in the appendix. To ease comparisons, we assumed constant credit spreads with respect to 
maturity. 
 
We discuss the ability of each copula to produce a smile on pricing tranches on this index as is 
observed in the market. We calibrated the different models on the market quote for the [0-3%] equity 
tranche. The parameters used for the stochastic correlation model were 2 6.6%γ =  with probability 
0.66, 2 20%β =  with probability 0.1 and 2 80%ρ =  with probability 0.24. Better fits are presumably 
possible as we did not perform an optimization to match the market prices. Let us remark that we could 
not fit a Student t model with 6 degrees of freedom on the equity tranche market quote. We provide 
results both for tranches as quoted in the market and for “equity type” tranches.  
 

Tranches Market Gaussian Clayton Student (12) t(4)-t(4) Stoch. MO 
[0-3%] 916 916 916 916 916 916 916 
[3-6%] 101 163 163 164 82 122 14 
[6-9%] 33 48 47 47 34 53 11 

                                                           
25 This also shows that the dynamics of the credit spreads implied by the copula is not relevant for the 
pricing of CDOs. From Schönbucher and Schubert [2001], we know that Gaussian and Clayton copulas 
differ quite significantly from that point of view. 
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[9-12%] 16 17 16 15 22 29 11 
[12-22%] 9 3 2 2 13 8 11 

Table 17: iTraxx  CDO tranche premiums (bps pa) using market and model quotes. 
 
 

Tranches Market Gaussian Clayton Student (12) t(4)-t(4) Stoch. MO 
[0-3%] 916 916 916 916 916 916 916 
[0-6%] 466 503 504 504 456 479 418 
[0-9%] 311 339 339 340 305 327 272 

[0-12%] 233 253 253 254 230 248 203 
[0-22%] 128 135 135 135 128 135 113 

Table 18: iTraxx “equity tranche” CDO premiums (bps pa) using market and model quotes. 
 
Most practitioners deal with implied Gaussian correlation, that is the flat correlation in the one factor 
Gaussian copula model associated with a given premium. Table 19 and Graph 1 show that correlation 
parameters are smaller for mezzanine tranches leading to a so called “correlation smile”. Friend and 
Rogge [2005], Greenberg et al. [2004], Finger [2005] also report such an effect meaning that the 
Gaussian copula fails to price exactly the observed prices of iTraxx tranches. It can be seen that 
Clayton or Student t copulas are still close to Gaussian and thus do not create any correlation smile. 
This is consistent with previous empirical studies (see also Schönbucher [2002], Schloegl and O’Kane 
[2005]). The Marshall-Olkin model underestimates the prices of the mezzanine tranches and 
overestimates the super senior. The double t model provides a better overall fit but overestimates the 
senior tranches. The stochastic correlation model fits reasonably to the market prices, in particular the 
equity and junior super senior. It overestimated the mezzanine tranche premiums and would therefore 
underestimate the super senior [22-100%] region. This could be associated to the lack of extreme or a 
fat tail risk on the loss distribution. 
 
 

Tranches Market Gaussian Clayton Student (12) t(4)-t(4) Stoch. MO 
[0-3%] 22% 22% 22% 22% 22% 22% 22% 
[3-6%] 10% 22% 22% 22% 8% 13% 0% 
[6-9%] 17% 22% 22% 22% 18% 24% 10% 

[9-12%] 22% 22% 23% 21% 25% 29% 19% 
[12-22%] 31% 22% 21% 21% 36% 30% 35% 

Table 19: implied compound correlation for iTraxx tranches. 
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Graph 1: implied compound correlation for iTraxx CDO tranches based on market and model quotes. 

Tranches are on the x  - axis, compound correlations on the y - axis. 
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Table 20 and Graph 2 show the “equity-type” implied correlations or “base correlations”. We believe 
the best criteria to assess the ability of a model to fit the market is the difference in compound 
correlation. The relative pricing error on each tranche should be reasonably close to this although there 
can be problems for tranches that are rather insensitive to correlation. Base correlation may not be 
appropriate because small mispricings lower on the capital structure cause dramatic deviations on high 
base correlation tranches. This can be seen in Graph 2 where reasonable fits to compound can be seen 
to look extremely poor in terms of their implied base correlations. For example in the stochastic 
correlation model, the [0-22%] mispricing on base correlation is 27% whereas the [12-22%] tranche is 
priced within 1bp. 
 

 
Tranches Market Gaussian Clayton Student (12) t(4)-t(4) Stoch. MO 
[0-3%] 22% 22% 22% 22% 22% 22% 22% 
[0-6%] 31% 22% 22% 22% 33% 28% 41% 
[0-9%] 37% 22% 22% 22% 40% 30% 52% 

[0-12%] 43% 22% 23% 23% 45% 30% 60% 
[0-22%] 54% 22% 25% 26% 53% 27% 72% 

Table 20: implied base correlation for iTraxx tranches. 
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Graph 2: implied base correlation for iTraxx CDO tranches computed from market and model quotes. 

Tranches are on the x  - axis, base correlations on the y - axis. 
 
IV.5 Conditional default probability distributions drive CDO tranche premiums 
 
The pricing of basket default swaps or CDOs only involve loss distributions over different time 
horizons. The characteristic function of the aggregate loss only involves the conditional default 
probabilities |i V

tp . When these are identically distributed, the characteristic function can be written as: 

( )( )
1

( ) 1 ( )jiuM
L t

j n

u p pe G dpϕ
≤ ≤

= − +∏∫ , 

where G is the distribution function of the conditional default probabilities26. In other words, two 
models associated with the same distributions of conditional default probabilities will lead to the same 
joint distribution of default indicators and eventually to the same CDO premiums. As an example, let 
us consider Gaussian, stochastic correlation, Clayton and Marshall-Olkin copulas. We have 

                                                           
26 ( )( ) i V

tG p Q p p= ≤  for 0 1p≤ ≤ . 
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i V
t V S t ip S t α−

>−= − , V exponential for the Marshall-Olkin 
copula.  
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Graph 3: distribution functions of conditional default probabilities for different models. 

 
Let us go back to the previous CDO example with flat credit curves of 100bps. For a Gaussian 
correlation of 30% , the correspondence table gives 0.18θ =  and 53%α = . Graph 3 provides the 
distribution functions of the 5 year conditional default probabilities. It can be seen that the distribution 
functions are almost identical in the Gaussian and Clayton copula cases. For the Marshall-Olkin copula, 
the conditional default probability only takes values 1 and 11 ( )iS t α−−  which leads to a step distribution 
function. The independence case is associated with a Dirac mass at the marginal default probability 
while the conditional default probability is a Bernoulli variable in the comonotonic case. It is quite 
clear that the differences between Marshall-Olkin copula on one hand, Gaussian and Clayton copulas 
on the other hand are quite substantial. We also provide the distribution of conditional default 
probabilities for a stochastic correlation model. Here, 2 10%β =  with probability 0.8 and 2 90%ρ =  
with probability 0.2. We can see that the stochastic correlation model lies in between Marshall-Olkin 
and Gaussian. An interesting area of research consists in building the distribution of |i V

tp  from the 
market prices which could give some insight on choice of model. Such construction can be found in 
Hull and White [2006]. The practical relevance of conditional default probabilities is also emphasized 
in Burtschell et al. [2007]. A general investigation of the use of conditional default probabilities in the 
pricing of CDOs and connexions with the theory of stochastic orders is done in Cousin and Laurent 
[2007]. 
 
Conclusion 
 
We discussed the choice of dependence structure in basket default swap and CDO modelling. We 
compared some popular copula models against the one factor Gaussian copula that is currently the 
industry standard. We considered an assessment methodology based on the matching of basket default 
swap premiums and CDO tranches: 
 

- The results show that for pricing purposes, and once correctly calibrated, Student t and 
Clayton copula models provide rather similar results, close to the Gaussian copula.  
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- The Marshall-Olkin copula associated with large probabilities of simultaneous jumps leads to 
strikingly different results and a dramatic fattening of the tail of the loss distributions.  

- The double t model lies in between and provides a better fit to market quotes. We found that 
related models such as the random factor loadings model of Andersen and Sidenius [2005] led 
to similar correlation smiles.  

- The stochastic correlation copula can also achieve a reasonable skew, close to that observed in 
the market.  

- Non parametric measures of dependence, such as Kendall’s τ  or the tail dependence 
coefficient are of little help for explaining model quotes.  

- The distribution of the conditional default probability is the key input when pricing CDO 
tranche premiums and when comparing different models. 
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Appendix 
 
1) Data for the Basket default swaps and CDO examples 
 
Basket default swaps and homogeneous CDO examples 

 
1D 1W 1M 2M 3M 6M 9M 1Y 2Y 3Y 4Y 5Y 

2.02 2.05 2.06 2.07 2.08 2.14 2.23 2.37 2.80 3.17 3.47 3.71 
Table a: default free yield curve (continuous rates) 

 
iTraxx example 
 

9 14 17 20 21 23 25 28 31 34 37 45 68 
10 14 18 20 21 23 25 28 31 35 37 45 72 
10 15 18 20 21 23 26 28 32 35 37 46 73 
10 15 18 20 21 23 26 28 33 35 38 47 106 
10 15 18 20 22 24 26 29 33 35 38 48 120 
10 15 18 20 22 24 26 30 33 36 40 51  
10 16 18 21 22 24 27 30 34 36 43 52  
10 17 18 21 22 45 27 30 34 36 44 53  
13 17 19 21 23 25 27 31 34 37 44 56  
13 17 19 21 23 25 27 31 34 37 44 58  

Table b: 5 year credit spreads iTraxx Europe 
 
The default free rates were obtained from the swap market in Euros on the 08/02/2005.  

 
1D 1W 1M 2M 3M 6M 9M 1Y 2Y 3Y 4Y 5Y 

2.07 2.09 2.10 2.12 2.14 2.18 2.24 2.34 2.59 2.78 2.93 3.06 
Table c: default free yield curve (continuous rates) 

 
2) Supermodular ordering and stochastic correlation model 
 
Let 'p p≤  and consider the following model: 

( )( ) ( )( )( )2 2min , 1 1 min , 1i i i i i i iV C D V V C D V Vρ ρ β β= + − + − + −  
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where 1 1 1, , , , , , , , ,n n nC C D D V V V… … …   are all independent, 1, , nC C…  are Bernoulli variables with 

parameter 
'

p
p

 and 1, , nD D…  are Bernoulli variables with parameter 'p . ( )min ,i iC D  is a Bernoulli 

variable with parameter p . As a consequence,  ( )1, , nV V…  follow a stochastic correlation model with 

parameters ( ), , pρ β . We now compare with: 

( ) ( )( )2 2' 1 ' 1 ' 1 'i i i i iW D V V D V Vρ ρ β β= + − + − + − , 

where ' 1, ' 1ρ ρ β β≤ ≤ ≤ ≤ . ( )1, , nW W…  follows a stochastic correlation model with parameters 

( )', ', 'pρ β . ( )1 1 1, , , , , , ,n n nW W C C D D… … …  is Gaussian with correlation parameter 

( )' ' 1i iD Dρ β+ − , while ( )1 1 1, , , , , , ,n n nV V C C D D… … …  is Gaussian with correlation parameter 

( ) ( )( )min , 1 min ,i i i iC D C Dρ β+ − . Since ( ) ( )( ) ( )min , 1 min , ' ' 1i i i i i iC D C D D Dρ β ρ β+ − ≤ + − , 

we have: ( ) ( )1 1 1 sm 1 1 1, , , , , , , , , , , , , ,n n n n n nV V C C D D W W C C D D≤… … … … … … . From the invariance of 

supermodular order under mixing: ( ) ( )1 sm 1, , , ,n nV V W W≤… … . Thus increasing the probability of being 
in the high correlation state p , or increasing any of the two correlation parameters ,ρ β  leads to an 
increase in dependence with respect to the supermodular order. 
 
3) Supermodular ordering and Marshall-Olkin copula 
 
Since the supermodular ordering is invariant under increasing transforms, we will consider the latent 
variables iV . When 0α = , these are independent and when 1α = , there are comonotonic. We want to 
address the dependence of the vector of default times ( )1, , nV V…  with respect to α . Intuitively, 
increasing α  gives more relative importance to the common shock V  and should be associated with 
an increased dependence. 
 
We set β α≥ . We denote by ( )' '

1 , , nV V…  the latent variables associated with parameter β . In a 
distributional sense, we can equivalently write: 

( ) ( ) ( )( )' ' ' '
1 1

ˆ ˆ, , min , , , , min , ,n nV V V V V V V V≡… … , 

Where ' '
1

ˆ, , , , nV V V V…  are independent exponential random variables with parameters equal to: 

, ,1 , ,1α β α β β− − −… . Let us remark that ( ) ( )( )' '
1

ˆ ˆmin , , , , min , , nt V V t V V…  and 

( ) ( )( )1min , , , min , nt V t V…  have the same marginal distributions for all t, since ( )'ˆmin , iV V  are 

independent exponential random variables with parameter 1 α−  and 

( ) ( )( )' 'ˆ ˆmin , , min ,min ,i it V V t V V= . Morevover ( )'ˆmin , , it V V  is increasing in V̂ . Thus, this 

corresponds to model 3.2 in Bäuerle and Müller [1998]. We can then conclude that: 

( ) ( )( ) ( ) ( )( )' '
1 1

ˆ ˆmin , , ,min , min , , , , min , ,n sm nV V V V V V V V V V≤… … , 

which means that increasing the dependence parameter α  does indeed lead to an increase in the 
dependence between default times with respect to the supermodular order. 
 
4) Premiums computed under the Student t copula and under the independence 
assumption. 
 
As noticed before, a zero linear correlation ( 0ρ = ) in the Student t copula is not associated with the 
independence case. From the stated results on stochastic orders, we just know that it acts as a lower 
bound on first to default swaps or equity tranche premiums. Comparing with the independence case is a 
bit more involved. We remark that ( )1 ( )i i vt V t F t zτ −≤ ⇔ ≤ = , where iF F=  denotes the common 
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marginal distribution of default times. For notational simplicity we have omitted the dependence of z  
with respect to t . Let us remark that for practical purpose, 0z < , corresponds to default probabilities 
smaller than 0.5. We concentrate on the zero correlation case. Since i iV W V= × , we have 

0i i
zV z V

W
−

≤ ⇔ + ≤ . By using Theorem 3.4 in Bäuerle and Müller [1998], we conclude that the 

default indicators are greater, with respect to the supermodular order than their independent 
counterparts. 


