Thèse IAF

Etude et valorisation d’un dérivé de crédit
Les Collateralized Debt Obligations

Aude GUILHAMON
Septembre 2001
Au cours de la rédaction de ce mémoire réalisé à Natexis Banques Populaires, nous avons eu la chance de rencontrer des équipes toujours disponibles et qui n’ont jamais hésité à répondre à nos nombreuses questions. Nous tenons à remercier plus particulièrement Mademoiselle Odile Hounkpatin, Monsieur Edmond Lezmy et Monsieur Richard Rouge pour leur accueil, leur disponibilité et leurs nombreux conseils.

Nous souhaitons également remercier Madame Nathalie Pistre pour son aide concernant les parties théoriques du mémoire.
Contents

1 INTRODUCTION 3

2 LE RISQUE DE CREDIT 6
 2.1 Definition et enjeux 6
 2.1.1 Le risque de default de la contrepartie 6
 2.1.2 Le risque de depreciation de la qualite de signature d'un
 emprunteur 6
 2.1.3 Application a l'allocation de capital economique 7
 2.2 Les premiers modeles du risque de credit 7
 2.2.1 Global Correlation Factor Structure de KMV 9
 2.2.2 Credit Metrics de JP Morgan 9
 2.2.3 Credit Risk + de Credit Suisse 10
 2.3 Les modeles stochastiques 10
 2.3.1 Notations 11
 2.3.2 Extension discrète du modele de Credit Metrics 12
 2.3.3 Extension du modele de Credit Metrics avec un processus
 de diffusion 13
 2.3.4 Le modele de Li (1999 et 2000) 15

3 LE MODELE A INTENSITE
 STOCHASTIQUE 17
 3.1 Intensite de default pour un debiteur 17
 3.1.1 Presentation du modele 17
 3.1.2 Probabilite de survie 18
 3.2 Modele de default pour plusieurs debiteurs 24
 3.3 Extensions et remarques 27
 3.3.1 Risque sectoriel, regional et global 27
 3.3.2 Intensites reelle et risque-neutre 28

4 VALORISATION DU CDO 30
 4.1 Algorithmes 30
 4.2 Risque de recouvrement 32
 4.3 Prioritisation 32
 4.3.1 Notations 32
 4.3.2 Prioritisation uniforme 33
 4.4 Calcul des spreads 36
 4.5 Les Diversity Scores 39
 4.5.1 Definition et calcul des diversity scores 39
 4.5.2 Valorisation du CDO a partir du Diversity Score 43

5 LA CALIBRATION DU MODELE 47
 5.1 A partir des probabilites de default 47
 5.2 La methode GMM naive 49
 5.2.1 Presentation de la methode des moments generalises 49
5.2.2 Application à notre cas spécifique 52
5.2.3 Application ... 54
5.3 Méthode SGMM .. 55
 5.3.1 Fonction caractéristique de notre modèle 56
 5.3.2 ML-CCF Estimateurs de modèles affines 57
 5.3.3 Estimation ECCF de modèle affine 59
5.4 Un mot sur l’estimation du paramètre de corrélation 62

6 CONCLUSION .. 64
1 INTRODUCTION

La titrisation est une technique qui permet aux banques (ou aux entreprises) de céder sur les marchés de capitaux des titres négociables adossés à des actifs financiers générant des flux. Les premières opérations ont été réalisées dans les années 70 aux Etats-Unis sur des portefeuilles de créances hypothécaires garanties par le gouvernement américain. Par la suite, le marché de la titrisation a connu un essor fulgurant, utilisant des actifs aussi divers que créances sur cartes de crédit, prêts à la consommation, prêts étudiants, créances hypothécaires.

Ces premiers produits avaient pour collatéral des actifs homogènes et en grand nombre, comme par exemple plusieurs milliers de prêts. Une nouvelle forme de produits de titrisation est apparue dans les années 80 et 90, permettant de céder des portefeuilles d’obligations ou de créances aux entreprises : on parle alors de manière générique de Collateralized Debt Obligations ou CDO. Lorsque les sous-jacents sont des obligations publiques, on parle plus précisément de Collateralized Bond Obligations ; quand ce sont des créances bancaires on parle de Collateralized Loan Obligations.

Ces produits ont tout d’abord été utilisés par les banques américaines pour titriser les portefeuilles d’obligations à hauts rendements, très risquées (junk bonds ou high yield bonds). En utilisant la diversification du portefeuille, les banques amélioraient la notation de celui-ci et arrivaient à obtenir une notation investment grades1. Cette première forme de structure est connue sous le nom d’arbitrage CDO et consiste en l’achat de titres à rendements élevés dont le refinancement est assuré par l’émission d’un portefeuille de risques diversifiés beaucoup mieux noté.

L’autre utilisation classique de ces titrisations est la gestion du capital bancaire et économique de la banque. On parle alors de Balance Sheet CDO ; son objectif est de réduire le capital réglementaire et/ou économique que la banque doit provisionner dans le cadre de sa gestion des risques. La banque utilise dans ce cas les CDO pour céder une partie de ses risques, acquis dans son activité de banque commerciale.

Le mécanisme standard d’une opération de titrisation est le suivant : la banque cède une partie de ses actifs à un Special Purpose Vehicle (SPV) qui est géré par la banque-sponsor. Ce véhicule achète ces actifs et émet sur le marché des titres qui ont ces mêmes actifs pour collatéral. Les flux engendrés par le collatéral sont utilisés pour payer les intérêts et rembourser les titres à maturité.

Ces titres sont organisés selon une structure particulière : la titrisation est composée de plusieurs sous-portefeuilles, les tranches, de qualité différente. On

1 Le différentiel de coupon entre un titre high yield et un titre investment grade est en effet relativement important, ce qui traduit à la fois la prime de risque, la liquidité et le fait que de nombreux investisseurs ne peuvent porter du risque high yield.
s'adresse ainsi à une plus grande palette d'investisseurs. Les structures classiques peuvent comporter trois ou quatre tranches. La tranche junior, ou tranche equity, absorbe les premières pertes. Elle est généralement portée par la banque sponsor et vient alors en déduction des fonds propres de celle-ci. La tranche mezzanine est d'une qualité intermédiaire entre la tranche junior et la tranche senior, dont la notation peut aller jusqu'à AA ou AAA en fonction de la structure.

Le but de ce groupe de travail était l'élaboration ainsi que l'implémentation d'un modèle de valorisation d'un CDO. Nous avons commencé par étudier les différents articles traitant ce sujet, ce qui a permis de choisir parmi les différentes méthodes de valorisation existantes celle qui nous paraissait la plus intéressante. La seconde étape de ce groupe de travail a été la programmation du modèle en langage C++, puis l'étude des différentes techniques qui permettront de le calibrer.

Le plan de ce rapport découle naturellement de cet ordre de travail. Nous commencerons par l'étude du risque de crédit et des différents modèles existant. Nous détaillerons ensuite le modèle à intensité stochastique proposé par Duffie et Garleanu que nous avons implémenté. Nous nous intéresserons ensuite à l'application de ce modèle à la valorisation des CDO et nous présenterons les résultats que nous avons obtenus, en particulier à partir du calcul des diversity.
scores, qui offrent une mesure de la diversification du portefeuille et permettent d’élaborer une méthode alternative simple de valorisation du CDO. Enfin, différentes approches de calibration de ce modèle seront étudiées.
2 LE RISQUE DE CREDIT

La fonction essentielle des banques commerciales consiste à être un intermédiaire financier : tandis que certains agents économiques sont prêteurs de fonds (épargne, liquidité, fonds de pension), d'autres cherchent à se financer et à investir au travers de différentes formes de crédit (immobilier, investissement, trésorerie). L’activité d’une banque commerciale lui apporte une certaine forme de compensation naturelle des risques, grâce à l’adossement de l’actif par le passif, et à la diversification des actifs. Mais cette compensation est insuffisante et doit être quantifiée.

La gestion du bilan d’un établissement de crédit fait principalement intervenir la maîtrise des trois types de risques que sont le risque de taux, le risque de change, et le risque de crédit. Les risques de taux et de change sont traditionnellement transférés par couverture ou par assurance, mais le risque de crédit est encore mal appréhendé, alors qu’il s’agit d’un risque important, comme en témoignent les nombreux scandales et faillites liés à des politiques de prêts et de provisionnement hasardeuses.

2.1 Définition et enjeux

Le risque de crédit peut se définir comme le risque de pertes consécutives à un événement de crédit. On peut alors distinguer deux grandes classes de risques de crédit : le risque de défaut de la contrepartie et le risque de dépréciation de la qualité de signature de l’emprunteur.

2.1.1 Le risque de défaut de la contrepartie

Il se traduit par l’incapacité du débiteur à faire face à ses obligations de paiements (paiement des intérêts ou remboursement du capital). Ce risque concerne les activités traditionnelles d’établissement de crédit, mais intervient encore dans le cadre de son activité de marché. Les banques réalisent en effet un certain nombre d’opérations sur le marché interbancaire et se trouvent de ce fait engagées les unes vis-à-vis des autres, ce qui génère des risques de contrepartie.

2.1.2 Le risque de dépréciation de la qualité de signature d’un emprunteur

La valeur des obligations et actions d’une entreprise dépend (au moins en partie) de la confiance qu’elle inspire au marché, ce qui se traduit par la "qualité de la signature" de l’émetteur. Cette composante du risque concerne avant tout les activités de marché. Ainsi une anticipation négative du marché quant à la solidité financière d’un émetteur entraîne la dégradation de la valeur de ses titres, et une banque possédant certains de ces titres subit donc une perte. Ce risque de dépréciation peut avoir indirectement des conséquences sur son activité de banque commerciale : le principe de provisionnement ; par le biais de provisions pour bad loans peut dégrader la solvabilité de la banque. La crise asiatique de 1997 en est un exemple classique : même si des défauts n’apparaissent
qu’aujourd’hui (Daewoo), de nombreuses banques ont été contraintes de provi-
sionner des montants importants et donc de déclarer des pertes financières.

2.1.3 Application à l’allocation de capital économique

Le Comité de Bâle réunit les dix principaux pays industrialisés, au sein de
la Banque des Règlements Internationaux. L’accord de Bâle de 1988 définit une
procédure standard pour le calcul du capital minimal à allouer pour couvrir le
risque d’investissement des établissements financiers, à partir du ratio Cooke.
Les contreparties étant classées selon leur nature (état, banque ou corporate), on
associe une pondération à chaque classe de risque, ce qui permet de calculer une
exposition pondérée au risque de crédit. Le ratio capital / exposition pondérée
ne doit pas être inférieur à 8%. Ce ratio Cooke représente une première tenta-
tive de prise en compte du risque de crédit. Il faut cependant remarquer que
les différentes classes de risque sont définies de façon grossière : aucune distinc-
tion n’est faite entre un gros corporate français et une entreprise exportatrice
brésilienne soumise aux aléas du real.

Une telle réglementation a suscité de nombreuses critiques : la plus évi-
dente est qu'elle laisse la porte ouverte à des phénomènes d’anti-sélection. Pour
un capital prudentiel fixé, les banques risquent de s’engager sur les contrepar-
ties les plus risquées pour améliorer leur retour sur fonds propres. Au cours
de la dernière décennie, quelques une des plus grandes banques mondiales ont
développé des modèles internes pour évaluer leur exposition au risque de crédit.

En 1999, un groupe de travail du comité de Bâle s’est penché sur la question
de ces modèles internes. L’enjeu est considérable : si la réglementation laissait
la possibilité aux banques d’utiliser leurs estimations internes pour procéder à
leur allocation prudentielle, comme c’est déjà le cas pour les risques de marché,
les rentabilités de certaines activités se trouveraient nettement améliorées. Les
régulateurs veulent avoir la certitude que ces modèles sont valides tant d’un
point de vue conceptuel qu’empirique, et qu’ils peuvent fournir des résultats
comparables pour l’ensemble des banques. Les difficultés principales de valida-
tion sont dues à la rareté des données et à l’impossibilité d’appliquer des méth-
odes de backtesting comparables à celles utilisées pour les risques de marché.

La dernière décennie a été particulièrement florissante en matière de risque
de crédit, tant d’un point de vue industriel que conceptuel. Les problématiques
de rentabilité et de contraintes prudentielles ont favorisé le développement des
dérivés de crédit. Le sujet a par ailleurs suscité un intérêt très vif de la part des
chercheurs en finance : au cours des années 90, toute une classe de modèles dits
”à intensité” ont été développés.

2.2 Les premiers modèles du risque de crédit

Dans tout modèle de risque de crédit, le but premier est d’estimer la perte
liée au portefeuille de crédits, que ce soit la perte ”dans le pire des cas” ou
simplement l’écart-type de cette perte afin de déterminer le capital qui doit être alloué à ce risque de crédit. L’approche classique consiste à utiliser le modèle dit de portefeuille. Le principe de base est le suivant : on considère un portefeuille composé de m contreparties, ayant chacune une probabilité pi de faire défaut et entraînant chacun une perte de li en cas de défaut. L’espérance de la perte totale du portefeuille peut donc s’écrit :

\[L = \sum_{i=1}^{m} l_i p_i \]

Pour calculer le risque lié à ce portefeuille, on s’intéresse ici à l’écart-type de cette perte. Pour ce faire, on a besoin des corrélations entre actifs et plus précisément des probabilités de défauts joints. Si la probabilité de défaut d’un actif seul peut être estimée à partir d’un échantillon (en fonction du rating par exemple), les probabilités de défauts joints nécessitent l’introduction d’un modèle.

Différents modèles peuvent alors être utilisés, par exemple celui de Merton qui considère qu’il y a défaut (noté Di) si la valeur de l’actif de la firme (noté Ai) passe en dessous d’un certain seuil (noté Ci). On suppose de plus que A suit une loi normale multivariée. Les probabilités jointes de défaut (notées JDP(i)) et les corrélations de défaut (notées ρij) s’écritent alors :

\[JDP_{ij} = P[A_i < C_i, A_j < C_j] \]

\[\rho_{ij} = \frac{JDP_{ij} - P(D_i)P(D_j)}{\sqrt{P(D_i)(1-P(D_i))P(D_j)(1-P(D_j))}} \]

On peut donc en déduire l’écart-type σ(L) de la perte associée au portefeuille L :

\[\sigma(L) = \sum_{i,j=1}^{m} l_i l_j \sqrt{P[D_i](1-P[D_i])P[D_j](1-P[D_j])} \rho_{ij} = \sum_{i=1}^{m} l_i \beta_i \]

où \(\beta_i = \frac{\sqrt{P[D_i](1-P[D_i])}}{\sigma(L)} \sum_{j=1}^{m} l_j \sqrt{P[D_j](1-P[D_j])} \rho_{ij} = \frac{\partial \sigma(L)}{\partial l_i} \)

\(\beta_i \) est en quelque sorte la part de risque lié à la firme i dans le portefeuille considéré.

La difficulté dans la pratique consiste bien évidemment à estimer les valeurs de ces corrélations. Pour les calculer, la méthodologie utilisée est différente.
suivant les entreprises. Nous allons présenter les méthodes des trois logiciels les plus utilisés qui sont Global Correlation Factor Structure (développé par KMV), Credit Metrics (développé par JP Morgan) et Credit Risk + (développé par Crédit Suisse).

2.2.1 Global Correlation Factor Structure de KMV

Ce logiciel estime les corrélations entre les différents actifs (qui ne sont pas égales aux corrélations de défaut) grâce à un modèle à facteurs. Le rendement (en excès par rapport au marché) de l’actif de chaque entreprise est d’abord décomposé en un risque spécifique à la firme et un risque systémique, ce dernier étant lui-même décomposé sur des facteurs indépendants (modèle à facteurs imbriqués). Finalement, le risque de défaut est décomposé en : risque spécifique à la firme, risque systémique lié aux activités de l’entreprise, risque systémique lié aux pays d’activités. Les différents facteurs du risque systémique sont construits de façon à être indépendants entre eux pour augmenter la rapidité des calculs.

Les inputs pour ce logiciel sont : le ratio risque spécifique/ risque systémique pour chaque firme et les facteurs du risque systémique (rendements et volatilités). A partir de ces inputs, le logiciel estime les coefficients de corrélation puis il en déduit la distribution de perte du portefeuille, soit de façon analytique, soit par simulation de Monte Carlo.

L’inconvénient majeur de ce logiciel est qu’il ne précise à aucun moment la procédure utilisée pour calculer les rendements et les volatilités des facteurs spécifiés, il est donc impossible de se couvrir contre leurs évolutions. D’autant plus qu’ils ne peuvent pas être déduits directement des indicateurs macro-économiques.

2.2.2 Credit Metrics de JP Morgan

Comme pour KMV, le modèle estime les corrélations entre les différents actifs à partir d’un modèle à facteurs. Credit Metrics utilise des indices spécifiques aux différents secteurs et pays : un indice par pays, des indices hybrides pays-industrie, des indices sectoriels internationaux et des indices régionaux. Ces facteurs ne sont pas indépendants mais on peut s’y ramener. Chaque firme est décomposée sur ces indices auquel se rajoute un indice spécifique indépendant des autres. Il est ensuite aisé d’en déduire les corrélations entre actifs.

Le logiciel prend comme inputs la matrice de corrélations et de volatilités des différents secteurs (données historiques) et pour chaque firme, le ratio risque spécifique/ risque systémique. A partir de ces données, les coefficients de corrélation peuvent être calculés et le logiciel en déduit la distribution de perte du portefeuille par simulation de Monte Carlo.
Les modèles KMV et Credit Metrics sont donc assez proches, cependant il faut rester vigilant car la segmentation des régions et des industries n’est pas identique.

2.2.3 Credit Risk + de Credit Suisse

Contrairement aux deux autres modèles, le modèle Credit Risk + estime directement les corrélations de défaut, sans passer par les corrélations d’actifs. Alors que les modèles KMV et Credit Metrics s’intéressent aux migrations d’un état de rating à un autre, dans le modèle Credit Risk+, il n’existe que deux états: défaut et non défaut. Dans ce modèle, les probabilités de défaut sont considérées comme des variables aléatoires dont la volatilité permet de capter l’effet des corrélations et des facteurs conjoncturels. On suppose que le nombre de défauts par secteur suit une loi gamma (comme pour les modèles de sinistre en assurance).

Les inputs demandés par le logiciel sont les volatilités des taux de défaut du portefeuille (qui remplacent les ratios risque spécifique/ risque systémique pour chaque firme) et pour chaque secteur, la moyenne et l’écart type du nombre de défauts. Le logiciel calcule alors les corrélations de défaut et en déduit la distribution de perte du portefeuille de façon analytique.

Les utilisateurs de ces logiciels obtiennent en output une distribution des pertes de son portefeuille, ce qui lui permet de mesurer son risque de crédit en calculant la ”Value at Risk” de ce portefeuille par exemple. Mais ils ne connaissent pas précisément les modèles sous-jacents (en raison du secret professionnel) et ils ne connaissent donc pas les limites du modèle qu’ils utilisent.

2.3 Les modèles stochastiques

C’est-à-dire un modèle qui donne la distribution des temps de défaut en plus de la distribution de pertes du portefeuille.

Pour résoudre ce problème, plusieurs approches ont été proposées pour améliorer ces modèles. Nous examinerons d’abord deux extensions du modèle de Credit Metrics (le premier en temps discret et le second où les temps de défaut suivent un processus de diffusion) puis le modèle de Li qui utilise les copules (1999 et 2000) avant de parler plus en détail du modèle à intensité stochastique de Duffie et Garleanu (1999) qui nous intéresse ici.
2.3.1 Notations

Nous considérons un portefeuille de \(n \) actifs homogène, c’est-à-dire que chaque actif a la même probabilité de défaut. Nous pouvons commencer par définir quelques notations qui nous seront utiles par la suite. Tout d’abord, \(q_k \) désigne la probabilité de défaut cumulative, c’est-à-dire la probabilité qu’un actif donné fasse défaut dans les \(k \) prochaines années pour \(k \) variant de 1 à \(T \) (\(T \) étant l’horizon maximal considéré). De façon équivalente, \(p_k \) désigne la probabilité de défaut marginale, c’est-à-dire la probabilité qu’un actif donné fasse défaut pendant l’année \(k \). Ces probabilités sont reliées par l’équation suivante :

\[
q_k = q_{k+1} + p_k \text{ pour } k = 2, ..., T.
\]

Il est également important de s’intéresser aux probabilités de défaut conditionnelles. La probabilité de défaut conditionnelle pendant l’année \(k \) est définie comme la probabilité conditionnelle qu’un actif fasse défaut pendant l’année \(k \) conditionnellement au fait qu’il n’ait pas fait défaut avant, cette probabilité vaut donc \(p_k/(1 - q_{k-1}) \).

Il faut aussi spécifier des probabilités de second ordre comme \(q_{j,k} \) la probabilité jointe de défaut cumulative, c’est-à-dire la probabilité que pour une paire d’actifs donnés, le premier fasse défaut dans les \(j \) prochaines années et le second dans les \(k \) prochaines années. De même, \(p_{j,k} \) désigne la probabilité jointe de défaut marginale, c’est-à-dire la probabilité que pour une paire d’actifs donnés, le premier fasse défaut pendant l’année \(j \) et le second pendant l’année \(k \). Ces deux notions sont reliées par :

\[
q_{j,k} = q_{j-1,k-1} + \sum_{i=1}^{j-1} p_{i,k} + \sum_{i=1}^{k-1} p_{j,i} + p_{j,k} \text{ pour } k = 2, ..., T.
\]

En pratique, les probabilités de premier ordre peuvent être obtenues facilement soit en examinant les prix du marché (les spreads d’obligations par exemple), soit grâce à des données historiques. En ce qui concerne les probabilités du second ordre, nous admettrons que l’on peut obtenir \(p_{1,1} \) (probabilité que deux entreprises fassent défaut la première année) mais pas les suivantes. Les modèles peuvent donc être calibrés à partir des données de \(q_1, q_2, ..., q_T \) et \(p_{1,1} \).

La variable aléatoire, appelée taux de défaut, qui sera considérée ici correspond à la proportion d’actifs ayant fait défaut dans le portefeuille. On peut donc considérer \(X^{(k)}_i \) qui vaut 1 si l’actif \(i \) a fait défaut pendant l’année \(k \) (et 0 sinon). Le taux de défaut pour l’année \(k \) vaut donc :
\[
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{(k)}
\]

Le portefeuille étant homogène, le taux moyen de défaut pour l’année \(k \) vaut donc \(p_k \). De plus l’écart-type du taux de défaut pour l’année \(k \) (aussi appelé volatilité du taux de défaut pour l’année \(k \)) vaut :

\[
\sqrt{p_{k,k} - \bar{p}^2_k + \frac{(p_k - p_{k,k})}{n}}
\]

Cette quantité tend à la limite (quand \(n \) tend vers l’infini) vers la volatilité normalisée de défaut pour l’année \(k \) :

\[
\frac{\sqrt{p_{k,k} - \bar{p}^2_k}}{p_k}
\]

De même, nous pouvons définir la volatilité normalisée cumulative de défaut pour l’année \(k \) :

\[
\frac{\sqrt{q_{k,k} - \bar{q}^2_k}}{q_k}
\]

Finalement, nous désignerons par \(\Phi \) la fonction de distribution normale cumulative standard, nous utiliserons l’abréviation \(\Phi(z_1, z_2; \rho) \) pour indiquer la probabilité que \(Z_1 < z_1 \) et \(Z_2 < z_2 \) où \(Z_1 \) et \(Z_2 \) sont des variables aléatoires standard avec une corrélation \(\rho \).

Nous pouvons maintenant nous intéresser aux modèles eux-mêmes.

2.3.2 Extension discrète du modèle de CreditMetrics

Le modèle de CreditMetrics peut être résumé comme suit : il existe un seuil de défaut \(\alpha \) tel que \(\Phi(\alpha) = p_1 \) et pour chaque actif \(i \), il existe une variable aléatoire normale standard \(Z^{(i)} \) avec une corrélation égale à \(\rho \) entre \(Z^{(i)} \) et \(Z^{(j)} \) (où \(i \) et \(j \) sont distincts) telle que \(\Phi_2(\alpha, \alpha; \rho) = p_{1,1} \). De plus, l’émetteur \(i \) est considéré comme ayant fait défaut pendant la première année si \(Z^{(i)} < \alpha \).

L’extension la plus simple de ce modèle consiste à répéter le modèle à une période. Dans ce cas, il y a plusieurs seuils de défauts : \(\alpha_1, \alpha_2, ..., \alpha_T \) correspondant à chacune des périodes. Pour la première période, il suffit de considérer une variable aléatoire normale standard \(Z_1(i) \) pour chaque actif \(i \), cet actif étant considéré comme ayant fait défaut pendant la première année si \(Z^{(i)} < \alpha_1 \). Pour les actifs \(i \) ayant survécu, on peut s’intéresser à un second groupe de variables aléatoires normales standard \(Z^{(i)}_2 \) avec une corrélation égale à \(\rho \) entre \(Z^{(i)} \) et \(Z^{(j)} \)
(où i et j sont distincts). De plus les variables sont indépendantes d'une période sur l'autre. L’actif i fait donc défaut pendant la seconde année si \(Z_1^{(i)} > \alpha_1 \) (il n’a pas fait défaut la première année) et si \(Z_2^{(i)} < \alpha_2 \). Il suffit ensuite de procéder de la même façon pour les périodes suivantes.

Ce modèle peut être aisément calibré en prenant

\[
\alpha_1 = \Phi^{-1}(q_1)
\]

et pour les périodes suivantes :

\[
\alpha_k = \Phi^{-1}\left(\frac{q_k - q_{k-1}}{1 - q_{k-1}}\right)
\]

ce qui revient à dire que la probabilité d’avoir \(Z_k^{(i)} < \alpha_k \) est égale à la probabilité conditionnelle de défaut pour la période k. Le calibrage se complète finalement en prenant \(\rho \) tel que l’équation \(\Phi_2(\alpha, \alpha; \rho) = p_{1,1} \) soit vérifiée. Il est ensuite facile d’en déduire les probabilités de défauts joints.

Par exemple, la probabilité marginale de défaut joint pour la deuxième année vaut :

\[
p_{2,2} = P \left(Z_1^{(i)} > \alpha_1 \cap Z_1^{(j)} > \alpha_1 \cap Z_2^{(i)} < \alpha_2 \cap Z_2^{(j)} < \alpha_2 \right)
\]

\[
p_{2,2} = P \left(Z_1^{(i)} > \alpha_1 \cap Z_1^{(j)} > \alpha_1 \right) P \left(Z_2^{(i)} < \alpha_2 \cap Z_2^{(j)} < \alpha_2 \right)
\]

\[
p_{2,2} = (1 - 2p_1 + p_{1,1}) \Phi(\alpha_1, \alpha_2; \rho)
\]

De façon similaire, la probabilité que l’actif i fasse défaut pendant la première période et que l’actif j fasse défaut en deuxième période s’écrit :

\[
p_{1,2} = P \left(Z_1^{(i)} < \alpha_1 \cap Z_1^{(j)} > \alpha_1 \cap Z_2^{(i)} < \alpha_2 \right)
\]

\[
p_{1,2} = (p_1 - p_{1,1}) \frac{q_2 - q_1}{1 - p_1}
\]

2.3.3 Extension du modèle de Credit Metrics avec un processus de diffusion

Par construction l’extension discrétisée du modèle de Credit Metrics ne tient pas compte des corrélations entre les temps de défaut à travers le temps, ce qui est contraire à l’attitude réelle des marchés. Pour rendre compte de ce
phénomène, il a été proposé une autre extension du modèle où les défauts de deux périodes consécutives ne suivent plus des variables aléatoires indépendantes mais un processus de diffusion unique. Ce modèle est défini par :

- des seuils de défaut $\alpha_1, \alpha_2, \ldots, \alpha_T$ pour chaque période

- un brownien standard $W^{(i)}$ pour chaque émetteur tel que $W^{(i)}_0 = 0$ et tel que la corrélation instantanée entre $W^{(i)}$ et $W^{(j)}$ soit égale à ρ (où i et j sont distincts).

- l’émetteur i est considéré comme ayant fait défaut pendant la première année si $W^{(i)}_1 < \alpha_1$

- Pour tout $k > 1$, l’émetteur i fait défaut pendant l’année k s’il survit pendant les $k-1$ premières années (i.e. $W^{(i)}_1 > \alpha_1, W^{(i)}_2 > \alpha_2, \ldots, W^{(i)}_{k-1} > \alpha_{k-1}$) et si $W^{(i)}_k < \alpha_k$.

Si le taux de défaut est important une année, cela signifie que plusieurs browniens sont passés sous le seuil, comme tous les browniens sont corrélés, les autres browniens ont eux aussi eu tendance à diminuer, donc le taux de défaut de l’année suivante sera également important. Cette approche tient donc bien compte des corrélations entre les temps de défauts et introduit la notion de migration du crédit : la tendance des browniens à diminuer (respectivement à augmenter), même sans dépasser le seuil, pouvant être vue comme une dégradation (respectivement une amélioration) de son rating.

Pour calibrer ce modèle, il faut d’abord remarquer que :

$$P \left(W^{(i)}_1 < \alpha_1 \right) = \Phi (\alpha_1) \text{ où } \alpha_1 = \Phi^{-1} (q_1)$$

Il faut ensuite utiliser le fait que la probabilité qu’un émetteur fasse défaut la deuxième année vaut p_2 :

$$P \left(W^{(i)}_1 > \alpha_1 \cap W^{(i)}_2 < \alpha_2 \right) = p_2$$

Comme $W^{(i)}$ est un processus de Wiener, nous savons que son écart-type vaut \sqrt{t} et que pour $s < t$, la corrélation entre $W^{(i)}_s$ et $W^{(i)}_t$ vaut $\sqrt{\frac{t-s}{t}}$. La valeur de α_2 peut donc se déduire de celle de α_1 à partir de :

$$\Phi \left(\frac{\alpha_2}{\sqrt{2}} \right) - \Phi_2 \left(\alpha_1, \frac{\alpha_2}{\sqrt{2}}, \sqrt{\frac{1}{2}} \right) = p_2$$
De même, la valeur de α_k peut se déduire de celles de $\alpha_1, \ldots, \alpha_{k-1}$ à partir des propriétés des browniens et de l’équation suivante :

$$P\left(W_1^{(i)} > \alpha_1 \cap \ldots \cap W_{k-1}^{(i)} > \alpha_{k-1} \cap W_k^{(i)} < \alpha_k\right) = p_k$$

Le calibrage se complète finalement en trouvant ρ tel que la probabilité de défaut joint pour la première année soit égale à $p_{1,1}$:

$$P\left(W_1^{(i)} < \alpha_1 \cap W_1^{(j)} < \alpha_1\right) = \Phi(\alpha_1, \alpha_1; \rho) = p_{1,1}$$

Une fois le calibrage terminé, il est aisé de déterminer les probabilités jointes de défaut. Par exemple la probabilité marginale de défaut joint pour la deuxième année vaut :

$$p_{2,2} = P\left(W_1^{(i)} > \alpha_1 \cap W_1^{(j)} > \alpha_1 \cap W_2^{(i)} < \alpha_2 \cap W_2^{(j)} < \alpha_2\right)$$

où $\{W_1^{(i)}, W_1^{(j)}, W_2^{(i)}, W_2^{(j)}\}$ suit une loi normale multivariée de covariance :

$$\text{Cov}\{W_1^{(i)}, W_1^{(j)}, W_2^{(i)}, W_2^{(j)}\} = \begin{pmatrix} 1 & \rho & 1 & \rho \\ \rho & 1 & \rho & 1 \\ 1 & \rho & 2 & 2\rho \\ \rho & 1 & 2\rho & 2 \end{pmatrix}$$

2.3.4 Le modèle de Li (1999 et 2000)

L’inconvénient majeur des deux méthodes proposées ci-dessus est le fait que dans une simulation de type Monte Carlo, il faut procéder pas à pas : il faut d’abord simuler le panier d’actifs pour la première année, regarder quels actifs survivent puis les simuler pour la deuxième année et ainsi de suite. L’approche proposée par Li permet de simuler directement les temps de défaut sans avoir à simuler individuellement chaque période. L’approche par les copules est la suivante :

- On specify la fonction de répartition F des temps de défaut telle que $F(t)$ désigne la probabilité qu’un actif donné fasse défaut avant t.

15
- On attribue une variable aléatoire normale standard $Z^{(i)}$ à chaque actif avec une corrélation égale à ρ entre $Z^{(i)}$ et $Z^{(j)}$ (où i et j sont distincts).

- On peut ensuite obtenir le temps de défaut τ_i pour l’actif i à partir de l’équation :

$$\tau_i = F^{-1}(\Phi(Z^{(i)}))$$

Pour la comparer aux deux méthodes précédentes, on peut discrétiser cette approche en ne s’intéressant qu’à l’année à laquelle le défaut a eu lieu et non à sa date précise. Pour ce faire, on utilise des seuils de défaut $\alpha_1, ..., \alpha_T$ tels que $\alpha_k = F^{-1}(q_k)$ et $\alpha_0 = -\infty$, et l’on considère que l’émetteur i fait défaut pendant l’année k si $\alpha_{k-1} < Z^{(i)} = \alpha_k$. Le calibrage des paramètres du modèle est alors évident. Pour ce qui est de la corrélation ρ, le calibrage peut se faire exactement comme dans les deux méthodes précédentes. Les probabilités de défauts joints peuvent alors être obtenues simplement grâce à l’équation suivante :

$$q_{k,t} = P(Z^{(i)} < \alpha_k \cap Z^{(j)} < \alpha_1) = \Phi(\alpha_k, \alpha_1; \rho)$$

Ces trois approches peuvent être vues comme des extensions du modèle de Credit Metrics. Chacune de ces approches repose sur le fait que les défauts suivent des lois normales standards. Elles ont toutes un comportement identique pour la première période et ne se différencient qu’ensuite. Le prochain modèle que nous allons présenter suit une approche bien différente qui s’apparente plutôt au modèle de Credit Risk+.
3 LE MODELE A INTENSITE STOCHASTIQUE

L’extension naturelle du modèle de Credit Risk+ en temps continu est le modèle à intensité stochastique proposé par Duffie et Garleanu. Pour rappel, dans ce modèle, les corrélations entre les défauts sont construites à partir de la dépendance des actifs à une probabilité de défaut commune qui est elle-même une variable aléatoire. La volatilité de cette probabilité commune de défaut est alors le paramètre de corrélation pour ce modèle : une volatilité de défaut élevée implique de fortes corrélations alors qu’une volatilité nulle conduira à des défauts indépendants. Dans cette partie, nous allons présenter le modèle proposé par Duffie et Garleanu, que nous avons implémenté ; l’application de cette modélisation à la valorisation des CDO puis le calibrage du modèle feront l’objet des parties suivantes.

3.1 Intensité de défaut pour un débiteur

L’approche proposée par Duffie et Garleanu consiste à voir les processus de défaut comme des variables aléatoires qui peuvent effectuer des sauts (correspondant aux migrations de rating) selon un modèle à intensité stochastique. Nous avons choisi de nous intéresser davantage à cette méthode que nous allons donc présenter ici (pour davantage de détails, le lecteur peut se référer aux démonstrations présentées en annexe).

3.1.1 Présentation du modèle

On cherche à définir une "intensité" d’arrivée de défaut \(\Delta(t) \), telle que, \(F_t \) représentant toute l’information disponible à l’instant \(t \), on aie l’approximation suivante :

\[
P(\tau < t + \Delta t | F_t) \approx \lambda(t) \Delta t
\]

pour tout "petit" intervalle de temps \(\Delta t > 0 \).

La variation stochastique de l’intensité au cours du temps reflète tout changement de la qualité du crédit, et les corrélations en ce qui concerne les changements de qualité de crédit des débiteurs sont reflétées par celles des variations de leurs intensités de défaut. Ce modèle présente la caractéristique que toute corrélation entre les temps de défaut se manifeste de cette manière. Une alternative serait un modèle dans lequel les défauts simultanés pourraient être causés par certains événements de crédit, ou des modèles de contagion.
On définit donc des pré-intensités : une pré-intensité pour le temps d’arrêt \(\tau \) est un processus stochastique \(\lambda \) tel que pour tout \(t \) précédant \(\tau \), l’intensité d’arrivée de défaut vaut \(\lambda(t) \) et :

\[
P(\tau < t + \Delta t | F_t) = E[\exp(\int_t^{t+\Delta t} -\lambda_u du)]|F_t]
\]

Nous supposerons que les temps de défauts de chaque débiteur auront une pré-intensité \(\lambda \) vérifiant une équation différentielle stochastique de la forme :

\[
d\lambda(t) = k(\theta - \lambda(t))dt + \sigma \sqrt{\lambda(t)}dW(t) + \Delta J(t)
\]

qui fait intervenir un mouvement brownien standard \(W \) et des sauts éventuels. Parmi les différents paramètres, \(\sigma \) désigne la volatilité de la diffusion, \(k \) le taux de retour à la moyenne et \(\theta \) l’intensité moyenne. Le processus de saut \(J \) est indépendant du brownien, les amplitudes des sauts sont indépendantes entre elles et suivent une loi exponentielle de moyenne \(\mu \) et les dates des sauts sont celles d’un processus de Poisson dont le taux d’arrivée moyen vaut \(l \). On parle de processus affine fondamental de paramètres \((k, \theta, \sigma, \mu, l) \).

Les paramètres peuvent être ajustés de nombreuses manières pour contrôler l’évolution du risque de défaut avec le temps. On peut notamment calculer la variance limite de \(\lambda(t) \), et exploiter la condition de pré-intensité.

3.1.2 Probabilité de survie

Nous nous intéressons dans cette partie à l’analyse de la transformée de l’intensité, qui nous permettra de calculer la probabilité de survie d’un émetteur.

On peut en effet calculer, pour \(t \) et \(s \) positifs :

\[
E[\exp(\int_t^{t+s} -\lambda_u du)]|F_t] = \exp[\alpha(s) + \beta(s)\lambda(t)]
\]

où les coefficients \(\alpha(s) \) et \(\beta(s) \) sont calculés explicitement en fonction des paramètres de la diffusion en annexe 2.1. Cette équation nous donne la probabilité de survie à l’horizon \(t + s \), calculée en \(t \), du titre dont l’intensité de défaut est \(\lambda \), soit la distribution de probabilité, calculée en \(t \), de son temps de défaut.

C’est ce que nous allons maintenant démontrer.

Les résultats que nous donnons dans la suite de cette partie utilisent des notations un peu différentes pour les fonctions \(\alpha \) et \(\beta \). Dans un souci de clarté des calculs, on notera : \(\alpha \) sous la forme \(\alpha(t, t+s) \) et \(\beta \) sous la forme \(\beta(t, t+s) \), \(0 \leq t \leq T, 0 \leq t+s \leq T \). Cette notation est cohérente avec le reste de ce
Figure 2: Exemple de processus d’intensité à sauts

rapport, car $\alpha(t, t + s)$ et $\beta(t, t + s)$ ne dépendent pas de t, et l’on a donc $\alpha(s) = \alpha(t, t + s)$ et $\beta(s) = \beta(t, t + s)$.

Définition 1 On note transformée de X_t, lorsqu’elle existe :

$$
\phi(X_t, t, T) = E[\exp(-\int_t^T X_u du)|F_t].
$$

Nous allons montrer que $\phi = \phi^X$, avec :

$$
\phi^X (x, t, T) = \exp(\alpha(t, T) + \beta(t, T).x)
$$

où α et β sont définis par les équations différentielles suivantes :

$$
\frac{\delta}{\delta t} \beta(t, T) + B(\beta(t, T), t) = 0 \quad (1)
$$

$$
\frac{\delta}{\delta t} \alpha(t, T) + A(\beta(t, T), t) = 0 \quad (2)
$$
\[\alpha(T,T) = 0, \beta(T,T) = 0 \]

avec :

\[B(y,t) = -\kappa y + \frac{1}{2} y^2 \sigma^2 - 1 \]
\[A(y,t) = \kappa \theta y + l(\theta(y,t) - 1) \]

et

\[\theta(y,t) = \int_R \exp(yz)dv(z), \]

la "jump-transform" (i.e. \(\theta(y,t) = \frac{1}{1-\mu_2} \)).

Pour cela on définit :

\[\psi_t = \exp(-\int_0^t X_u du). \exp(\alpha(t,T) + \beta(t,T).X_t) \]

On va montrer que \(\psi \) est une martingale, sous les conditions suivantes :

Conditions techniques :
La solution de l’équation différentielle stochastique ?? est unique pour une condition initiale donnée, \(\alpha \) et \(\beta \) sont définies sans ambiguïté par les équations 1 et 2, et

- (i) \(E[\exp(\int_0^T \gamma_u [du])] < \infty \) où
 \[\gamma_t = \lambda \psi_t, \theta(\beta(t,T), t) = \lambda \psi_t, \frac{1}{1-\mu_2(t,T)} \]

- (ii) \(E[(\int_0^T \eta_t^2 du)^{\frac{1}{2}}] < \infty \) où \(\eta_t = \psi_t, \beta(t,T).\sigma \sqrt{X_t} \)

- (iii) \(E(|\int_0^T \mu_t|) < \infty \).

Proposition 1 Transformée de \(X \)

Under the previous conditions, \(\psi \) is a martingale, and the transform \(\phi \) of \(X \) exists and \(\phi = \phi^X \).

P roof.

Voici une idée de la démonstration.

a- On applique le lemme d’Itô à \(\psi_t \) (voir lemme 2 ci après):

\[\psi_t = \psi_0 + \int_0^t \psi_s \mu_{\psi}(s) ds + \int_0^t \eta_s dW_s + J_t \]

où :
η_t est défini ci-dessus,

$$\mu_\psi(t) = \frac{\dot{\sigma}}{\sigma} \alpha(t, T) + A(\beta(t, T), t) + \left[\frac{\dot{\sigma}}{\sigma} \beta(t, T) + B(\beta(t, T), t) \right]. X_t$$

$$J_t = \sum_{0 \leq \tau(i) \leq t} (\psi_{\tau(i)} - \psi_{\tau(i)-}) - \int_0^t \gamma_t d\tilde{s}$$

où $\tau(i) = \inf \{ t : N_{x(i)} \}$ est le i-ème temps de saut.

b- Sous la condition (i) sur γ_t, on montre (voir lemme 3 ci-après) que J est une martingale.

c- Sous la condition (ii) sur η_t, $\int_0^t \eta_t dW_t$ est une martingale.

d- On en déduit que ψ est une martingale.

On a donc en particulier, pour $t < T$: $E(\psi_T|F_t) = \psi_t$, ce qui se réécrit :

$$E[\exp(-\int_t^T X_s d\tilde{s})|F_t] = \exp(\alpha(t, T) + \beta(t, T). X_t)$$

Soit $\phi = \phi^X$. ■

On a ainsi obtenu une nouvelle écriture de la probabilité de survie.

Lemma 2 Lemme 1 : preuve du a : application du lemme d’Itô à ψ

P roof.

On rappelle que

$$\psi_t = \exp(-\int_0^t X_u du). \exp(\alpha(t, T) + \beta(t, T). X_t)$$

On note

$$C_t = \exp(-\int_0^t X_u du)$$

Et

$$D_t = \exp(\alpha(t, T) + \beta(t, T). X_t)$$

C_t est à variation finie, donc le terme croisé $dC_t * dD_t$ est nul.

On a donc

$$\int_0^t d\psi_t = \int_0^t C_t dD_t + \int_0^t D_t dC_t$$
Par ailleurs,

\[\int_0^t dC_s = \int_0^t -X_s C_s \, ds \]

Pour calculer \(dD_t \), on traite séparément les parties sans saut et avec saut de l'équation de diffusion de \(X_t \) (les deux parties sont indépendantes).

\[\int_0^t dD_s = \int_0^t \frac{\delta}{\delta s} \alpha(s, T) + X_s \frac{\delta}{\delta s} \beta(s, T) \, ds + \int_0^t D_s. \beta(s, T) \, dX_s \\
+ \frac{1}{2} \int_0^t D_s. \beta(s, T)^2 \sigma^2 X_s \, ds + \sum_{s \leq t} (e^{\alpha + \beta X_s} - e^{\alpha + \beta X_s -}) \]

D'où :

\[\int_0^t d\psi_s = \int_0^t \psi_s \left(-X_s + \frac{\delta}{\delta s} \alpha(s, T) + X_s \frac{\delta}{\delta s} \beta(s, T) \right) \\
+ \beta(s, T) \kappa (\theta - X_s) + \frac{1}{2} \beta(s, T)^2 \sigma^2 X_s \, ds \\
+ \int_0^t \psi_s \beta(s, T) \sigma \sqrt{X_s} \, dW_s \\
+ \sum_{s \leq t} (\psi_s - \psi_s -) \]

On peut alors réécrire cette équation sous la forme voulue :

\[\psi_t = \psi_0 + \int_0^t \psi_s \mu(s) \, ds + \int_0^t \eta_s \, dW_s + J_t \]

Lemma 3 Lemme 2 : preuve du b : \(J \) est une martingale

P proof.

On note \(E_t \) l’espérance conditionnelle à \(F_t \).

Soit \(0 \leq t \leq s \leq T \).

\[E_t \left(\sum_{t \leq \tau(i) \leq s} (\psi_{\tau(i)} - \psi_{\tau(i)-}) \right) = E_t \left(\sum_{t \leq \tau(i) \leq s} E \left(\psi_{\tau(i)} - \psi_{\tau(i)-}, \tau(i) \right) \right) \]

\[E_t \left(\sum_{t \leq \tau(i) \leq s} (\psi_{\tau(i)} - \psi_{\tau(i)-}) \right) = E_t \left(\sum_{t \leq \tau(i) \leq s} E \left(\psi_{\tau(i)} | X_{\tau(i)-}, \tau(i) \right) - \psi_{\tau(i)-} \right) \]
Or
\[E \left(\psi_{\tau(i)} | X_{\tau(i)-}, \tau(i) \right) = \psi_{\tau(i)-} - E \left(\exp \left(\beta(\tau(i), T) \left(X_{\tau(i)} - X_{\tau(i)-} \right) \right) \right) \]

Donc,
\[E \left(\psi_{\tau(i)} | X_{\tau(i)-}, \tau(i) \right) = \psi_{\tau(i)-} - \theta(\beta(\tau(i), T), \tau(i)). \]

D'où :
\[
E_t \left(\sum_{t \leq \tau(i) \leq s} \left(\psi_{\tau(i)} - \psi_{\tau(i)-} \right) \right) = E_t \left(\sum_{t \leq \tau(i) \leq s} \left(\psi_{\tau(i)-} - \left(\theta(\beta(\tau(i), T), \tau(i)) - 1 \right) \right) \right)
\]
\[
E_t \left(\sum_{t \leq \tau(i) \leq s} \left(\psi_{\tau(i)} - \psi_{\tau(i)-} \right) \right) = E_t \left(\sum_{t \leq \tau(i) \leq s} \left(I_{\tau(i)-1} (\psi_{\tau(i)-} - \left(\theta(\beta(u, T), u) - 1 \right)) \right) dN_u \right)
\]

où \(N_t \) est le processus de comptage des sauts.

\[
E_t \left(\sum_{t \leq \tau(i) \leq s} \left(\psi_{\tau(i)} - \psi_{\tau(i)-} \right) \right) = E_t \left(\int_t^s (\psi_{\tau(i)-} - \left(\theta(\beta(u, T), u) - 1 \right)) dN_u \right)
\]

Or \(\{ \psi_{\tau(i)-} (\theta(\beta(t, T), t) - 1) ; t \geq 0 \} \) est un processus \(Ft \)-mesurable et \(t \) est l'intensité du processus de comptage des sauts \(N \), donc, par définition de l'intégrale stochastique\(^2\) on a :
\[
E_t \left(\int_t^s (\psi_{\tau(i)-} - \left(\theta(\beta(u, T), u) - 1 \right)) dN_u \right) = E_t \left(\int_t^s (\psi_{\tau(i)-} - \left(\theta(\beta(u, T), u) - 1 \right)) du \right)
\]
donc
\[
E_t \left(\sum_{t \leq \tau(i) \leq s} \left(\psi_{\tau(i)} - \psi_{\tau(i)-} \right) \right) = E_t \left(\int_t^s (\psi_{\tau(i)-} - \left(\theta(\beta(u, T), u) - 1 \right)) du \right)
\]

Donc finalement \(s \geq t \)
\[
E_t (J_s) = J_t + E_t \left(\sum_{t \leq \tau(i) \leq s} \left(\psi_{\tau(i)} - \psi_{\tau(i)-} \right) - \int_t^s \gamma_u du \right)
\]
\[
E_t (J_s) = J_t + E_t \left(\int_t^s (\psi_{\tau(i)-} - \left(\theta(\beta(u, T), u) - 1 \right)) du - \int_t^s \gamma_u du \right)
\]

\(^2\)Voir par exemple p27 Brémaud [1981].
Or on a :

\[\int_t^s \gamma_u du = \int_t^s (\psi_u - (\theta (\beta(u,T), u) - 1)) ldu \]

Donc

\[E_t(J_s) = J_t \]

et \(J \) est une martingale. ■

La possibilité d’exprimer la fonction de survie sous une forme explicite, puisqu’il s’agit d’une fonction exponentielle affine de la variable d’intensité, est fondamentale pour l’application de ce modèle à la valorisation des CDO.

3.2 Modèle de défaut pour plusieurs débiteurs

Pour tenir compte des corrélations entre différents titres sous-jacents tout en étudiant le comportement de l’intensité de défaut de chaque débiteur, on exploite le fait qu’un modèle affine fondamental peut s’écrire comme la somme de modèles affines indépendants, pourvu que les paramètres \(k \) (taux de retour à la moyenne), \(\sigma \) (volatilité de diffusion) et \(\mu \) (amplitude moyenne du saut) soient communs aux différents processus (ce résultat est démontré en annexe 4).

Considérons \(N \) participants dont les temps de défauts \(\tau_1, \tau_2, ..., \tau_N \) ont des processus de pré-intensité \(\lambda_1, \lambda_2, ..., \lambda_N \) qui sont des processus affines fondamentaux.

On peut alors décomposer chacune de leurs pré-intensités sous la forme

\[\lambda_i = X_c + X_i \]

\(X_c \) et \(X_i \) étant des processus affines fondamentaux de paramètres respectivement \((k, \theta_c, \sigma, \mu, l_c) \) et \((k, \theta_i, \sigma, \mu, l_i) \).

\(\lambda_i \) est alors un processus affine fondamental de paramètres \((k, \theta, \sigma, \mu, l) \) où \(\theta = \theta_c + \theta_i \) et \(l = l_c + l_i \). On peut voir \(X_c \) comme la composante commune à tous les participants et \(X_i \) comme leur composante particulière. On se ramène ainsi à \(N + 1 \) processus indépendants.

Le paramètre \(\rho = l_c/l \) représente la fraction des sauts que subit (à long terme) l’intensité d’un certain émetteur qui est supportée en fait par l’ensemble des obligations. Ce paramètre peut être vu comme la probabilité qu’un saut intervienne pour \(i \) sachant qu’un saut intervient pour \(j \). Si de plus on suppose
que $X_c(0) = \rho \lambda_i(0)$ (condition initiale sur les processus X_c et X_i), ρ peut être considérée comme la corrélation instantanée initiale entre λ_i et λ_j, pour tout i, j. C’est-à-dire la corrélation limite entre $\lambda_i(t)$ et $\lambda_j(t)$ lorsque t tend vers 0.

Si $\sigma = 0$, on retrouve la corrélation entre λ_i et λ_j conditionnellement à la filtration F_t. On suppose par ailleurs que $\rho = \theta_c/\theta$ pour maintenir une corrélation constante entre $E(X_c(t))$ et $E(\lambda_i(t))$ pour tout t dès que $X_c(0) = \rho \lambda_i(0)$.

Concrètement, les paramètres utilisés sont les suivants :

<table>
<thead>
<tr>
<th>Set</th>
<th>k</th>
<th>θ</th>
<th>σ</th>
<th>l</th>
<th>μ</th>
<th>Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,60</td>
<td>0,0200</td>
<td>0,141</td>
<td>0,200</td>
<td>0,1000</td>
<td>254 bp</td>
</tr>
<tr>
<td>2</td>
<td>0,60</td>
<td>0,0156</td>
<td>0,000</td>
<td>0,200</td>
<td>0,1132</td>
<td>254 bp</td>
</tr>
<tr>
<td>3</td>
<td>0,60</td>
<td>0,0373</td>
<td>0,141</td>
<td>0,0384</td>
<td>0,2300</td>
<td>253 bp</td>
</tr>
<tr>
<td>4</td>
<td>0,60</td>
<td>0,0000</td>
<td>0,141</td>
<td>0,5280</td>
<td>0,0600</td>
<td>254 bp</td>
</tr>
</tbody>
</table>

On s’intéresse d’abord au premier temps de défaut $\tau^{(N)} = \min(\tau_1, \tau_2, \ldots \tau_N)$ dont la pré-intensité vaut $\lambda_1 + \lambda_2 + \ldots \lambda_N$.

Par extension du cas d’un seul débiteur, on montre (en annexe) que l’on a :

$$p_N = 1 - P(\tau^{(N)} > T) = 1 - \exp[\alpha_c(T) + \beta_c(T)X_c(0) + N.\alpha_i(T) + N.\beta_i(T)X_i(0)]$$

avec $\alpha_c(s)$ et $\beta_c(s)$ solutions des équations (B1) et (B2) pour $n = -\kappa$, $p = \sigma^2, q = -\beta, l = \ell_c$ et $m = k.\theta_c$; tandis que $\alpha_i(s)$ et $\beta_i(s)$ sont solutions des équations différentielles données en annexe (B.2) pour $n = -\kappa, p = \sigma^2, q = -1, l = \ell_i$, et $m = k.\theta_i$.

On en déduit la fonction de répartition à l’instant t du prochain temps de défaut :

$$F(t) = 1 - \exp[\alpha_c(t) + \beta_c(t).X_c(\tau) + N.\alpha_i(t) + \beta_i(t) \sum_{j=1}^{N} X_j(\tau)]$$

25
Figure 3: Représentation graphique des p_N, pour l’horizon de temps $T=10$ ans.

On peut déduire de cette fonction de répartition la probabilité qu’il y ait k défauts parmi les N entreprises présentes (annexe C).

Les figures 4 et 5 représentent, pour deux sets de paramètres, la distribution du nombre de défauts, dans le cas d’une corrélation faible ($\rho = 0.1$), moyenne ($\rho = 0.5$) ou importante ($\rho = 0.9$). La distribution du nombre de défauts est beaucoup plus écrasée pour un haut niveau de corrélation, tandis qu’un faible niveau de corrélation entraîne une distribution centrée sur la moyenne, car les défauts sont répartis de manière plus indépendante. On remarque par ailleurs que le set 4 intensifie l’impact de la corrélation sur la distribution des défauts par rapport au set 1. Le paramètre de retour à la moyenne θ est beaucoup plus faible, et le taux de survenance des sauts plus important. Le set 4 accorde donc une importance relative au saut plus importante qu’au terme de retour à la moyenne et au brownien. Le niveau de la corrélation semble ainsi jouer sur l’occurrence des défauts tout particulièrement à travers le terme de saut.

Les figures 6, 7, 8 illustrent, pour un niveau de corrélation donné, les distributions du nombre de défaut correspondant à chaque set de paramètres. On constate en particulier que les différents sets sont à peu près équivalents pour une corrélation moyenne, et que la différence se fait davantage pour un haut niveau de corrélation. La distribution du nombre de défaut est de plus en plus écrasée lorsque l’on augmente la corrélation.
Figure 4: Probabilité de k défauts, selon différents niveaux de corrélation, pour le set 1 de paramètres

3.3 Extensions et remarques

3.3.1 Risque sectoriel, régional et global

On pourrait élargir l’utilisation du modèle de défaut pour plusieurs débiteurs au traitement du risque multifactoriel en décomposant à nouveau la pré-intensité en plusieurs processus affines indépendants (pour intégrer notamment les risques liés aux secteurs ou aux régions d’activité). Ceci peut être effectué de manière plus ou moins compliquée selon les hypothèses faites et notamment selon le nombre de facteurs choisis.

Par exemple, on peut faire l’hypothèse que le temps de défaut τ_i de l’émetteur i a une pré-intensité $\lambda_i = X_i + Y_{c(i)} + Z$, où le facteur sectoriel $Y_{c(i)}$ est commun à tous les émetteurs du secteur $c(i) \in \{1, \ldots, S\}$ pour S différents secteurs, le facteur Z est commun à tous les émetteurs, et X_i est la partie spécifique à l’émetteur i. Ces différents processus sont des processus affines fondamentaux indépendants.

Si l’on n’impose pas de contraintes sur les paramètres de ces processus, la pré-intensité de l’émetteur i n’est pas nécessairement un processus affine fondamental, mais les calculs restent simples. On peut montrer, en utilisant l’indépendance des processus sous-jacents:
Figure 5: Probabilité de k défauts, selon différents niveaux de corrélation, pour le set 4 de paramètres

\[
E[\exp(\int_{t}^{t+s} -\lambda_i(u)du)] = \exp(\alpha(s) + \beta_i(s)X_i(t) + \beta_{c(i)}(s)Y_{c(i)}(t) + \beta_Z(s)Z(t))
\]

où \(\alpha(s) = \alpha_i(s) + \alpha_{c(i)}(s) + \alpha_Z(s) \), et où tous les paramètres \(\alpha \) et \(\beta \) sont obtenus comme précédemment à partir des paramètres des différents processus affines fondamentaux \(X_i, Y_{c(i)}, \) et \(Z \).

De manière encore plus générale, on peut envisager d’adopter un modèle affine multi-facteur dans lequel les variables d’état sous-jacentes ne sont pas indépendantes.

3.3.2 Intensités réelle et risque-neutre

Pour calculer nos spreads de crédit, nous adoptons un modèle de défaut sans arbitrage standard dans lequel, sous une mesure de probabilité risque-neutre, le temps de défaut d’un émetteur donné a un processus de pré-intensité risque-neutre affine fondamental. La pré-intensité réelle et risque-neutre du temps de défaut sont différentes, il n’existe pas de relation a priori entre leurs trajectoires ou leurs paramètres. Par exemple, si l’on s’intéresse à l’intensité risque-neutre sous la mesure de probabilité réelle, on peut supposer que sous cette mesure de probabilité, l’intensité risque-neutre est encore un processus affine fondamental.
Figure 6: Probabilité du nombre de défauts, selon différents jeux de paramètres, avec un faible niveau de corrélation (0.1)

Il peut en effet être intéressant de caractériser le comportement stochastique réel des prix d’obligations ou de CDO, et ces prix dépendent des intensités de défauts risque-neutres. La seule condition sur les paramètres (à part les conditions d’existence) est l’égalité des volatilités, car ce paramètre est déterminé par la trajectoire de la même, qui est évidemment la même sous différentes mesures de probabilités.

Par ailleurs, il est possible d’estimer les probabilités de défaut réelles et risque-neutre: ces dernières peuvent en particulier être estimées à partir des spreads de taux de marché pour le risque de crédit ou des prix de dérivés de crédit.

Nous nous référerons ici de manière systématique au comportement sous la probabilité risque-neutre de l’intensité de défaut risque-neutre.

3 Jarrow, Lando and Turnbull [1997]
4 Duffie [1998]
4 VALORISATION DU CDO

A partir des résultats analytiques précédents, on peut proposer une méthode de valorisation. Nous allons d’abord décrire l’algorithme général de notre programme de valorisation avant de détailler les étapes de la valorisation : le calcul des taux de recouvrement, la priorisation et enfin le calcul des spreads.

4.1 Algorithme

On considère N entreprises émettrices formant un groupe homogène. On note T la maturité maximale des obligations considérées (dans la pratique, cette maturité vaut la maturité du CDO qui est ici prise égale à 10 ans). Chacun des 10 000 scénarii est généré de la façon suivante :

1- Pour chaque tranche, on commence par diffuser les processus notés X_c et $X_{1,\ldots,N}$ (correspondant respectivement à la partie du risque commune à tout le secteur et à celle spécifique à l’entreprise) selon l’équation de diffusion que nous avons présentée plus haut. On simule donc $N + 1$ processus.

2- On calcule ensuite la fonction de répartition du premier temps de défaut et on tire la première date de défaut (notée $\tau \in [0,T]$) selon cette fonction de répartition. On tire ensuite le numéro de l’entreprise ayant fait défaut en attribuant à chaque entreprise i le poids suivant :
Figure 8: Probabilité du nombre de défauts, selon différents jeux de paramètres, avec un haut niveau de corrélation (0.9)

\[
\frac{\lambda_i(\tau)}{A(\tau)} = \frac{X_i(\tau) + X_c(\tau)}{\sum_i X_i(\tau) + X_c(\tau)}
\]

3- On tire le temps de défaut suivant, selon sa propre fonction de répartition décrite dans le paragraphe précédent, et on tire l’entreprise qui fait défaut comme ci-dessus.

4- On réitère ceci (étape 3) jusqu’à ce que le nombre d’entreprises restantes soit nul (elles ont toutes soit fait défaut soit sont arrivées à maturité).

5- Valorisation :
Pour chaque tombée de coupon, on calcule les flux versés par le pool de titres sous-jacent : intérêts des entreprises qui n’ont pas fait défaut, recouvrement en capital si l’entreprise a fait défaut (et à la maturité remboursement des capitaux si l’entreprise n’a pas fait défaut). On alloue ces flux aux différentes tranches du CDO selon un schéma de priorisation que nous décrirons par la suite.

On calcule finalement la somme des flux actualisés qu’a reçu chacune des tranches, puis le spread de taux de coupon de chaque tranche (différence entre le coupon de la tranche et le coupon au pair, sans risque).
4.2 Risque de recouvrement

On suppose que la fraction de recouvrement en cas de défaut est en espérance constante au cours du temps, et que les fractions de recouvrement correspondant aux différents sous-jacents sont indépendantes et uniformément distribuées. Empiriquement, c’est la distribution des senior unsecured bonds qui est la plus proche de la distribution uniforme.

Distribution des taux de recouvrements (source Moody’s)

En supposant que les changements de taux d’intérêts et les changements des intensités de défaut sont non-corrélés, on peut calculer numériquement la valeur initiale d’une obligation de maturité t si l’émetteur a une pré-intensité affine λ, en fonction du taux zéro-coupon de maturité t, de t, et de la valeur initiale de λ. On peut ensuite en déduire la valeur de l’obligation délivrant des coupons et donc finalement la valeur des flux du CDO jusqu’à la maturité. Ces flux seront reversés aux détenteurs des tranches du CDO en priorité à la tranche Senior, puis à la tranche Mezzanine, et enfin la tranche Equity, selon un schéma de priorisation que nous allons décrire dans la partie suivante.

4.3 Priorisation

4.3.1 Notations

On considère qu’il y a n tombées de coupon chaque année. Les flux provenant du pool de titres sous-jacent au CDO à la $k^\text{ème}$ tombée de coupon se décomposent en intérêts et recouvrements de capitaux en cas de défaut. Le total des intérêts perçus à la $k^\text{ème}$ tombée de coupon est noté $W(k)$, et le total des flux, intérêts et recouvrement, est noté $Z(k)$.

On se place maintenant du point de vue des différentes tranches du CDO. A la $k^\text{ème}$ tombée de coupon, le principal restant dû à la tranche j est noté $P_j(k)$.
Les intérêts devant être payés à la tranche j, à la kième tombée de coupon, valent donc $F_j(k) \cdot c_j/n$ où c_j est le taux de coupon annuel.

Les intérêts effectivement payés (qui peuvent être différents des intérêts dus à cause des éventuels défauts qui interviennent dans le pool de titres sous-jacent au cours de la période k) sont notés $Y_j(k)$. $U_j(k)$ désigne les intérêts non payés dus à la tranche j, cumulés et capitalisés au taux c_j, à la fin de la période k, après paiement. On a donc:

$$U_j(k) = (1 + \frac{c_j}{n}).U_j(k-1) + \frac{c_j}{n}F_j(k) - Y_j(k)$$

On note $J_j(k)$ une éventuelle réduction du principal à la kième tombée de coupon. Cela correspond une réduction impayée du capital, prévue contractuellement. Le principal restant dû à la kième tombée de coupon vaut donc:

$$F_j(k) = F_j(k-1) - J_j(k)$$

A chaque tombée de coupon, les éventuels flux financiers qui n’auraient pas encore été distribués sont placés dans une réserve $R(k)$ au taux sans risque noté $R(k)$. On néglige les taxes et autres coûts annexes. À la maturité, kième tombée de coupon (où $K = n \times maturité$), $U_j(K)$ et $F_j(K)$ doivent être payés.

Il existe différentes méthodes de prioritisation d’un CDO à trois tranches. Les plus utilisées sont la prioritisation uniforme que nous allons décrire plus précisément ici et la prioritisation rapide que nous présentons dans l’annexe 5.

4.3.2 Prioritisation uniforme

Initialement, la tranche senior a un principal $P_1 = F_1(0)$, la tranche mezzanine a un principal $P_2 = F_2(0)$ et la tranche equity $P_3 = F_3(0) = 100 - P_1 - P_2$. Par ailleurs, U_1, U_2, et R sont initialisés à zéro.

A chaque tombée de coupon k (on considère des coupons trimestriels, $n = 4$), on recolte $W(k)$ intérêts (calculés comme les intérêts des entreprises qui n’ont pas fait défaut). On calcule ensuite le flux total du CDO à la période k noté $Z(k)$ comme la somme des intérêts $W(k)$ auxquels on ajoute les recouvrements en capitaux pour les entreprises qui ont fait défaut. On calcule en même temps les pertes L en face-value correspondant aux défauts de la période k.

On calcule ensuite, pour les trois tranches, les réductions en capital impayé et les intérêts payés pour la période k.

Plus précisément, on commence par calculer les $F_1(k), F_2(k), F_3(k)$ sur la base desquels on va calculer les intérêts, selon la formule:
Figure 9: Fonctions de pay-off sur les trois tranches d’un CDO

\[F_j(k) = F_j(k - 1) - J_j(k) \text{ pour } j = 1, 2, 3, \]

où \(J_j(k) \) est la réduction de capital impayée, elle est initialement nulle et est calculée à la fin de chaque tombée de coupon pour la période suivante.

Pour \(j = 1, 2, 3 \), on calcule ensuite ce qui reste dû à la tranche \(j \) à la fin de la période \(k \), avant paiement:

\[\widetilde{U}_j(k) = (1 + \frac{\delta_j}{n})U_j(k - 1) + \frac{\delta_j}{n}F_j(k) \]

Les intérêts effectivement payés à chacune des tranches sont alors:

\[Y_1(k) = \min(\widetilde{U}_1(k), W(k)) \]
\[Y_2(k) = \min(\widetilde{U}_2(k), W(k) - Y_1(k)) \]
La tranche senior touche en priorité les intérêts reçus par le CDO. Il n’y a pas d’intérêts payés à la tranche 3 (equity) avant la maturité. On peut alors recalculer les intérêts dus aux différentes tranches, après le paiement des intérêts:

\[U_j(k) = \tilde{U}_j(k) - Y_j(k), \quad j = 1, 2, 3 \]

On calcule ensuite la réserve disponible après le paiement des intérêts à la période \(k \):

\[R(k) = (1 + \frac{r(k)}{4}) R(k - 1) + Z(k) - Y_1(k) - Y_2(k) \]

Il faut finalement calculer les diminutions de capital impayé \(J_3(k+1), J_2(k+1), J_1(k+1) \) qui serviront à la prochaine période. On calcule d’abord \(H(k) \) qui désigne le total des pertes liées aux défauts depuis la dernière tombée de coupon, auxquelles on soustrait les intérêts perçus non redistribués:

\[H(k) = \max\left(\sum_i L_i - (W(k) - Y_1(k) - Y_2(k)), 0 \right) \]

et enfin les \(J_j(k) \) sont calculés en utilisant l’ordre de priorité inverse :

\[
\begin{align*}
J_3(k+1) &= \min(F_3(k), H(k)) \\
J_2(k+1) &= \min(F_2(k), H(k) - J_3(k+1)) \\
J_1(k+1) &= \min(F_1(k), H(k) - J_3(k+1) - J_2(k+1))
\end{align*}
\]

Les opérations décrites précédemment sont réitérées pour chaque tombée de coupon, jusqu’à la maturité comprise (\(K^{\text{ème}} \) tombée de coupon). À la maturité, on récupère les capitaux des entreprises n’ayant pas fait défaut et on les ajoute à la réserve \(R(K) \).

On calcule alors \(F1(K+1), F2(K+1), F3(K+1) \) par la formule de récurrence. On peut maintenant calculer les capitaux qui seront versés à chacune des trois tranches. Le principal restant dû est payé suivant l’ordre de priorité :

\[
\begin{align*}
D_1(K) &= \min(F_1(K+1) + U_1(K), R(K)) \\
D_2(K) &= \min(F_2(K+1) + U_2(K), R(K) - D_1(K)) \\
D_3(K) &= R(K) - D_1(K) - D_2(K)
\end{align*}
\]
Figure 10: Variation de la valeur de marché des tranches lorsque la corrélation varie, pour un faible niveau de collatéralisation (P1=92.5)

A posteriori, une fois tous les paiements connus, on peut calculer la valeur actualisée à la date de début, $t = 0$, des versements faits à chaque tranche: intérêts versés à chaque période et capitaux versés en T. On obtient donc la valeur en $t = 0$ de chacune des tranches du CDO.

4.4 Calcul des spreads

On suppose que le taux d’actualisation r trimestriel est fixé sur la base d’un taux sans risque annuel $r_{annual} = 6\%$.

On note c le taux de coupon au pair (ou taux zéro-défaut). On a par définition, avec P le principal, n le nombre de tombées de coupon dans une année, c le taux cherché et K le nombre total de tombées de coupon :

$$P = \sum_{k=1}^{K} \left(\frac{c}{n} \cdot P \cdot \frac{1}{(1+r)^k} \right) + \frac{P}{(1+r)^K}$$

Ce qui donne $c = nr$.

36
On cherche à déterminer les taux de coupon c_j de chacune des tranches. Or, si c_j est le taux de coupon au pair, celle-ci doit être égale au principal de la tranche noté P_j.

On a donc, pour la priorisation uniforme :

$$\sum_{k=1}^{K} \left(\frac{Y_j(k)}{(1+r)^k} \right) + \frac{D_j(K)}{(1+r)^{K}} = P_j$$

Pour c_j fixé, nous savons calculer la "valeur de la tranche" actualisée en $t = 0$. c_j est donc implicitement défini par cette équation. On obtient facilement une valeur approchée de c_j dont on peut déduire le spread par rapport au coupon au pair : $s_j = c_j - c$.

Nous avons calculé les spreads pour les tranches senior et mezzanine d’un CDO dont le sous-jacent est constitué d’un pool de $N = 100$ titres distribuant des coupons trimestriels, de maturité 10 ans et de valeurs faciales égales, selon les différents sets de paramètres et selon différents niveaux de corrélation. Les résultats figurent dans les tableaux suivants.

<table>
<thead>
<tr>
<th>set</th>
<th>Principal</th>
<th>Spread (Uniform)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
</tr>
<tr>
<td>1</td>
<td>92,5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>92,5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>92,5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 11: Spreads pour un faible niveau de corrélation ($\rho = 0,1$), selon différents sets de paramètres, et avec une collateralisation faible ou importante.

On remarque immédiatement que les spreads augmentent avec la corrélation. Par ailleurs, quand le principal de la tranche senior est très grand devant ceux des tranches mezzanine et equity, les spreads sont plus élevés, car la tranche equity ne suffit à absorber les pertes.

Comme on le voit, étant donné l’importance réduite du principal de la tranche mezzanine, les spreads correspondants peuvent être dramatiquement influencés par le niveau de corrélation.
Les figures 14 et 10 illustrent l’impact du changement de corrélation, à coupons fixés, sur la valeur de marché des différentes tranches.

Les spreads de la figure 14 sont calculés à partir du jeu de paramètres 1, avec un haut niveau de collatéralisation (P1=80).

Ceux de la figure 10 sont également calculés avec le jeu de paramètres 1, mais avec un faible niveau de collatéralisation (P1=92.5).

Les taux de coupons utilisés sont calculés au pair pour un niveau de corrélation de 0.5. Ces taux de coupon étant fixés, on modifie alors le niveau de corrélation et on mesure la variation de la valeur de marché des trois tranches senior, mezzanine et equity. On constate que lorsque la diversification du portefeuille sous-jacent se détériore brutalement, la tranche senior perd de sa valeur tandis que la tranche equity en gagne.

Ainsi pour P1=92.5 (figure 10) le passage d’un corrélation de 0.5 à 0.9 réduit la valeur de la tranche senior de 0.8 %, tandis que la tranche equity gagne 21.7 %, ce qui est considérable. L’accroissement de la corrélation s’accompagne en effet d’une augmentation de la variance de la perte globale en principal du portefeuille sous-jacent.

La valeur de marché de la tranche equity profite de la volatilité comme une call option le ferait. La tranche résiduelle, habituellement conservée par l’émetteur, peut donc intéresser des investisseurs désirant se couvrir vis-à-vis de la volatilité du risque de défaut.

L’effet est inversé pour une amélioration de la diversification du portefeuille. On peut noter qu’un faible niveau de collatéralisation accentue très nettement cet effet sur la tranche senior ; la tranche mezzanine absorbe l’impact des variations de corrélation sur les tranches senior et mezzanine, de manière à ce que
Figure 13: Spreads pour un niveau de corrélation élevé ($\rho = 0.9$), selon différents sets de paramètres, et avec une collatéralisation faible ou importante.

La valeur de marché du portefeuille global ne soit pas affectée par le niveau de corrélation du risque de défaut. L'évolution de la valeur de marché de la tranche mezzanine suit dans une moindre mesure celle de la tranche senior lorsque la subordination est faible, et l'accentue lorsque la subordination est forte.

Nous avons choisi de considérer que les flux non distribués (c'est-à-dire la réserve) sont capitalisés au taux sans risque mais on pourrait aussi s'intéresser à un réinvestissement risqué de ces flux.

4.5 Les Diversity Scores

Le modèle à intensité stochastique que nous venons de présenter peut être appliqué au calcul de ce que l'on appelle le diversity score. La méthode de calcul des diversity scores proposée par Duffie s'apparente à celle de Moody's, le principe étant de remplacer les N titres d'un portefeuille présentant une corrélation ρ par un portefeuille, dit de comparaison, comportant S ($S = N$) titres identiques et indépendants, ayant la même distribution de perte globale, que le portefeuille initial. Le diversity score S représente alors le degré de diversification du portefeuille.

Connaissant le diversity score du portefeuille d'obligations, on peut en déduire une méthode de valorisation du CDO, dont les concepts et surtout l'implémentation sont beaucoup plus simples, sinon aussi précis, que ceux de la méthode que nous avons décrite dans la partie précédente.

4.5.1 Définition et calcul des diversity scores

Définition
On considère toujours un portefeuille de N actifs, avec une corrélation ρ. Le diversity score est défini comme le nombre S d’actifs du portefeuille idéal de comparaison tel que :

(i) Le montant total du portefeuille de comparaison est le même que celui du portefeuille initial.

(ii) Les actifs du portefeuille de comparaison ont tous la même valeur faciale.

(iii) Les actifs de comparaison ont la même probabilité de faire défaut et leurs défauts sont indépendants.

(iv) La probabilité de faire défaut des actifs de comparaison est en gros la probabilité moyenne de défaut du portefeuille initial.

(v) Le portefeuille de comparaison a, sous une certaine mesure de risque, le même risque de perte que le portefeuille initial.

Les diversity scores ont été d’abord élaborés par Moody’s, qui ne révèle bien évidemment pas au public ses méthodes de calcul. Ainsi, le calcul de la probabilité de défaut p des titres du portefeuille de comparaison reste obscur. Schorin et Weinreich (1998) ont introduit une méthode combinatoire basée sur des probabilités de défaut historiques.
Une fois déterminés le diversity score S du portefeuille initial et la probabilité de défaut p de défaut des titres du portefeuille de comparaison, l’étude du portefeuille initial en termes de risque peut se réduire à celle du portefeuille de comparaison ; Moody’s cependant ne s’appuie pas exclusivement sur le diversity score pour produire le rating des tranches d’un CDO.

Calcul du diversity score

En calculant et en identifiant les variances des deux portefeuilles (portefeuille initial et de comparaison), il vient :

$$S = \frac{N.(p_{(1)}E(L^2) - c)}{p_{(1)}E(L^2) + (N-1)p_{(2)}E(L)^2 - N.p_{(1)}^2E(L)^2}$$

où L est la perte, $p_{(1)}$ la probabilité marginale de défaut et $p_{(2)}$ la probabilité jointe de défaut (détail en annexe F).

Duffie et Garleanu proposent de remplacer les probabilités de défaut historiques par celles déduites de la fonction de répartition calculée grâce à leur modèle à intensité stochastique.

On a : $p_{(1)} = p_1$ et $p_{(2)} = 2 * p_1 - p_2$, où p_1, la probabilité de défaut d’une entreprise donnée, et p_2, la probabilité que, sur deux entreprises, au moins l’une fasse défaut, sont donnés par la formule suivante :

$$p_j = 1 - P(\min(\tau_1,...,\tau_j) > T)$$
$$= 1 - E[\exp(-\int_0^T \sum_{i=1}^j \lambda_i(t)dt)|F_t]$$
$$= 1 - \exp[\alpha_c(T) + \beta_c(T)X_c(0) + j.\alpha_i(T) + j.\beta_i(T)X_i(0)]$$

d’où :

$$p_1 = 1 - \exp[\alpha(T) + \beta(T).\lambda(0)]$$
$$p_2 = 1 - \exp[\alpha_c(T) + \beta_c(T)X_c(0) + 2.\alpha_i(T) + 2.\beta_i(T)X_i(0)]$$

avec :

$$\lambda(0) = \theta + \frac{l_p}{K}, X_c = \rho \lambda$$
$$X_i = (1 - \rho)\lambda.$$
Par ailleurs, si l’on suppose la distribution de perte uniforme sur \([0, 1]\), on a également :

\[
E(L^2) = \frac{1}{3}
\]

et

\[
\langle E(L) \rangle^2 = \frac{1}{4}.
\]

On calcule ainsi facilement le diversity score \(S\) :

1- On commence par calculer les paramètres \(\alpha_c, \beta_c, \alpha_i, \beta_i, \lambda(0), X_i(0), X_c(0)\), pour lesquels on dispose de formules fermées.

2- On calcule ensuite \(p_1\), la probabilité de défaut d’une entreprise donnée, et \(p_2\), la probabilité que, sur deux entreprises, au moins l’une fasse défaut.

3- On en déduit \(p_{(1)}\) la probabilité marginale de défaut et \(p_{(2)}\) la probabilité jointe de défaut.

4- On peut finalement calculer le diversity score \(S\).

Résultats obtenus

Nous avons calculé le diversity score d’un pool de \(N = 100\) titres distribuant des coupons trimestriels, de maturité 10 ans et de valeurs faciales égales, selon les différents sets de paramètres et selon différents niveaux de corrélation. Conformément à ce que l’on pouvait attendre, les portefeuilles les mieux diversifiés (avec un Diversity Score élevé) sont ceux qui présentent un niveau de corrélation plus faible. Les résultats sont synthétisés dans le tableau suivant :

<table>
<thead>
<tr>
<th>Set</th>
<th>(r_o=0.1)</th>
<th>(r_o=0.5)</th>
<th>(r_o=0.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>diversity score</td>
<td>diversity score</td>
<td>diversity score</td>
</tr>
<tr>
<td>1</td>
<td>58,5</td>
<td>21,8</td>
<td>13,2</td>
</tr>
<tr>
<td>2</td>
<td>59,1</td>
<td>22,2</td>
<td>13,5</td>
</tr>
<tr>
<td>3</td>
<td>63,3</td>
<td>25,2</td>
<td>15,8</td>
</tr>
<tr>
<td>4</td>
<td>56,7</td>
<td>20,1</td>
<td>12,4</td>
</tr>
</tbody>
</table>

42
4.5.2 Valorisation du CDO à partir du Diversity Score

Le principe est d’utiliser les propriétés des diversity scores pour valoriser le CDO : on peut remplacer l’étude du portefeuille initial par celle du portefeuille de comparaison, en exploitant l’indépendance des titres qui le composent.

![Diagramme des spreads de la tranche mezzanine et spreads obtenus à partir des Diversity Scores](image)

Figure 15: Spreads de la tranche mezzanine et spreads obtenus à partir des Diversity Scores, pour un haut niveau de corrélation ($\rho = 0.9$) et une faible collatéralisation ($P1 = 92.5$), selon différents sets de paramètres.

Méthodologie

On commence par tirer le nombre de défauts M.

On dispose en effet, pour le portefeuille de comparaison, de la probabilité de k défauts parmi n titres :

$$q(k, n) = \frac{n!}{k!(n-k)!} p^k (1 - p)^{n-k}$$

où $p = p_{(1)}$ est la probabilité de défaut d’un titre du portefeuille de comparaison.

Pour chacun de ces défauts, on simule le temps de défaut selon la formule habituelle :

43
\[P(t < T) = 1 - \exp[\alpha(T) + \beta(T)\cdot \lambda(0)] \]

puis la perte est calculée en \% du principal.

A chaque période ou tombée de coupon, on calcule alors les flux : intérêts et recouvrement de capitaux en cas de défaut, et à la maturité les nominaux pour les titres qui n’ont pas fait défaut. On alloue ces flux aux différentes tranches du CDO, selon le schéma de priorisation approprié. En actualisant enfin les flux en direction des tranches, on en déduit la valeur actuelle de chacune des tranches.

En réitérant ces opérations sur plusieurs scénarii et en prenant la moyenne des valeurs des tranches, on peut valoriser le CDO et calculer le spread de taux de coupon des tranches du CDO. Cette méthode présente l’avantage d’être très économique : il n’est pas nécessaire de calculer \(N + 1 \) trajectoires pour chaque scénario.

Figure 16: Spreads de la tranche mezzanine et spreads obtenus à partir des Diversity Scores, pour un niveau de corrélation moyen \((\rho = 0.5)\) et une collatéralisation importante \((P1 = 80, P2 = 10)\), selon différents sets de paramètres.
Résultats

Pour $p = 0.386$, la distribution de probabilité du nombre de défauts sur $M = 100$ entreprises indépendantes est la suivante :

En considérant toujours notre pool de 100 titres de maturité 10 ans, délivrant des coupons trimestriels, nous avons calculé les spreads de taux de coupon des tranches senior et mezzanine pour différents sets de paramètres et différents niveaux de corrélation. Les résultats figurent dans les tables 17, 18, 19.

<table>
<thead>
<tr>
<th>set</th>
<th>Principal</th>
<th>Spread (Uniform)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1 P2</td>
<td>s1 (bp)</td>
</tr>
<tr>
<td>1</td>
<td>92.5 5</td>
<td>16.2</td>
</tr>
<tr>
<td>3</td>
<td>92.6 5</td>
<td>18.1</td>
</tr>
<tr>
<td>4</td>
<td>92.6 5</td>
<td>17.6</td>
</tr>
<tr>
<td>1</td>
<td>80 10</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>80 10</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>80 10</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Figure 17: Spreads calculés à partir des Diversity Scores, pour $\rho = 0.5$

Pour une tranche Senior, on obtient des résultats très proches par les deux méthodes. Les spreads approchés par la méthode des diversity scores sont légèrement plus faibles. En revanche la comparaison des deux types de méthode est beaucoup moins bonne, en ce qui concerne la tranche Mezzanine. Lorsque le niveau de corrélation est élevé ($\rho = 0.9$) et la collatéralisation faible (figure 15), on observe un écart de l’ordre de 400 bp entre les différentes estimations des spreads.

Pour des tranches bien collatéralisées, comme par exemple avec $P1 = 80$ et $P2 = 10$, les spreads estimés à partir des diversity scores sont assez précis (figure 16), mais pour des tranches très subordonnées, comme par exemple avec $P1 = 92.5$ et $P2 = 2.5$, avec un niveau de corrélation faible ou important, la précision peut être assez mauvaise.
<table>
<thead>
<tr>
<th>set</th>
<th>Principal</th>
<th>Spread (Uniform)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P1</td>
</tr>
<tr>
<td>1</td>
<td>92.5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>92.5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>92.5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 18: Spreads calculés à partir des Diversity Scores, pour $\rho = 0.1$

<table>
<thead>
<tr>
<th>set</th>
<th>Principal</th>
<th>Spread (Uniform)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P1</td>
</tr>
<tr>
<td>1</td>
<td>92.5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>92.5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>92.5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 19: Spreads calculés à partir des Diversity Scores, pour $\rho = 0.9$
5 LA CALIBRATION DU MODELE

Le calibrage de ce type de modèle est encore aujourd’hui une étape extrême-
ment délicate. Les cycles d’étude sont très longs et nécessitent des données sur
plusieurs décennies. De plus la faible fréquence d’événements comme le défaut
rend l’analyse de ces séries encore plus compliquée. L’estimation de la corréla-
tion étant un problème indépendant, nous nous attachons ici au paramétrage
du modèle en considérant la corrélation comme une donnée exogène.

5.1 A partir des probabilités de défaut

Une première approche consiste à utiliser les probabilités de défaut cu-
mulées données par Moody’s pour calibrer le modèle en fonction du rating:

<table>
<thead>
<tr>
<th>Rating</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>0,01%</td>
<td>0,04%</td>
<td>0,09%</td>
<td>0,18%</td>
<td>0,31%</td>
</tr>
<tr>
<td>Aa</td>
<td>0,01%</td>
<td>0,06%</td>
<td>0,15%</td>
<td>0,27%</td>
<td>0,44%</td>
</tr>
<tr>
<td>A</td>
<td>0,07%</td>
<td>0,17%</td>
<td>0,33%</td>
<td>0,46%</td>
<td>0,65%</td>
</tr>
<tr>
<td>Baa</td>
<td>0,17%</td>
<td>0,41%</td>
<td>0,73%</td>
<td>1,23%</td>
<td>1,79%</td>
</tr>
<tr>
<td>Ba</td>
<td>1,08%</td>
<td>3,41%</td>
<td>6,14%</td>
<td>8,76%</td>
<td>11,05%</td>
</tr>
<tr>
<td>B</td>
<td>4,55%</td>
<td>10,97%</td>
<td>15,75%</td>
<td>19,33%</td>
<td>21,98%</td>
</tr>
<tr>
<td>Caa</td>
<td>19,15%</td>
<td>27,45%</td>
<td>35,65%</td>
<td>36,32%</td>
<td>39,01%</td>
</tr>
</tbody>
</table>

A ce stade, on peut déjà remarquer que les sets de paramètres proposés par
Duffie correspondent à peu près à un rating B.

Certains paramètres peuvent être déterminés de manière arbitraire pour
diminuer le nombre de degrés de liberté du système d’optimisation. On choisit
donc de fixer la corrélation ρ. En fonction des différents paramètres du modèle:
$(k, \theta, \sigma, \mu, \ell)$, on a la fonction de répartition des défauts:

$$F(t) = 1 - \exp[\alpha_c(t) + \beta_c(t).X_c(0) + N.\alpha_v(t) + N.\beta_v(t)X_v(0)]$$

$F(t)$ est borne supérieure du nombre de défauts estimé à t. Le facteur N est
la somme de deux variables normales α et β. Pour $t = 0$, on obtient
le nombre moyen de défauts estimé. Pour t grand, on obtient le nombre moyen
de défauts estimé pour un intervalle de t.

Pour une entreprise (ie. si on ne tient pas compte de la corrélation), on obtient:
La précision est égale à la somme des écarts au carré entre les probabilités de défaut cumulées de Moody’s et celles obtenues par le modèle de Duffie pour ces sets de paramètres.
Probabilité de défaut cumulée sur 5 ans

Une fois les paramètres \(k, \theta, \sigma, \mu, \) et \(l \) calibrés, on peut commencer à appliquer le modèle sur des données réelles. Reste cependant la question de la corrélation. On peut essayer de la calibrer à partir des CDO déjà valorisés par le marché : en fonction du rating du CDO considéré : une fois que l’on dispose des valeurs des différents paramètres, il suffit de trouver la corrélation \(\rho \) qui permette de répliquer les spreads donnés par le marché pour ce CDO. Pour notre part, nous avons considéré le paramètre de corrélation comme une donnée exogène, qui pourra être évaluée sur la base d’une analyse plus large du contexte économique.

Nous allons maintenant nous intéresser à un autre type de calibration, à partir de données de prix d’obligations. Ce type d’approche permet de cibler davantage nos efforts sur un secteur d’activité particulier, comme ici les télécommunications.

5.2 La méthode GMM naïve

Dans un premier temps, nous nous intéresserons à la calibration d’un modèle simplifié, en omettant de faire intervenir des sauts dans la diffusion de l’intensité de défaut.

Nous allons donc chercher à estimer les paramètres d’une équation de la forme suivante :

\[
d\lambda_t = (a + b\lambda_t)dt + \sigma \sqrt{\lambda_t} dZ_t.
\]

5.2.1 Présentation de la méthode des moments généralisés

\[
\lambda_{t+1} - \lambda_t = (a + b.\lambda_t) + \varepsilon_t + 1
\]
\[
E[\varepsilon_t + 1] = 0, E[\varepsilon_t^2] = \sigma^2 \lambda_t
\]
Figure 20: Prix des obligations France Telecom pour différentes maturités, source CDC.

Le modèle en temps discret présente l’avantage de faire dépendre la variance des variations de l’intensité directement du niveau de cette-ci, ce qui est cohérent avec le modèle en temps continu. La discrétisation est évidemment une approximation, mais, lorsque l’on suppose que le processus d’intensité est continu, l’erreur induite est du second ordre si la période de discrétisation est assez courte.

Notre approche consiste à obtenir à partir des deux équations précédentes des conditions sur les moments, selon la méthode des moments généralisés de Hansen (1982), conditions qui permettront de rendre les paramètres sur-identifiables. La méthode GMM converge asymptotiquement si les variations de l’intensité sont stationnaires et que les espérances concernées existent. Par ailleurs, les estimateurs sont convergents même si les résidus ε_t sont conditionnellement
hétéroscédastiques.

Soit θ le vecteur de paramètres (a, b, σ^2).

$
\varepsilon_{t+1}$ étant défini par

$$
\varepsilon_{t+1} = \lambda_{t+1} - \lambda_t - a - b \lambda_t,
$$

on définit le vecteur $f_t(\theta)$ par

$$
f_t(\theta) = \begin{bmatrix}
\varepsilon_{t+1} \\
\varepsilon_{t+1} \cdot \lambda_t \\
\varepsilon_{t+1}^2 - \sigma^2 \lambda_t \\
(\varepsilon_{t+1}^2 - \sigma^2 \lambda_t) \cdot \lambda_t
\end{bmatrix}
$$

Sous l'hypothèse nulle que les restrictions imposées par les équations (3) et (4) sont vérifiées, on a : $E[f_t(\theta)] = 0$. La procédure GMM consiste à remplacer $E[f_t(\theta)]$ par son estimation empirique à partir de T observations, $g_T(\theta)$, où

$$
g_T(\theta) = \frac{1}{T} \sum_{t=1}^{T} f_t(\theta).
$$

On choisit ensuite les estimateurs des paramètres qui minimisent la forme quadratique

$$
J_T(\theta) = g_T'(\theta) W_T(\theta) g_T(\theta)
$$

où $W_T(\theta)$ est une matrice de poids, symétrique définie positive.

On montre que minimiser $J_T(\theta)$ par rapport à θ équivaut à résoudre le système d’équations homogène (conditions d’orthogonalité) :

$$
D'(\theta) W_T(\theta) g_T(\theta) = 0,
$$

où $D(\theta)$ est la matrice Jacobienne de $g_T(\theta)$ par rapport à θ.

Hansen (1982) montre que l’on peut choisir la matrice des poids $W_T(\theta)$ de façon à minimiser la matrice de covariance asymptotique, en prenant :

$$
W_T(\theta) = S^{-1}(\theta), \text{où} S(\theta) = E[f_t(\theta) f_t'(\theta)].
$$
Si on note alors $S_0(\theta)$ un estimateur de cette matrice de covariance, on peut calculer la matrice de covariance asymptotique pour l’estimateur GMM de θ :

$$\frac{1}{T}.(D_0(\theta).S_0(\theta).D_0(\theta))^{-1},$$

où $D_0(\theta)$ est le Jacobien, évalué en $\tilde{\theta}$ le vecteur des paramètres estimés.

Cette matrice de covariance est utilisée pour tester la significativité de chacun des paramètres.

La valeur minimisée de la forme quadratique est distribuée selon un χ^2, sous l’hypothèse nulle que les conditions d’orthogonalité sont vérifiées, ce qui permet d’élaborer un test de validation du modèle (si la statistique du χ^2 est élevée, le modèle est erroné). D’autre statistiques de test permettent également de tester les hypothèses du modèle.

5.2.2 Application à notre cas spécifique

Les paramètres à estimer sont ceux de la diffusion de l’intensité de défaut λ_t, à savoir k, θ, σ. Ce sont ces notations que nous employons dans la suite de cet exposé.

Nous ne disposons pas de données sur la variable d’intensité, qui n’est pas observable, mais sur les prix d’obligations. On ne peut donc pas appliquer la méthode GMM telle quelle. Nous avons implémenté la méthode de la manière suivante :

À partir des prix observés, pour des obligations qui délivrent des coupons, nous pouvons reconstituer les prix zéro-coupon que l’on relie alors à l’intensité selon l’équation suivante :

$$B_{t,T} = \exp(\alpha(T - t) + \beta(T - t)\lambda_t),$$

où $B_{t,T}$ est le prix en t du zéro-coupon d’échéance T, α et β sont les fonctions propres que nous avons déjà présentées. Pour plus de clarté dans les calculs, on notera B_t, et l’on omettra parfois de préciser l’argument de α et β.

En différenciant cette relation au premier ordre il vient, en notant dt le pas de temps et dZ_t la variation du brownien au cours de dt, et sous certaines hypothèses de positivité et de régularité :

$$\ln(B_{t+1}) - \ln(B_t) = \frac{\delta \alpha}{\delta t} dt + \frac{\delta \beta}{\delta t} \lambda_t dt + \beta(\lambda_{t+1} - \lambda_t)$$

or
Figure 21: Prix des obligations Vodafone pour différentes maturités, source ISIN.

\[\lambda_{t+1} - \lambda_t = k(\theta - \lambda_t).dt + \sigma.\sqrt{\lambda_t}dZ_t \]

d'où :

\[\ln(B_{t+1}) - \ln(B_t) = \left(\frac{\delta \alpha}{\delta t} + \frac{\delta \beta}{\delta t}\lambda_t + \beta.k.(\theta - \lambda_t) \right).dt + \beta.\sigma.\sqrt{\lambda_t}.dZ_t \]

Posons alors

\[\varepsilon_t = \beta.\sigma.\sqrt{\lambda_t}.dZ_t \]

La distribution de \(\varepsilon_t \) est gaussienne :

\[\varepsilon_t \sim N(0, \beta^2.\sigma^2.\lambda_t dt), \]

i.e. :

\[\varepsilon_t \sim N(0, \beta.\sigma^2.(\ln(B_t) - \alpha).dt), \]
d’où les conditions de moments suivantes:

\[
\begin{align*}
E_t[\varepsilon_{t+1}] &= 0 \\
E_t[\varepsilon_{t+1}^2 - \beta, \sigma^2, (\ln B_t - \alpha).dt] &= 0 \\
E_t[\varepsilon_{t+1}. \frac{(ln B_t - \alpha)}{\beta}] &= 0 \\
E_t[(\varepsilon_{t+1}^2 - \beta, \sigma^2, (\ln B_t - \alpha).dt). \frac{(ln B_t - \alpha)}{\beta}] &= 0
\end{align*}
\]

D’autre part \(\varepsilon_t \) est donné par

\[
\varepsilon_t = \ln(B_{t+1}) - \ln(B_t) - \left[\frac{\delta\alpha}{\delta t} + \beta, k, \theta + \left(\frac{\delta\beta}{\delta t} - \beta, k \right) \frac{(\ln B_t - \alpha)}{\beta} \right].dt
\]

Disposant de formules explicites pour \(\alpha, \beta \) et pour leurs dérivées (annexe 2.1), nous pouvons alors appliquer un algorithme classique de minimisation pour obtenir des estimateurs de nos paramètres.

5.2.3 Application

Les historiques de prix que nous utilisons ont été récupérés sous Bloomberg. A partir de ces historiques pour différentes maturités, on a pu calculer les prix zéro-coupons correspondants, sous Matlab.

L’estimation des paramètres du modèle a été menée sous GAUSS, en utilisant la méthode GMM.

Ne disposant que d’une période d’observation courte, nous n’estimerons pas les paramètres de sauts, qui n’interviennent qu’avec une faible intensité.

Les paramètres qui nous intéressent sont donc ici \(k, \theta \) et \(\sigma \), c’est-à-dire les paramètres correspondant à la force de rappel, \(k \), vers le terme moyen \(\theta \), et le paramètre mesurant l’importance de mouvement brownien \(\sigma \). Pour les obligations Fr Tel d’échéance avril 2007 et janvier 2005, et pour l’obligation Vodafone d’échéance janvier 2005, on estime les paramètres qui figurent dans la table ci-dessous, en fixant les paramètres de saut à 0 :
<table>
<thead>
<tr>
<th>Obligation(s)</th>
<th>Échéance</th>
<th>k</th>
<th>theta</th>
<th>sigma</th>
<th>Précision (sur la fonction à minimiser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>France Télécom</td>
<td>05/04/2007</td>
<td>0.1</td>
<td>0.002</td>
<td>0.00003</td>
<td>10.3</td>
</tr>
<tr>
<td>France Télécom</td>
<td>03/01/2005</td>
<td>0.6</td>
<td>0.002</td>
<td>0.15</td>
<td>10.5</td>
</tr>
<tr>
<td>Vodafone</td>
<td>21/01/2005</td>
<td>0.17</td>
<td>0.002</td>
<td>0.14</td>
<td>10.6</td>
</tr>
<tr>
<td>France Télécom et Vodafone</td>
<td>03/01/2005</td>
<td>0.6</td>
<td>0.0017</td>
<td>0.15</td>
<td>10.6</td>
</tr>
</tbody>
</table>

On retrouve des paramètres cohérents avec d’autres techniques de calibration, notamment par les probabilités de défaut données par Moody’s, mais l’estimation des paramètres est souvent très instable, d’une part sur l’estimation des paramètres d’une obligation, d’autre part sur les paramètres des différentes obligations correspondant au même secteur d’activité. On peut remarquer en particulier que le paramètre de variance \(\sigma \) estimé pour la première obligation est extrêmement faible, ce qui est sans doute lié à l’échéance à long terme de cette obligation. En revanche, le paramètre \(\theta \) est assez stable selon les différentes estimations.

L’intérêt d’utiliser une méthode basée sur la discrétisation du modèle et les moments généralisés est la simplicité d’une telle méthode, comme on a pu le voir. La difficulté d’obtenir la densité de l’intensité (à partir des prix d’obligation) rend cette première approche attractive. En revanche, il convient de préciser que les algorithmes de minimisation ne convergent pas bien, ce qui est imputable à la moyenne qualité des données d’une part, d’autre part sans doute aux limites de notre modélisation.

On peut envisager une autre méthode qui exploite la fonction caractéristique du modèle affine qui est calculable. Comme il existe une relation linéaire entre le prix zéro-coupon et l’intensité de défaut, il est possible de calculer la fonction caractéristique correspondant aux prix et ainsi d’appliquer la méthode GMM Spectrale que nous allons maintenant présenter.

5.3 Méthode SGMM

On s’intéresse dorénavant au modèle à sauts. L’estimation des paramètres d’un modèle dynamique en temps continu est particulièrement délicate parce qu’elle est rapidement très lourde à mettre en œuvre. En effet, les densités conditionnelles implicites sont solutions d’équations aux dérivées partielles. Par ailleurs, comme la variable d’état, ici l’intensité de défaut, est souvent inobservable, il faut en outre la relier numériquement aux prix observés. La forme particulière des modèles de pricing affines permet de calculer de manière plus ou
moins explicite certains prix d’actifs, ce qui explique l’intérêt suscité récemment par ces modèles.

A partir d’observations discrètes d’une diffusion affine, on peut exploiter sa fonction caractéristique conditionnelle pour calculer des estimateurs des paramètres du modèle à la fois maniables et asymptotiquement efficaces. En effet, si \(\{Y_t\} \) est une série d’observations discrètes d’une diffusion affine, on peut expliciter la fonction caractéristique de \(Y_{t+1} \) conditionnée par \(Y_{t-\text{}} \) : c’est l’exponentielle d’une fonction affine de \(Y_t \) (voir Duffie Pan Singleton [2000]). On note \(\phi(u, \gamma) \) cette fonction caractéristique pour une constante réelle \(u \) et un vecteur de paramètres du modèle \(\gamma \).

Cette observation permet de développer différents types d’estimateurs des paramètres, soit en retrouvant, à partir de la fonction caractéristique, la densité conditionnelle et en maximisant la vraisemblance, soit en utilisant directement une méthode des moments généralisée, à partir de la fonction caractéristique. Dans ce second cas, on exploite la propriété suivant de la fonction caractéristique: \(E[e^{iuY_{t+1}}|Y_t] = \phi(u, \gamma) \). On peut alors éviter le recours à la transformation de Fourier. On parle de "frequency domain estimator", par opposition aux "time domain estimators".

Notre problématique est la suivante : le vecteur des prix observés \(y_t \) (en log) est décrit par un modèle affine

\[y_t = P(Y_t, \gamma_0) \]

où \(Y_t \) suit une diffusion affine dont le vecteur des paramètres est contenu dans \(\gamma_0 \), et \(P \) est une fonction affine de \(Y_t \).

Dans ce cas particulier il est encore possible de calculer la fonction caractéristique des données, à partir de celle de la variable d’état \(Y_t \).

On peut ainsi implémenter des estimateurs du maximum de vraisemblance efficaces. La formule d’inversion de la fonction caractéristique permet d’obtenir la log-vraisemblance conditionnelle des observations. La maximisation de celle-ci donne un estimateur asymptotiquement efficace du vecteur de paramètres \(\gamma_0 \).

L’approche alternative, qui produit des estimateurs à peu près aussi efficaces, est en outre numériquement plus facilement gérable.

5.3.1 Fonction caractéristique de notre modèle

On peut expliciter la fonction caractéristique correspondant à notre diffusion affine. On ne présente pas ici la démonstration (voir Duffie Pan Singleton [1999]). Il s’agit d’un calcul similaire à celui de la probabilité de survie, que nous avons développé.
Définition 2 Fonction caractéristique conditionnelle de X_t
\[\phi(u, X_t, t, T) = E[\exp(u X_T)|F_t], \text{ où } u \text{ est un nombre complexe imaginaire.} \]

Lorsque X suit une diffusion affine, on montre que l'on a
\[\phi(u, x, t, T) = \exp(\alpha(t, T, u) + \beta(t, T, u)x) \]

où α et β sont définis par les équations différentielles suivantes:
\[
\begin{align*}
\frac{\partial}{\partial t} \beta(t, T, u) + B(\beta(t, T, u), t) &= 0 \\
\frac{\partial}{\partial t} \alpha(t, T, u) + A(\beta(t, T, u), t) &= 0 \\
\alpha(T, T, u) &= u, \beta(T, T, u) = u
\end{align*}
\]

avec :
\[
\begin{align*}
B(y, t) &= -\kappa y + \frac{1}{2}y^2\sigma^2 \\
A(y, t) &= \kappa \theta y + l(\theta(y, t) - 1)
\end{align*}
\]

et
\[
\theta(y, t) = \int_R \exp(yz) du(z)
\]

qui est la "jump-transform" correspondant à la diffusion (i.e. $\theta(y, t) = \frac{1}{1 - \mu y}$).

On suit résoudre explicitement ce système. Les solutions α et β sont données en annexe 2.2.

5.3.2 ML-CCF Estimateurs de modèles affines

Le principe de la méthode est de retrouver la densité conditionnelle par une inversion de Fourier de la fonction caractéristique conditionnelle. L’estimateur ML-CCF est ensuite obtenu par maximisation de la log-vraisemblance.

Méthode générale

On se place dans un premier temps dans un cadre général: supposons que $\{Y_t\}_{t=1}^{T}$ représente un échantillon d’observations d’une diffusion affine. On note toujours $\phi_{Y_t}(u, \gamma_0)$ la fonction caractéristique, connue, de Y_{t+1} sachant Y_t, et γ_0 le vecteur des paramètres de la diffusion à estimer. Par définition, $\phi_{Y_t}(u, \gamma)$ est la transformée de Fourier de la densité de Y_{t+1} sachant Y_t,
\[\phi_{Y_t}(u, \gamma) = \int_{R^N} f_Y(Y_{t+1}|Y_t; \gamma) e^{iu'Y_{t+1}} dY_{t+1} \]

\((N\) est la dimension de \(Y_t\)).

On a donc également la densité conditionnelle de \(Y_{t+1}\), par une inversion de Fourier de \(\phi_{Y_t}(u, \gamma)\) :

\[f_Y(Y_{t+1}|Y_t; \gamma) = \frac{1}{\pi^N} \int_{R^N} \text{Re}[e^{-iu'Y_{t+1}} \phi_{Y_t}(u, \gamma)] du, \quad (5) \]

où \(\text{Re}\) désigne la partie réelle d’un nombre complexe.

A partir de l’équation 5, on peut écrire la log-vraisemblance conditionnelle \(l_T(\gamma)\) des observations \(\{Y_t\}_{t=1}^T\) :

\[l_T(\gamma) = \frac{1}{T} \sum_{t=1}^T \log \left\{ \frac{1}{\pi^N} \int_{R^N} \text{Re}[e^{-iu'Y_{t+1}} \phi_{Y_t}(u, \gamma)] du \right\} \]

On maximise alors la log-vraisemblance de manière classique, en faisant une hypothèse sur la valeur de \(\gamma\), en calculant numériquement les inversions de Fourier correspondantes, etc.

Application à notre cas

Voyons maintenant comment appliquer cette méthode dans notre cas.

On suppose que l’on a : \(y_t = \alpha(\gamma_0) + \beta(\gamma_0)Y_t\).

Etant donné que \(y_t\) est une fonction affine de \(Y_t\), il vient immédiatement :

\[\phi_{y_t}(u, \gamma) = e^{iu'\alpha(\gamma)} \phi_{Y_t}(\beta(\gamma)u, \gamma) \]

où \(\phi_{y_t}\) est évalué en \(Y_t = \beta(\gamma)^{-1}(y_t - \alpha(\gamma))\).

Ainsi, la connaissance de la fonction caractéristique de \(Y\) implique celle de la fonction caractéristique de \(y\). On peut alors appliquer la méthode d’estimation directement à la fonction caractéristique de \(y\).

Cette méthode par maximum de vraisemblance reste assez laborieuse, du fait de la nécessité d’effectuer des inversions de Fourier.
5.3.3 Estimation ECCF de modèle affine

On peut élaborer des estimateurs des paramètres asymptotiquement efficaces à partir de la fonction caractéristique, ce qui évite de recourir aux inversions de Fourier et permet ainsi une implémentation beaucoup plus simple. La construction de ces estimateurs passe par deux étapes.

On exhibera d’abord un estimateur asymptotiquement équivalent à l’estimateur du maximum de vraisemblance. Cet estimateur se révèlera être déterminé par un continuum de contraintes sur les moments conditionnels impliquant la fonction caractéristique. La démonstration de son efficacité asymptotique conduit à la construction d’un nouvel estimateur, qui exploite un nombre fini seulement de ces conditions sur les moments. Cet estimateur est approximativement efficace, et la simplicité de sa mise en œuvre est particulièrement attractive.

Un estimateur efficace

Soit I_t la σ–algèbre engendrée par y_t.

On définit une classe d’instruments $Z^\mathbb{F}_t$, comprenant des éléments $z_t(u) : \mathbb{R}^N \rightarrow C^Q$, avec $z_t(u) \in I_t$, et $z_t(u) = \tau_t(-u)$, $t = 1, ..., T$, et Q le nombre de paramètres à estimer.

À chaque élément z de $Z^\mathbb{F}_T$ correspond un estimateur $\hat{\gamma}_{\cdot T}^\mathbb{F}$ de γ_0 satisfaisant l’équation suivante :

$$\frac{1}{T} \sum_t \int_{\mathbb{R}^N} z_t(u)[e^{izu_{t+1}} - \phi_t(u, \gamma_{\cdot T}^\mathbb{F})]du = 0$$

(6)

Sous des conditions de régularité, l’estimateur $\hat{\gamma}_{\cdot T}^\mathbb{F}$ ainsi défini est consistant et asymptotiquement normal. On montre que l’on peut choisir l’index z de manière optimale, c’est-à-dire de manière à minimiser la matrice de covariance asymptotique, en prenant :

$$z_{\cdot T}^\mathbb{F}(u) = \frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} \frac{\delta \log f}{\delta \gamma} (y_{t+1} | y_t ; \gamma_0) e^{-iuz_{t+1}} dy_{t+1}.$$

De plus, la matrice de covariance limite de l’estimateur GMM $\gamma_{\cdot T}^\mathbb{F}(u)$ obtenu en utilisant $z_{\cdot T}^\mathbb{F}(u)$ est la borne asymptotique de Cramer-Rao.

En effet, les conditions sur les moments impliquées par la caractérisation 6 de ces estimateurs, évaluées en $z_t(u) = z_{\cdot T}^\mathbb{F}(u)$, sont asymptotiquement équivalentes aux conditions du premier ordre de la log-vraisemblance. On en déduit que l’estimateur basé sur $z_{\cdot T}^\mathbb{F}(u)$ est asymptotiquement équivalent à l’estimateur du maximum de vraisemblance basé sur la densité conditionnelle de y_t.

5Cet estimateur est la version conditionnelle de la caractérisation des estimateurs du maximum de vraisemblance proposée par Feuerverger et McDunnough [1981].

6Voir Singleton [2001] section 2.5.
Un estimateur ECCF approximativement efficace.

D’un point de vue pratique l’estimateur que nous avons décrit plus haut ne présente pas d’avantage par rapport à l’estimateur ML-CCF décrit plus haut, parce que cette méthode suppose la connaissance a priori de la densité (qui apparaît dans la formule explicitant l’estimateur optimal). Nous allons développer un estimateur plus simple et presque aussi efficace. On suppose $N = 1$ (y_t a une dimension).

L’idée est d’approcher l’intégrale

$$
\int_R z_t(u)[e^{iy_{t+1}} - \phi_{y_t}(u, \gamma)]du
$$

qui sous-tend la construction de 6 par une somme sur un ensemble fini de R que l’on appellera filtre.

Pour n’importer quel filtre, l’estimateur GMM-CCF que l’on obtient ainsi sera consistant et asymptotiquement normal, et sa matrice de covariance asymptotique se calcule facilement. De plus, la matrice de covariance asymptotique de l’estimateur optimal converge vers la borne de Cramer-Rao $I(\gamma_0)^{-1}$ lorsque l’on affine le filtre en accroissant simultanément l’intervalle de R couvert par le filtre.

Nous allons expliciter la construction d’un tel estimateur.

Soient $K > 0$, et $\tau > 0$ donnés. On fixe l’intervalle $[-K\tau, K\tau] \subset R$, qui est divisé en $2(K + 1)$ intervalles égaux de longueur τ.

Soit Z^K_T la classe de GMM-CCF estimateurs γ^K_{KT} qui sont solutions de :

$$
\frac{1}{T} \sum_t \sum_{k=-K}^K z_t(k\tau)[e^{ik\tau y_{t+1}} - \phi_{y_t}(\tau k, \gamma^K_{KT})] = 0 \tag{7}
$$

On simplifie cette expression en introduisant des matrices de dimension K pour prendre en compte la somme sur k ($\tau, ..., K\tau$), multipliée par 2 pour séparer partie réelle et imaginaire, sur Q le nombre de paramètres à estimer. On définit ainsi :

$$
\varepsilon_{K,t+1}(\gamma) =
\begin{pmatrix}
\cos(\tau y_{t+1}) - \text{Re}(\phi_{y_t}(\tau, \gamma)) \\
\cos(K\tau y_{t+1}) - \text{Re}(\phi_{y_t}(K\tau, \gamma)) \\
\vdots \\
\sin(\tau y_{t+1}) - \text{Im}(\phi_{y_t}(\tau, \gamma)) \\
\sin(K\tau y_{t+1}) - \text{Im}(\phi_{y_t}(K\tau, \gamma))
\end{pmatrix}
$$

et \tilde{Z}_{KT} la matrice Q^2K dont les K premières colonnes sont constituées des $\text{Re}[z_t(k\tau)]$ et les K dernières des $-\text{Im}[z_t(k\tau)]$.

L’équation 7 devient alors :

60
\[
\frac{1}{T} \sum_{t} z_{K_1, t+1} (\gamma_{K_T}^2) = 0
\]

Comme les colonnes de \(\bar{z}_{K_1} \) sont de dimension \(Q \), l’estimateur est consistant pour tout \(K > 1 \). La distribution asymptotique de \(\gamma_{K_T}^2 \) est normale et l’on sait calculer sa matrice de covariance. L’un des estimateurs de \(Z^K_t \) est tel que \(\bar{z}_{K_1} = \bar{z}_{K_1}^\infty \), où \(\bar{z}_{K_1}^\infty \) est construit à partir des parties réelle et imaginaire de \(\gamma_{K_T}^2 (kt) \), l’estimateur ECCF optimal construit au paragraphe précédent. Pour ce choix particulier d’instrument, l’expression 7 est une approximation par discrétisation sur l’intervalle \([- K \tau, K \tau]\) de l’estimateur optimal sur cet intervalle. Ainsi, si \(\tau \) est choisi comme fonction de \(K \) de telle sorte que \(\tau \to 0 \) et \((2K + 1) \tau \to \infty \) lorsque \(K \to \infty \), alors la matrice de covariance asymptotique de l’estimateur sur filtré \(\bar{z}_{K_1}^\infty \) convergera vers la borne asymptotique de Cramer-Rao.

Cette observation permet d’exhiber un autre estimateur GMM-CCF, approximativement efficace et beaucoup plus facile à utiliser. L’instrument optimal \(\bar{z}_{K_1}^\gamma \in Z^K_t \) est :

\[
\bar{z}_{K_1}^\gamma = \Phi^K_t \cdot \left(\Sigma^K_t \right)^{-1},
\]

où :

\[
\Phi^K_t = \frac{\delta \epsilon_{K, t+1} (\gamma_0)}{\delta \gamma},
\]

\[
\Sigma^K_t = E[\epsilon_{K, t+1} \epsilon'_{K, t+1} | yt].
\]

\(\Phi^K_t \) est une matrice \(2K^Q \).

On notera la simplicité d’implémentation de cet estimateur : d’une part la matrice des dérivées ne comporte que les dérivées des parties imaginaires et réelles de \(\phi_y (k \tau, \gamma) \), et d’autre part, les éléments de \(\Sigma^K_t \) se calculent explicitement en fonction des parties imaginaires et réelles de \(\phi_y (k \tau, \gamma) \). La matrice de covariance asymptotique est :

\[
V^K_0 (\bar{z}_{K}^\gamma) = (E[\Phi^K_t \cdot (\Sigma^K_t)^{-1} \cdot \Phi^K_t])^{-1}.
\]

La propriété d’optimalité de notre estimateur GMM-CCF assure que sa matrice de covariance converge vers la borne de Cramer-Rao lorsque le filtre d’approximation devient plus fin.

En pratique, quel filtre choisir ?
Si les distributions conditionnelles d’un ou plusieurs y sont symétriques, alors les parties imaginaires correspondantes de la fonction caractéristique sont nulles. On omet alors les éléments correspondants dans Φ^K_i et Σ^K_i.

L’identifiabilité des paramètres peut poser problème dans certains cas, parce que les fonctions caractéristiques de diffusions affines avec des sauts présentent souvent des composantes pseudo-périodiques. La fonction caractéristique d’une distribution de Poisson, par exemple, est périodique. Il faut alors réduire le nombre de colonnes de \tilde{z}_{K_1}.

Par ailleurs, il existe des raisons de penser a priori que le choix du filtre joue sur l’efficacité de l’estimateur. Lorsque l’on travaille sur les prix d’actifs, on s’attend souvent à rencontrer une asymétrie et des valeurs extrêmes. Il est donc logique d’inclure dans le filtre des grandes valeurs, pour prendre en compte ces effets.

5.4 Un mot sur l’estimation du paramètre de corrélation

Afin de justifier des hypothèses de corrélation, il est intéressant d’observer le marché des CBO et des CLO. À partir des modèles des agences de rating, un rating est assigné à chacune des différentes tranches de telles opérations. Il apparaît que les tranches de certaines titrisations (en particulier les CBO) sont dépréciées, c’est-à-dire jugées plus risquées, par rapport aux actifs individuels de rating identiques. Les seuls facteurs susceptibles d’expliquer cette discordance entre les spreads des produits de titrisation et ceux des actifs primitifs sont l’existence d’une corrélation ou d’une prime de liquidité. Laissant ouverte la question de la prime de liquidité, nous nous concentrerons ici sur le problème de la corrélation.

On peut envisager d’estimer une corrélation implicite. Pour une corrélation donnée, le modèle de défaut permet de calculer la perte espérée sur le portefeuille, dont on déduit la perte sur chacune des tranches. Il s’agit alors d’estimer la corrélation qui donne les résultats les plus cohérents avec les prix observés sur le marché. Il s’agit certes d’une estimation relativement grossière, mais elle présente certains avantages intéressants. La variable de corrélation implicite est en effet relativement stable. L’acheteur d’une tranche de CBO ne dispose pas de renseignements détaillés sur la composition du portefeuille sous-jacent, son analyse repose donc uniquement sur les données disponibles, i.e. la distribution des ratings. Cette stabilité temporelle de la variable de corrélation implicite nous permet donc de justifier l’utilisation de taux de défaut historiques pour calibrer le modèle de défaut.

En revanche, la difficulté de faire coïncider les estimations de la corrélation à partir des différentes tranches met en évidence les limites des hypothèses faites. Si l’on peut envisager d’affiner l’hypothèse de corrélation uniforme (corrélation par rating ou industrie), cela complexifie encore l’estimation des variables de corrélation. Par ailleurs, le marché des CBO est loin d’être parfait et on peut
imaginer que l'aversion au risque ou à la corrélation est loin d'être identique pour chaque agent.
6 CONCLUSION

Les dérivés de crédit sont des instruments de transfert synthétique du risque de crédit. Ils se rapprochent de la famille des garanties financières ou des assurances crédit bien qu’il s’agisse d’instruments de marché. Ils deviennent un outil essentiel pour le gestionnaire de portefeuilles de crédit en permettant non seulement la couverture (ou l’achat) du risque de crédit sous forme individuelle (credit default swap) mais également sous forme de portefeuilles (titrisation). Outre l’aspect liquidité, leur principal avantage est la flexibilité d’utilisation. En effet, ils s’appliquent à tout type de sous-jacents (prêts bancaires, cautions, titres financiers).

Nous avons tenté, au cours de ce mémoire de souligner les faiblesses des modèles de risque de crédit classiques avant de développer un modèle alternatif aux références actuelles (KMV, CreditMetrics ou CreditRisk+), basé sur un modèle à intensité de défaut et une corrélation “factorielle”. En effet, ces modèles retournent la distribution des pertes du portefeuille mais ne permettent pas d’obtenir la distribution des temps de défaut. Or, lorsqu’il s’agit de valoriser un CDO, la prioritisation nécessaire de connaître l’ensemble des flux (c’est-à-dire les intérêts mais aussi les recouvrements) qui lui sont versés à chaque tombée de coupon pour pouvoir en déduire les spreads de chacune des tranches.

Nous avons donc implémenté le modèle proposé par Duffie et Garleanu (1999). Les résultats semblent cohérents avec ceux du marché. En effet pour un CDO construit à partir d’entreprises cotées B-Ba dont 80% est attribué à la tranche senior et 10% à la tranche mezzanine, on obtient des spreads correspondant environ à un Aaa pour la tranche Senior et à un Ba pour la tranche Mezzanine, ces spreads augmentant lorsque la corrélation augmente. La tranche Equity absorbe donc presque toutes les pertes enregistrées par le CDO. En revanche, quand le principal de la tranche senior est très grand devant ceux des tranches mezzanine et equity, les spreads sont plus élevés (la tranche senior correspond alors plutôt à un Aa, voire un A et la mezzanine à un B ou un Caa) car les tranches equity et mezzanine ne suffisent plus pour absorber les pertes.

La calibration des paramètres du modèle pose, comme on l’a vu, un certain nombre de problèmes, liés en particulier à la difficulté d’écrire la densité de l’intensité, et reste à creuser. Si l’on obtient d’ores et déjà des résultats satisfaisants en s’appuyant sur les probabilités de défaut fournies par Moody’s, en revanche l’on ne peut pas se contenter de la méthode des moments généralisés pour estimer les paramètres à partir de prix d’obligations; il faudra implémenter la méthode des moments spectrale, et exploiter ainsi la forme connue de la fonction caractéristique du modèle.

Les modèles de risque de crédit ne servent cependant pas seulement à valoriser un dérivé de crédit. La problématique sous-jacente reste l’allocation de capital économique et les mesures de profitabilités (Risk Adjusted Return On
Capital) dont l’objectif est de calculer la rémunération future nette du coût du risque, en tenant compte de la qualité de l’emprunteur, de la structure des crédits consentis et des garanties reçues.
References

[29] LI D., "The Valuation of Basket Credit Derivatives" (p.34-50), RiskMetrics Group, "An Analytical Approach for Credit Risk Analysis under Correlated Defaults" (p.51-74).

Annexes

December 16, 2002

Contents

1 Processus d’intensité associé à un temps d’arrêt 2

2 Processus affine fondamental 4
 2.1 Solution du modèle affine fondamental 4
 2.2 Fonction caractéristique d’une diffusion affine 6
 2.3 Fonction de répartition du prochain temps de défaut 8

3 Calcul de la probabilité de k défauts 11

4 Prioritisation rapide 13

5 Calcul des Diversity Scores 14
1 Processus d’intensité associé à un temps d’arrêt

Nous rappelons ici quelques définitions et résultats relatifs aux processus d’intensité, qui sont utilisés pour développer notre modèle : après avoir défini le processus d’intensité associé à un temps d’arrêt, nous donnerons une forme de la probabilité de survie correspondante.

On se place dans un espace probabilisé (Ω, F, P), avec $(F_t)_{0 \leq t \leq \infty}$ une filtration satisfaisant aux conditions habituelles (c’est-à-dire l’ensemble des informations disponibles à la date t). Un temps d’arrêt τ a un processus d’intensité λ (non-négative, F_τ-adaptée, avec pour tout $t \in [0, T[$) $E(\int_0^t \lambda_u du) < \infty$) si $M_t = N_t - \int_0^t (1 - N_u) \lambda_u du$ est une martingale, où $N_t = 1_{\tau \leq t}$.

On considère un temps d’arrêt τ, d’intensité correspondante λ, on cherche à caractériser la probabilité de survie $P(\tau \geq t)$ pour un t donné.

On définit, pour une semi-martingale Y, le saut $\Delta Y_t = Y_t - \lim_{s \to t} Y_s$.

Proposition 1 Probabilité de survie

Soit τ un temps d’arrêt avec un processus d’intensité borné λ. Soit $T > 0$. On pose

$$Y_t = E[\exp(-\int_0^T \lambda_u du) | F_t], \quad t \leq T.$$

Si le saut ΔY_t est presque-sûrement nul, alors

$$P(\tau \geq t | F_t) = Y_t, \quad t < \tau, \text{ presque sûrement.}$$

P roof.

On pose,

$$Z_t = E[\exp(-\int_0^T \lambda_u du) | F_t], \quad t \leq T.$$

Z_t est une martingale. On a

$$Y_t = \exp(\int_0^t \lambda_u du)Z_t.$$

La formule d’Itô appliquée à Y_t implique :

$$dY_t = \lambda_t Y_t dt + \exp(\int_0^t \lambda_u du)dZ_t$$

Par définition de λ, il existe une martingale M telle que :

$$dN_t = (1 - N_t)\lambda_t dt + dM_t$$

1 Voir Brémaud [1980].
On pose $U_t = Y_t(1 - N_t)$. Par la formule d’Itô,

$$dU_t = -Y_t - dM_t + (1 - N_t) \exp(\int_0^t \lambda_u du).dZ_t$$

U est donc une martingale, avec

$$U_T = (1 - N_T).$$

On en déduit que pour tout $t < \tau$,

$$Y_t = U_t = E(1 - N_T|F_t) = P(\tau \geq T|F_t).$$

\[\blacksquare \]

L’hypothèse d’intensité bornée peut être relâchée en conditions d’intégrabilité.
2 Processus affine fondamental

Nous rappelons à présent la définition d’un processus affine fondamental, et calculons explicitement, dans ce cas particulier, la probabilité de survie. C’est la forme explicite des fonctions α et β qui nous permettra d’étudier les temps de défaut du pool d’obligations sous-jacent au CDO.

On considère un processus (X_t) dont l’équation de diffusion est donnée par :

$$dX_t = \kappa(\theta - X_t)dt + \sigma \sqrt{X_t}dW_t + \Delta J_t$$ \hspace{1cm} (1)

où W est un mouvement brownien standard et J un processus de sauts (indépendant de W) dont le processus de comptage N a une intensité constante l, et v_t, la distribution exponentielle de la taille des sauts, est de moyenne μ. On appelle un tel processus un processus affine fondamental.

2.1 Solution du modèle affine fondamental

On donne maintenant, pour le modèle affine fondamental, les expressions des coefficients $\alpha(s)$ et $\beta(s)$ qui déterminent la distribution du prochain temps de défaut sur le pool d’obligations sous-jacent au CDO.

$\alpha(s)$ et $\beta(s)$ sont définis comme les solutions des équations différentielles :

\[
\begin{align*}
\beta_s' &= n\beta_s + \frac{1}{\overline{p}}\beta_s^2 + q \\
\alpha_s' &= n\beta_s + l\frac{\beta_s}{1-\mu\beta_s}
\end{align*}
\] \hspace{1cm} (2) (3)

avec les conditions initiales $\alpha(0) = \beta(0) = 0$, et pour $n = -k$, $p = s^2$, $q = -1$ et $m = k\theta$, les solutions sont données par :

\[
\begin{align*}
\beta_s &= \frac{1 - \exp(b_1 s)}{c_1 + d_1 \exp(b_1 s)} \\
\alpha_s &= \frac{m \left(-c_1 - d_1 \right)}{b_1 c_1 d_1} \log \left(\frac{c_1 + d_1 \exp(b_1 s)}{c_1 + d_1} \right) \\
&\quad + \frac{m}{c_1} \left(a_2 c_2 - d_2 \right) \log \left(\frac{c_2 + d_2 \exp(b_2 s)}{c_2 + d_2} \right) + \left(\frac{l}{c_2 - l} \right) s
\end{align*}
\]

où :

...
\[c_1 = \frac{-n + \sqrt{n^2 - 2pq}}{2q} \]
\[d_1 = \frac{n + \sqrt{n^2 - 2pq}}{2q} \]
\[b_1 = \frac{-n(d_1 - c_1) + 2qc_1d_1 - p}{c_1 + d_1} \]
\[a_2 = \frac{d_1}{c_1} \]
\[b_2 = b_1 \]
\[c_2 = 1 - \frac{\mu}{c_1} \]
\[d_2 = \frac{d_1 + \mu}{c_1} \]

C’est sous cette forme que nous avons implémenté les coefficients \(\alpha \) et \(\beta \).
2.2 Fonction caractéristique d’une diffusion affine

On peut explicitier la fonction caractéristique correspondant à notre diffusion affine. On ne présente pas ici la démonstration (voir Duffie, Pan, Singleton [1999]). Il s’agit d’un calcul similaire à celui de la probabilité de survie, que nous avons développé.

Définition 1 On rappelle que la fonction caractéristique conditionnelle de X_t est définie par:

$$\phi(u, X_t, t, T) = E[\exp(u.X_T)|F_t],$$

où u est un nombre complexe imaginaire.

Lorsque X suit une diffusion affine, on montre que l’on a

$$\phi(u, x, t, T) = \exp(\alpha(t, T, u) + \beta(t, T, u).x)$$

où α et β sont définis par les équations différentielles suivantes:

\[
\frac{\delta}{\delta T} \beta(t, T, u) + B(\beta(t, T, u), t) = 0 \quad \frac{\delta}{\delta T} \alpha(t, T, u) + A(\beta(t, T, u), t) = 0
\]

\[
\alpha(T, T, u) = u, \beta(T, T, u) = u
\]

avec :

\[
B(y, t) = -\kappa.y + \frac{1}{2}y^2\sigma^2 \quad A(y, t) = \kappa.\theta.y + l.(\theta(y, t) - 1)
\]

et

\[
\theta(y, t) = \int_R \exp(yz)dz
\]

est la "jump-transform" correspondant à la diffusion (i.e. $\theta(y, t) = \frac{1}{1-\rho_y}$).

On sait résoudre explicitement ce système. Les solutions sont, avec $n = -k$, $p = \sigma^2$, $m = k\theta$:

\[
\beta_s = \frac{a_1 \exp(b_1 s)}{c_1 + d_1 \exp(b_1 s)}
\]

\[
\alpha_s = u + \frac{ma_1 c_1}{b_1 c_1 d_1} \log \left(\frac{c_1 + d_1 \exp(b_1 s)}{c_1 + d_1} \right) + \frac{l(a_2 c_2 - d_2)}{a_2 c_2} \log \left(\frac{c_2 + d_2 \exp(b_2 s)}{c_2 + d_2} \right) + \left(\frac{l}{c_2} - l \right) s
\]
où :

\[
\begin{align*}
 c_1 &= \frac{n + |n|}{2} \\
 d_1 &= -c_1u, \frac{n + pu + |n|}{u(2n + pu)} \\
 a_1 &= (d_1 + c_1)u \\
 b_1 &= n \\
 a_2 &= \frac{d_1}{c_1} \\
 b_2 &= b_1 \\
 c_2 &= 1 \\
 d_2 &= \frac{d_1 + \mu a_1}{c_1}
\end{align*}
\]
2.3 Fonction de répartition du prochain temps de défaillance

La proposition 2 et le lemme 4 ci-dessous vont nous permettre de calculer la fonction de répartition du prochain temps de défaillance (proposition 3) sur un pool de N obligations, ce qui constitue le noyau de notre algorithme de valorisation du CDO.

Proposition 2 Soient X et Y deux processus affines fondamentaux, indépendants, avec pour paramètres respectivement $(k, \theta_X, \sigma, \mu, l_X)$ et $(k, \theta_Y, \sigma, \mu, l_Y)$. Alors $Z = X + Y$ est un processus affine fondamental avec pour paramètres $(k, \theta, \sigma, \mu, l)$ où $l = l_X + l_Y$ et $\theta = \theta_X + \theta_Y$.

P roof.
Comme X et Y sont des processus (faiblement) positifs, Z l’est aussi. Il suffit alors de vérifier que sa transformée de Laplace est celle d’un processus affine fondamental, avec des paramètres $(k, \theta, \sigma, \mu, l)$, et la condition initiale $Z(0) = X(0) + Y(0)$.

Il faut donc calculer la transformée de Laplace $L(z)$ d’un processus affine fondamental $l(s)$ à l’instant t. On a

$$L(z) = E \left(\exp \left(-z \lambda(s) \right) \right) = \exp \left(\alpha(s) + \beta(s) \lambda(s) \right),$$

où l’on considère $\alpha(s)$ et $\beta(s)$ comme des complexes, qui vérifient les équations différentielles de l’annexe 2.1 avec les conditions $q = 0$, $\alpha(0) = 0$ et $\beta(0) = -z$. Pour que la transformée soit effectivement caractérisée par ces équations, il suffit que, lorsque l’on applique la formule d’Itô à $U_t = \exp \left(\alpha(T - t) + \beta(T - t) X(t) \right)$, le terme correspondant au brownien soit une martingale (pas seulement locale).

C’est le cas si :

$$E \left[\int_0^t \exp \left(2\alpha(s) + 2\beta(s)X(s) \right) \beta(s)^2 X(s)ds \right] < \infty.$$

Comme $\alpha(s)$, $\beta(s)$ et $E(X(s))$ sont continues par rapport à s, que β est négative et X positif, le théorème de Fubini assure que la condition est satisfaite. On vérifie alors facilement que la somme des transformées de Laplace de X et Y est égale à la transformée de Laplace du processus affine fondamental de paramètres , avec la condition initiale $Z(0) = X(0) + Y(0)$, en utilisant les solutions que l’on peut calculer explicitement.

2 Voir Feller [1957].
3 Voir Duffie, Pan, Singleton [1998].
4 Voir Duffie et Garleanu [1999].
Proposition 3 Considérant N titres, on cherche à écrire la fonction de répartition à l’instant t du prochain temps de défaut, sous la forme :

$$F(t) = 1 - \exp \left(\alpha_c(t) + \beta_c(t)X_c(t) + N\alpha_i(t) + \beta_i(t) \sum_{j=1}^{N} X_j(t) \right)$$

P roof.

D’après le lemme 4, la pré-intensité du prochain temps de défaut

$$\tau^{(N)} = \min \{ \tau_1, ..., \tau_N \}$$

des temps d’arrêt $\tau_1, ..., \tau_N$ est :

$$Z = \lambda_1 + ... + \lambda_N = NX_c + X_1 + ... + X_N.$$

Comme $X_1, ..., X_N, X_c$ sont indépendants, la proposition 2 assure que Z est un processus affine fondamental, avec pour paramètres $(k, \theta, \sigma, \mu, l)$, où $l = j(l_c + l_i)$ et $\theta = j(\theta_c + \theta_i)$.

On peut alors écrire la probabilité de survie de Z en t, à l’horizon T, sous la forme :

$$E \left(\exp \left(- \int_{t}^{T} Z_s ds \right) \right) = \exp (\alpha_Z(T-t) + \beta_Z(T-t)Z_t)$$

où $\alpha_Z(s)$ et $\beta_Z(s)$ sont caractérisées (comme d’habitude) par les équations différentielles de l’annexe B.2, avec des conditions initiales nulles.

La forme particulière des fonctions a et b, i.e. la dépendance linéaire par rapport à l et θ permet d’écrire :

$$\alpha_Z(T-t) + \beta_Z(T-t)Z_t = \alpha_c(T-t) + \beta_c(T-t)X_c(t) + \sum_{i=1}^{N} (\alpha_i(T-t) + \beta_i(T-t)X_i(t))$$

avec $\alpha_c(s)$ et $\beta_c(s)$ solutions des équations 2 et 3 pour $n = -k$, $p = \sigma^2$, $q = -j$, $l = l_c$ et $m = k\theta_c$; tandis que $\alpha_i(s)$ et $\beta_i(s)$ sont solutions des équations 2 et 3 pour $n = -k$, $p = \sigma^2$, $q = -j$, $l = l_i$ et $m = k\theta_i$.

On a donc

$$P \left(\tau^{(N)} < T \right) = 1 - \exp \left(\alpha_c(T-t) + \beta_c(T-t)X_c(t) + \sum_{i=1}^{N} (\alpha_i(T-t) + \beta_i(T-t)X_i(t)) \right)$$

9
Les fonctions α et β étant des fonctions déterministes de $(T-t)$, on a
$\alpha_i(T-t) = \alpha_j(T-t)$ pour tout $j \neq i$ et pour tout t. L’équation précédente se réécrit donc:

$$P \left(\tau^{(N)} < T \right) = 1 - \exp \left(\alpha_c(T-t) + \beta_c(T-t)X_c(t) + N.\alpha_i(T-t) + \beta_i(T-t) \sum_{i=1}^N X_i(t) \right)$$

D’où la forme de F.

En particulier, à l’instant initial, on a:

$$F(t) = 1 - \exp (\alpha_c(t) + \beta_c(t)X_c(0) + N.\alpha_i(t) + N.\beta_i(t)X_i(0))$$

Lemma 4 On considère $\{\tau_1, ..., \tau_N\}$ des temps d’arrêt correspondant à des défauts. On suppose que, pour chaque $i \in \{1, ..., N\}$, le temps de défaut τ_i a un processus d’intensité λ_i. On suppose par ailleurs que $P(\tau_i = \tau_j) = 0$ pour $i \neq j$. Alors $\lambda_1 + ... + \lambda_N$ est un processus d’intensité pour $\tau^{(N)} = \min (\tau_1, ..., \tau_N)$.

P roof.
Soit $N_i, i \in \{1, ..., N\}$, les point-processes associés à $\{\tau_1, ..., \tau_N\}$, soit $N_i(t) = 1_{\tau_i \leq t}, i \in \{1, ..., N\}$, et N celui de $\tau^{(N)}$.

Alors, comme $P(\tau_i = \tau_j) = 0$,

$$N(t) = N_1(t) + ... + N_N(t) \text{ pour } t \leq \tau.$$

On pose

$$M_i(t) = N_i(t) - \int_0^t (1 - N_i(s)\lambda_i(s))ds, i \in \{1, ..., N\}.$$

Par définition des processus d’intensité, $M_1, ..., M_N$ sont des martingales.

On pose encore :

$$M(t) = N(t) - \int_0^t (1 - N(s) (\lambda_1(s) + ... + \lambda_N(s)))ds.$$

On a $M(t) = M_1(t) + ... + M_N(t)$ pour $t \leq \tau$, et $M(t) = M(\tau)$ pour $t \geq \tau$; M est donc également une martingale.

Le processus d’intensité correspondant au temps d’arrêt $\tau^{(N)}$ est donc, par définition, $\lambda_1 + ... + \lambda_N$. ■
3 Calcul de la probabilité de k défauts

Nous présentons ici, à titre indicatif le calcul de la probabilité de k défauts (car ceci n’intervient pas directement dans notre algorithme de valorisation du CDO).

La probabilité que le nombre M de défaut soit égal à k vaut :
\[P(M = k) = \binom{K}{k} \cdot p^k \cdot (1-p)^{K-k} \]

On note \[q(k, N) = P \left(\bigcap_{i=1}^{k} d_i \cap \bigcap_{j=k+1}^{N} d_j \right) \], la probabilité que k entreprises données sur N fassent défaut et qu’elles seules fassent défaut.

Proposition 5 Si \(p_j \) est la probabilité que sur \(j \) titres, au moins l’un fasse défaut avant la maturité, et \(q(k, N) \) la probabilité que sur \(N \) titres exactement \(k \) fassent défaut avant la maturité, on a :

\[
q(k, N) = \sum_{j=1}^{N-k} (-1)^{j+k-N+1} \binom{N-k}{j} \cdot p_j^{N-j} \cdot (1-p_j)^j
\]

\[P \text{ roof.} \]

On procède par récurrence sur \(k \) et \(N \). Pour \(N = 1 \) la proposition est clairement vérifiée. On considère dans toute la suite \(k \) et \(n \) strictement positifs, avec \(0 < n = N \) et \(0 < k < n \).

On suppose que la proposition est vérifiée pour \((k, n)\) avec \(n < N \). On considère alors le cas \(n = N \).

On a, comme conséquence immédiate du principe inclusion-exclusion,

\[
q(n, n) = \sum_{j=1}^{n-k} (-1)^{j-1} \binom{n-k}{j} \cdot p_j^n,
\]

ce qui satisfait la proposition. On suppose maintenant que la proposition est vérifiée pour \((k+1, n), ..., (n, n)\). On va montrer qu’elle est encore vérifiée pour \((k, n)\).

On a

\[
q(k, n) = P \left(\bigcap_{i=1}^{k} d_i \cap \bigcap_{j=k+1}^{n} d_j \right)
q(k + 1, n) = P \left(\bigcap_{i=1}^{k+1} d_i \cap \bigcap_{j=k+2}^{n} d_j \right)
\]

d’où, par addition des deux équations :

\[
q(k, n) + q(k + 1, n) = P \left(\bigcap_{i=1}^{k} d_i \cap \bigcap_{j=k+2}^{n} d_j \right)
= q(k, n - 1)
\]
c’est-à-dire

\[q(k, n) = q(k, n - 1) - q(k + 1, n). \]

Ce qui se récrit, compte tenu des hypothèses de récurrence :

\[
q(k, n) = \sum_{j=1}^{n-1} (-1)^{(j+k+n)} C_{k-1}^{n-1-j} p_j - \sum_{j=1}^{n} (-1)^{(j+k+n)} C_{k+1}^{n-j} p_j
\]

\[
q(k, n) = \sum_{j=1}^{n-1} (-1)^{(j+k+n)} \left(C_k^{n-1-j} - C_{k+1}^{n-j} \right) p_j - (-1)^k p_n
\]

\[
q(k, n) = \sum_{j=1}^{n-1} (-1)^{(j+k+n)} \left(-C_k^{n-j} \right) p_j - (-1)^k p_n
\]

car

\[
C_k^{n-j-1} - C_k^{n-j} = C_k^{n-j+1}
\]

d’où finalement :

\[
q(k, n) = \sum_{j=1}^{n} (-1)^{(j+k+n+1)} \left(-C_k^{n-j} \right) p_j
\]

qui est la formule cherchée. ■
4 Prioritisation rapide

La prioritisation rapide constitue une alternative à la méthode de prioritisation uniforme que nous avons présentée.

Dans ce cas, la tranche senior reçoit tous les flux (intérêts et principal) en priorité et ce le plus vite possible, jusqu’à ce que le principal restant dû à cette tranche soit nul ou que l’on arrive à la maturité. On suppose qu’il n’y a pas de réductions contractuelles de principal : \(J_j(k) = 0 \). C’est seulement ensuite que l’on s’intéresse au remboursement de la tranche mezzanine et enfin ce qu’il reste est alloué à l’equity.

Pour la \(k \)ème tombée de coupon, la tranche senior reçoit donc :

\[
Y_1(k) = \min(U_1(k), Z(k))
\]

et

\[
D_1(k) = \min(F_1(k - 1), Z(k) - Y_1(k))
\]

La tranche mezzanine reçoit ensuite :

\[
Y_2(k) = \min(U_2(k), Z(k) - Y_1(k) - D_1(k))
\]

et

\[
D_2(k) = \min(F_2(k - 1), Z(k) - Y_1(k) - D_1(k) - Y_2(k))
\]

Ce qu’il reste à la maturité est alloué à la tranche equity.

L’implémentation de cette méthode est nettement plus simple que celle de la prioritisation uniforme. Le spread se calcule de manière analogue :

On suppose que le taux d’actualisation \(r \) trimestriel est fixé. Le coupon au pair est défini, comme pour la prioritisation uniforme, par

\[
P = \sum_{k=1}^{K}\left(\frac{L}{n} P \frac{1}{(1 + r)^k} \right) + \frac{P}{(1 + r)^K}
\]

avec \(P \) le principal, \(n \) le nombre de tombées de coupon dans une année, \(r \) le taux cherché, \(K \) le nombre total de tombées de coupon,

soit : \(c = nr \).

Le taux de coupon avec défaut (avec les mêmes notations que plus haut) est défini pour chaque tranche par:

\[
\sum_{k=1}^{K} \left(\frac{Y_j(k) + D_j(k)}{(1 + r)^k} \right) = P_j, j = 1, 2, 3
\]
5 Calcul des Diversity Scores

On note d_i l’indicatrice de l’événement " le participant i a fait défaut " et L_i la perte aléatoire de capital quand cet événement a lieu. On obtient alors:

$$
\text{Var} \left(\sum_{i=1}^{N} L_i d_i \right) = E \left[\left(\sum_{i=1}^{N} L_i d_i \right)^2 \right] - \left(E \left[\sum_{i=1}^{N} L_i d_i \right] \right)^2
$$

$$
= \sum_{i=1}^{N} E \left(L_i^2 \right) E \left(d_i^2 \right) + \sum_{i<j} E \left(L_i L_j \right) E \left(d_i d_j \right) - \sum_{i=1}^{N} E \left(L_i \right)^2 E \left(d_i \right)^2
$$

Pour un modèle affine fondamental donné, on peut calculer tous les termes de l’équation précédente. En notant $p_{(1)}$ la probabilité marginale de défaut d’un actif et $p_{(2)}$ la probabilité jointe de défaut de 2 actifs quelconques, l’équation précédente se réécri:

$$
\text{Var} \left(\sum_{i=1}^{N} L_i d_i \right) = N p_{(1)} E \left(L_i^2 \right) + N \left(N - 1 \right) p_{(2)} E \left(L_i \right)^2 - N^2 p_{(1)}^2 E \left(L_i \right)^2
$$

En identifiant les variances des 2 portefeuilles, on obtient le résultat suivant :

$$
\frac{N}{S} \left(p_{(1)} E \left(L_i^2 \right) - p_{(1)}^2 E \left(L_i \right)^2 \right) = p_{(1)} E \left(L_i^2 \right) + \left(N - 1 \right) p_{(2)} E \left(L_i \right)^2 - N^2 p_{(1)}^2 E \left(L_i \right)^2
$$

En résolvant cette équation en S, on trouve :

$$
S = \frac{N \left(p_{(1)} E \left(L_i^2 \right) - p_{(1)}^2 E \left(L_i \right)^2 \right)}{p_{(1)} E \left(L_i^2 \right) + \left(N - 1 \right) p_{(2)} E \left(L_i \right)^2 - N^2 p_{(1)}^2 E \left(L_i \right)^2}
$$

Si l’on suppose de plus que la distribution de perte est uniforme sur [0,1], on a: $E(L^2) = 1/3$ et $(E(L))^2 = 1/4$. Il suffit ensuite de prendre pour $p_{(i)}$ les valeurs suivantes :

$$
p_{(1)} = p_1
p_{(2)} = 2p_1 - p_2
$$
où p_1 et p_2 sont calculés à partir du modèle à intensité stochastique de Duffie et Garleanu:

$$
p_j = 1 - P(\min(\tau_1, ..., \tau_j) > T) = 1 - E \left[\exp \left(- \int_0^T \sum_{i=1}^j \lambda_i \ dt \right) | F_t \right]
$$

$$
p_j = 1 - \exp(\alpha_c(T) + \beta_c(T)X_c(0) + j\alpha_i(T) + j\beta_i(T)X_i(0))
$$

ce qui donne :

$$
p_1 = 1 - \exp(\alpha(T) + \beta(T)\lambda(0))
$$

$$
p_2 = 1 - \exp(\alpha_c(T) + \beta_c(T)X_c(0) + 2\alpha_i(T) + 2\beta_i(T)X_i(0))
$$