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ABSTRACT 

This paper investigates price uncertainties in weather derivatives contracts through a 

bootstrap approach. Futures prices are computed under a periodic ARMA model in an 

actuarial framework for two different locations, Paris and Chicago. We show that statistical 

errors may lead to substantial uncertainties on futures prices with confidence intervals up to 

10% of the assessed prices. 
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1. INTRODUCTION 

The market for weather derivatives was launched by investment banks, insurance companies 

and utilities in the late 90’s. Most of the contracts are OTC though some can be traded on 

future exchanges (CME, LIFFE-Euronext). These products provide protection against losses 

due to non-catastrophic climatic events. End-users are, mostly, energy companies but also 

theme parks, breweries, winter shipment manufacturers, leisure resorts, fertiliser 

manufacturers… The underlying climatic risks are measured by means of indexes built from 

available meteorological data.  

 

Since these markets are currently quite illiquid and not very transparent, it is difficult to mark 

to market the products and calibrate some parameters from market prices. Thus, market 

participants rather use econometric models plus a pricing rule and then mark to model. The 

outcome of the paper is to assess the impact of estimation error and some model error on the 

prices of weather futures. We provide some confidence intervals for prices; this can be used 

for determining a reserve policy and better cope with model risk. 

 

The article is organised as follows. In section 2, we introduce the data, the temperature model, 

the specifications and the valuation of temperature future contracts. In section 3, we present 

the bootstrap methodology for the assessment of price uncertainty. Results are presented in 

sections 4 (LIFFE case) and 5 (CME). Finally in section 6, the price uncertainties are 

compared with those obtained with an asymptotic delta-method methodology. 

2. PRESENTATION OF THE DATA, THE TEMPERATURE MODEL, THE SPECIFICATIONS 

AND THE VALUATION OF TEMPERATURE FUTURE CONTRACTS 

2.1. The data 

We use daily average temperatures from the 1st of January 1979 to the 31st of December 1999. 

The average temperature is the common “underlying” for weather derivative contracts as 

proposed by the Chicago Mercantile Exchange for instance. We consider two meteorological 

stations: Paris-Montsouris and O'Hare Airport, near Chicago. The data come from Météo 

France for Paris and the website of the Chicago Mercantile Exchange for Chicago. In order to 
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facilitate the treatment of data, we removed the 29th of February, which corresponds to 

remove 5 values per station for a total of 7665 temperatures. 

2.2. The temperature model 

The model takes into account the major characteristics of temperature: seasonality of the 

values and of the dispersion, quick reversion to the mean, correlations from the days before 

and today... It has been presented by Cao and Wei (2000) or Roustant (2002). We refer to 

Dischel (1998), Dornier and Quéruel (2000), Moréno (2000), Brody, Syroka, Zervos (2001), 

Davis (2001) or Campbell, Diebold (2001) for related specifications. It is a linear model with 

a periodic variance:  

t t t t tX m s Zσ= + +  

with:  

• tm  represents the trend; 

• ts  the seasonal component; 

• tσ  a deterministic and periodic process with an annual periodicity representing the 

standard deviation of tX  

• tZ  an ARMA process:  

1 1 1 1... ...t t p t p t t q t qZ Z Zφ φ ε θ ε θ ε− − − −= + + + + + +  

where )( tε  is a Gaussian white noise. The variance of tZ  is set to 1 (the variance of tε  is then 

a function of 1 1,..., , ,...,p qφ φ θ θ , see Brockwell, Davis, 1991, §3.3.). 

Moreover, we assume the following parametric forms: 

• tm dt e= +  

• 
1

( cos( ) sin( ))
fN

t i i
i

s a i t b i tω ω
=

= +∑  

• cos( ) sin( )t a b t c tσ ω ω= + +  

with  365/2πω = .  

Such expressions are justified by basic fitting based on data, and allow easy computation of 

maximum likelihood estimator. For the seasonal component, the choice of frequencies is 

achieved by means of a preliminary spectral analysis of the normal temperature of each series. 

In the case of Chicago, we only kept the fundamental (annual) frequency and ts  is simply 

parameterised by ).sin(.).cos(. 11 tbtast ωω += . In addition, the discrete curve of the normal 
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temperature of Paris is asymmetric which forces the use of at least two frequencies. Finally, 

we retained the form 

2

1
cos( ) sin( )t i i

i
s a i t b i tω ω

=
= +∑ . 

The selection of  p and q, the orders of the ARMA model is accomplished by standard 

procedures (see Brockwell, Davis, 1991), after a preliminary estimation of tm , ts and tσ . It 

leads to the choice 3=p , 0=q  for the two stations. 

 

Despite its relative simplicity, this linear model for temperature is not far from being correct 

as one can see on Figure 1. In the case of Paris, correlograms of residuals and squared 

residuals show that the dependence between residuals can be considered as independent. In 

the case of Chicago, the first squared residuals autocorrelations are significant, which is 

consistent with the conditional heteroskedasticity model of Campbell and Diebold (2001). 

But, even in that case, the dependence is small. Some departures from normality are observed 

in the Paris case, for which the distribution of residuals exhibits fat tails for low temperatures. 

2.3. Specifications of temperature indexes 

In this paper, we will focus on the weather futures contracts offered by the CME and LIFFE 

exchanges. They are built on temperature indexes that are also widely used on the over-the-

counter (OTC) market. On the LIFFE, modulo a constant, the temperature index is simply the 

average temperature (expressed in degree Celsius): 
2

1

1100
t

t
t t

AVE X
L =

= + ∑  

where L is the length of the risk exposure period 1 2[ ; ]t t . On the CME, two indexes are used, 

namely the Heating Degree-Day (HDD) index and the Cooling Degree-Day (CDD) index 

(expressed in degree Fahrenheit):  
2

1

(65 )
t

t
t t

HDD X +

=
= −∑   

2

1

( 65)
t

t
t t

CDD X +

=
= −∑  

The value of 65°F (18°C) is a benchmark in the energy industry, since it is usually considered 

that heating starts when temperatures go below 18°C. Since it takes into account all 

temperatures below 18°C, the HDD index is suitable for cool months (when heating is 

“necessary”); it is used from October to April. On the other hand, the CDD index is used from 

May to September. 
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2.4. Specifications of futures contracts; futures prices 

A weather future is a financial product that provides or demands reimbursement according to 

the level of a weather index. The risk exposure period is generally a month, or, more rarely, a 

season. Precise specifications are given in Table 1. The size of this payment is calculated as 

such no initial premium is required. For instance, the payment of a HDD-future contract is  

F N HDD− ×  

where F is the future price, and N is the contract size (on the CME for instance, N equals 100$ 

per degree). Thus for a specified month, the payment is all the more important than the HDD 

index is low or, equivalently, than the temperatures are mild. On the other hand, the 

“payment” can be negative, and therefore required, for colder temperatures than usual. 

Typically, such a contract may be entered by an energy company to protect against mild 

winters; however, it will have to pay for cold winters…  

 

There are currently a number of pricing methodologies for such contracts, see Carr, Geman 

and Madan (1999), Davis (2001), Musiela and Zariphopoulou (2001), Schweizer (2001) or 

Barrieu and El Karoui (2002). Roughly speaking, the different valuation approaches depend 

on whether or not the underlying weather variables can be “linked” to the financial market: 

for instance, energy commodities may be correlated with temperature, and might be used for 

the valuation of weather derivatives. Most practitioners use an actuarial framework and the 

“standard deviation principle” (see Goovaerts, DeVylder, Haezendonck, 1984, or Bühlmann, 

1996). They calculate the net premium as  

[ ] [ ]discounted payment discounted paymentP E λ σ= + ×    (*) 

In the following, we will restrict to pure premiums, i.e. 0λ =  in (*) ; we refer to Denneberg 

(1990), Schweizer (2001), Hürlimann (2001) or Moller (2001, 2003a and 2003b) for more 

discussions about the valuation rule. 

 

For a weather future, assuming deterministic interest rates for simplicity, we have (see e.g. 

Duffie, 2001):  

[ ]0 E F N TI= − ×  

where TI denotes a temperature index and F the futures price. Therefore,  

[ ]/F N E TI=  
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When temperature is modelled by the ARMA model presented above, we will denote by 

( )P Θ  the futures prices corresponding to the temperature parameters Θ : 

( ) [ ( )]P E TIΘ = Θ  

Note that expectations should be computed conditionally to available information. That 

includes the set of past temperatures. Actually, these have very little influence when the risk 

exposure period begins more than 20 days after the present date (Roustant, 2002), and will be 

further neglected. 

When the assumptions of the model are verified, futures prices are obtained in closed-form. In 

the LIFFE case, we have 
2

1

1( ) 100 ( )
t

t t
t t

P m s
L =

Θ = + +∑ , while analytical expressions in the 

CME case can be found in (Cao, Wei, 2000). 

3. ASSESSMENT OF PRICE UNCERTAINTY BY A BOOTSTRAP METHODOLOGY 

In practise, futures prices are only estimated, and the estimated price is a function of the 

estimate of the temperature parameters. Thus, the estimation errors of the temperature model 

result in estimation errors on the corresponding prices. This is that kind of uncertainty that we 

want to assess now. Examples and further discussions about this price uncertainty approach 

can be found in (Campbell, Lo, MacKinlay, 1997, §9.3.3.) or (Cairns, 2000). To do this, we 

want, in addition, to account for the model misspecification relative to the normality 

assumption in the residuals tε . Therefore, we will not assume that the temperature residuals 

are Gaussian; either, we will work with the empirical distribution of centred residuals: 

( , ]
1

1ˆ ˆ( ) 1 ( )
T

T x t
t

F x
T

ε ε−∞
=

= −∑  

where T is the data size, t̂ε  are the “initial” estimated residuals - that is the residuals 

corresponding to the initial parameters 0Θ  obtained by maximum likelihood estimation 

(MLE) based on the data, and ε  their mean. The residuals are centred to have the same mean 

as the innovations of the model. This has a very minor effect since the mean of t̂ε  is nearly 0, 

and results in closed form expressions for futures prices (see section 4); it is also a current 

practise when bootstrapping with time-series, see for instance (Davinson, Hinkley, 1997, 

chapter 8). On a statistical point of view, our objective is equivalent to assess the precision of 

the estimator: 

ˆ ˆ( )P Θ  
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where Θ̂  is the maximum likelihood estimator, and P̂  is the future price under the empirical 

distribution of the (initial) residuals: 

[ ]
,ˆ ˆ

ˆ Temperature index
TF

P E
Θ

=  

 

This objective can be achieved by a bootstrap technique. The idea of bootstrap is to generate 

from the available data, solely, a sample of independent realisations of some statistic of 

interest. In our case, we would like to have a sample of price values ( ) ( )*1 *ˆ ˆ,..., RP PΘ Θ  

corresponding to a huge sample of temperature parameters values *1 *,..., RΘ Θ ; price 

uncertainty could therefore be assessed by the 2.5% and 97.5% quantiles 

of ( ) ( )*1 *ˆ ˆ,..., RP PΘ Θ . When bootstrapping with time-dependent data, a three-stage procedure 

is currently done (see Efron, Tibshirani, 1986, §6 or Davinson, Hinkley, 1997). Firtsly, the 

structure of the model is used (in the “reverse” sense) to extract a white noise from the data: 

this is pre-whitening; then, bootstrap is made on this noise and, finally, new paths are 

generated by reconstitution, or post-blackening, using again the structure of the model (in the 

“natural” sense). The bootstrap itself can be done in several ways, whether one assumes 

independence of the data - then a simple resampling can be used - or suspects some residual 

dependency: in that case, the block bootstrap for instance may be preferred (see Davinson, 

Hinkley, 1997 or Bühlmann, 2000 for a more extensive presentation of bootstrap techniques). 

In our case, it seems that there is no real need to use such techniques (see again Figure 1) and 

we will restrict to simple resampling. Eventually, we do the following operations: 

 

for 1,...,r R=  do : 

1. Simulate independently * *
1 ,..., nε ε  from the centred empirical distribution of residuals 

2. Reconstitute the corresponding temperature path * *
1 ,..., nx x  using the temperature model 

with the initial parameters (MLE based on the data) 

3. Calculate the MLE *rΘ  from the new data * *
1 ,..., nx x  

4. Calculate the corresponding future price ( )*ˆ rP Θ  

 

In practise, to insure stationarity of * *
1 ,..., nx x  , a longer sample is generated and first values are 

discarded (see e.g. Davinson, Hinkley, 1997, §8.2.2.). Of course *rΘ  is not issued exactly 
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from the distribution of the temperature parameter MLE estimator Θ̂ , since resampling is 

made in the empirical distribution of a particular sample issued from it. However, the 

statistical bias vanishes as the sample size tends to infinity (see e.g. Davinson, Hinkley, 

1997). As in our case the data size 7.665T =  is rather large, we can reasonably think that this 

bias is small and, consequently, that the empirical properties of ( ) ( )*1 *ˆ ˆ,..., RP PΘ Θ  will give 

accurate estimates of the statistical properties of ˆ ˆ( )P Θ . We will assess the future price 

uncertainty by the 95% confidence interval of ( )P̂ Θ  given by the 2.5% and 97.5% quantiles 

of ( ) ( )*1 *ˆ ˆ,..., RP PΘ Θ . 

4. PRICE UNCERTAINTY OF THE LIFFE WEATHER FUTURES. 

For the LIFFE weather futures, the underlying index is a linear function of temperature. Thus, 

futures prices can be obtained in closed-form under the empirical distribution of (centred) 

residuals: 
2

1

1ˆ( ) 100 ( )
t

t t
t t

P m s
L =

Θ = + +∑  

where L is the length of the risk exposure period 1 2[ ; ]t t . Hence, the methodology described in 

the previous section can be applied directly. We set 10.000R = , and with the prices sample 

obtained by bootstrap ( ) ( )*1 *ˆ ˆ,..., RP PΘ Θ , we calculated the median, the standard deviation 

and a 95% confidence interval obtained with the 2.5% and 97.5%-quantiles. Results are 

shown in Table 2. We also indicate the price uncertainty, expressed in percentage (last 

column) and the theoretical price, computed under the normality assumption and based on the 

initial parameters value 0Θ  (first column). 

Note that the “bootstrap” future price estimated by bootstrap is not different from the 

expected value under the normality assumption for the temperature process. It shows that non-

normalities have no impact on futures prices. The form of the index may help to understand 

this: the average over a long period of time may result in smoothing the daily differences that 

could exist. A more statistical explanation is that the linearity of the index implies the 

linearity of the future price as a function of the temperature parameters estimator. Now, 

anticipating the asymptotic results of section 6, this one is approximately normal, which 

explains that the futures prices sample is nearly equal to its mean, and may be unbiased, 
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which explains that this mean is equal to the theoretical value. This asymptotic property may 

also explain the symmetry of confidence intervals observed in column 4 or 5. 

In absolute value, price uncertainty is constant over months (column 3). Its severity then 

depends on the value of the future price. We see that price uncertainty does not represent 

more than 5% from April to October, but is larger in winter with more than 10% for winter 

months, and 8% for the winter whole season. Estimation error may be taken into account for 

these months. 

5. PRICE UNCERTAINTY OF THE CME WEATHER FUTURES. 

At the CME exchange, weather products are based on HDD or CDD indexes, which are non-

linear functions of temperature. In this situation, futures prices have no analytical expressions 

under the empirical distribution and must be estimated by Monte Carlo simulations. To reduce 

time computation, we used the control variates technique. Then, only 1.000 simulations are 

required to give correct estimates for ( )*ˆ rP Θ , and the methodology of section 2 can be 

achieved.  

The results are shown on Table 3. Firstly, we observe a seasonal pattern in the price 

uncertainty (column 3). This departs from the LIFFE case where all price uncertainties have 

the same order of magnitude. It may be a consequence of the non-linearity of the HDD and 

CDD indexes. Indeed the temperature threshold of 65°F does not “cut” temperatures in the 

same way in winter or in summer or in the “shoulder months” of May and September. When 

these indexes can be approximated by a linear one, as in winter (where temperature rarely 

goes above 65°F), the estimation error is nearly constant. Finally, when thinking of price 

uncertainty in terms of percentage, worst results are associated with lower prices, 

corresponding to May and September. For these months, price uncertainty goes beyond 15%. 

Excepting these particular cases, price uncertainty is about 10% in summer and 5% in winter. 

Let us remark that this “5%” is associated with a high future price and therefore gives a large 

confidence interval. 

6. ASSESSMENT OF PRICE UNCERTAINTY BY THE DELTA-METHOD 

One drawback with the bootstrap methodology presented in section 3 is that it requires the 

estimation of extreme quantiles. This estimation may be inaccurate and, as an alternative, we 

propose to estimate the asymptotic distribution of futures prices. We show that this 

distribution is approximately normal, so that quantiles can be related to the standard 
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deviation, which is estimated more accurately. In addition, let us remark that asymptotic 

results may give good approximations here since the number of available data is large. To use 

this method, we need to assume that the ARMA model is well specified, and thus that the 

residuals are normally distributed. From now on, we will make this assumption and will 

denote ( )P Θ  the corresponding futures prices. 

 

We then argue that the asymptotic distribution of the MLE temperature parameters estimator 

Θ̂  is approximately normal. The idea is that the model used for temperature departs from an 

ARMA only by deterministic terms (trend, seasonality, seasonal volatility). Therefore the 

asymptotic normality satisfied by the maximum likelihood estimator of an ARMA process 

(see for example Gourieroux, Montfort, 1997, §9.2.F.) may be verified as well. To check this 

assumption, we applied statistical tests of normality to a sample of size 10.000R =  of MLE 

estimations obtained by resampling in the Gaussian distribution of residuals (of the 

temperature model). We used the Kolmogorov test to check the normality of the marginal 

distributions, and skewness and kurtosis tests for the normality of the multidimensional 

distribution (see Lütkepohl, 1993, § 4.5., formula 4.5.4., 4.5.5. and 4.5.8.). The results shown 

in Table 5 prove that the distributional assumption for Θ̂  is satisfactory (nearly all marginal 

distributions pass the normality test, p-values are correct for the kurtosis test; the little weak 

p-value of the skewness test may then rather reveal the slow rate of convergence to the 

asymptotic distribution than a non-normality). More precisely, we will assume that (as for a 

pure ARMA process), 

( )ˆ (0; )nn N→+∞Θ − Θ  → Γ  

where Θ  is the “true” vector of parameters, and Γ  is the asymptotic covariance matrix of Θ̂ . 

Then, the delta-method consists of using a first-order Taylor expansion (Campbell, Lo, and 

MacKinlay, 1997, section A.4. of the appendix) to derive an asymptotic pivotal distribution of 

( )P Θ :  

( )ˆ( ) ( ) 0;
'n

P Pn P P N→+∞

∂ ∂ Θ − Θ  → Γ ∂Θ ∂Θ 
 

If derivatives P∂
∂Θ

 can be evaluated, then price uncertainty can be assessed as a function of the 

standard deviation of the asymptotic normal distribution of ˆ( )P Θ . 
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The delta-method methodology can be summarized as follows. For 1,...,r R=  do : 

1'. Simulate independently * *
1 ,..., nε ε  from the estimated Gaussian distribution of residuals 

2. Reconstitute the corresponding temperature path * *
1 ,..., nx x  using the temperature model 

with the initial parameters (maximum likelihood estimation based on the data) 

3. Calculate the maximum likelihood estimate *rΘ  from the new data * *
1 ,..., nx x  

4'. Calculate the empirical covariance matrix ( )Γ Θ  to estimate the asymptotic normal 

distribution of *Θ  

5'. [Delta-method] deduce the asymptotic normal distribution of ( )*P Θ , and calculate 

the 95% confidence interval of ( )P Θ  based on the standard deviation of the 

distribution of ( )*P Θ  

Note that there is no bootstrap here since resampling is made in the estimated Gaussian 

distribution of residuals. Indeed, the property of asymptotic normality may not be shared for 

any distribution assumption. In addition, the derivatives P∂
∂Θ

 can then be obtained in closed-

form  (this is obvious for LIFFE futures; we report to appendix for the CME case). 

 

In the LIFFE case, P  is a linear function of Θ . Therefore, the delta-method will give 

identical results as if one had assumed that Θ̂  were exactly normally distributed, the first-

order expansion being equality for linear functions. Thus, as departures from normality of the 

temperature residuals are not too important, we expect to obtain similar results as with the 

bootstrap methodology. In the CME case, P  is a non-linear function of Θ , and the 

differences between the two methods may appear in a more striking manner. The results 

obtained with the delta-method confirm these insights (Table 4), but also show that there are 

very few differences between the results of the two methods. 

7. CONCLUSION 

We studied the impact of temperature estimation error on prices of some standard futures 

contracts of the LIFFE and CME exchanges. By considering the price as a random variable 

function of the temperature parameters, price uncertainty was assessed in two manners. By 

extreme quantiles, first, using a bootstrap technique; and by the standard deviation of a 

normal asymptotic distribution, using the delta-method. Both methodologies lead to the 
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conclusions that price uncertainty is not negligible in general, and may be important for some 

months. For LIFFE contracts, and, at least, for CME winter contracts (where the HDD index 

is approximately linear), errors are coming exclusively from the estimation errors made on the 

mean of the temperature process. This suggests that the modelling of trend and seasonality in 

temperature is a key feature of the valuation of weather derivatives. 
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APPENDIX 

Analytical expressions of the derivatives of HDD and CDD futures prices 

 

Let us consider, for example, the case of future contracts based on HDD. With the notation 

( )t t
t

t

K m sL
σ

− += , the corresponding prices given by (Cao et Wei, 2000) can be expressed as: 

( )2 2

1 1

21( ) ( ) exp / 2
2

t t

t t t t t
t t t t

P f L N L Lσ
π= =

 Θ = = + −  
∑ ∑  

where (.)N  is the cumulative density function of the (0;1)N  distribution. 

Denote 1( ,..., )Kθ θΘ = , and 
1

,...,
K

P P P
θ θ

′ ∂ ∂ ∂=  ∂Θ ∂ ∂ 
 the derivatives on the vectorial form.  

An immediate calculation then gives  ( )( )t t t
t

k k

f m sN L
θ θ

∂ ∂ += −
∂ ∂

  if kθ  is relative to the process 

mean t tm s+ ,  ( )21 exp / 2
2

t t
t

k k

f L σ
θ θπ

∂ ∂= −
∂ ∂

  if kθ  is relative to the process volatility tσ  and  

0t

k

f
θ

∂ =
∂

  otherwise. Therefore, we obtain: 

( ) ( ) ( ) ( )1 2 1 2

2 21,..., exp / 2 ,..., exp / 2 0
2t t t t p

P N L N L M L L Mµ σπ

′∂    = − × − − ×    ∂Θ  
 

where M µ  and Mσ  are matrices relative to the (linear) process mean and process volatility: 

1 1 1 1 1

2 2 2 2 2

1 cos( ) sin( ) ... cos( ) sin( )
| | | | ... | |

1 cos( ) sin( ) ... cos( ) sin( )

f f

f f

t t t N t N t
M

t t t N t N t
µ

ω ω ω ω

ω ω ω ω
=

 
 
 
  

,  
1 1

1 2

1 cos( ) sin( )
| | |
1 cos( ) sin( )

t t
M

t t
σ

ω ω

ω ω
=

 
 
   

 

 

Similarly, the derivatives of futures prices on CDD are: 

( ) ( ) ( ) ( )1 2 1 2

2 21,..., exp / 2 ,...,exp / 2 0
2t t t t p

P N L N L M L L Mµ σπ

′∂    = − − × − − − ×    ∂Θ  
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Figure 1 – Diagnostic checking for the temperature model. 
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Table 1 – Contract specifications on the CME and LIFFE Exchanges. 

 
 CME LIFFE-Euronext 

Temperature index HDD, CDD 100 + Average temperature 
Length of the risk 
exposure period 1 month a) 1 month 

b) Winter season (01/11-31/03) 

Location 

Atlanta, Chicago, Cincinnati, 
Dallas, Des Moines, Las Vegas, 

New York, Philadelphia, 
Portland, Tucson. 

London, Paris, Berlin 

Contract type Futures and options Futures 

Maturity 1 to 12 months a) 1 to12 months 
b) 1 to 2 consecutive seasons 

Contract value 1°F = 100$ 1°C = 3.000€ (₤ for London) 
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Table 2 – Assessment of future price and future price uncertainty by bootstrap. Station = Paris-Orly. 

 
 Theoretical 

 future price 
 

0( )P Θ  

Future price 
median 

 

bootstrapF  

Future price  
std. dev. 

 
 

Future price 95% 
confidence interval 

 

bootstrapI  

Relative 95%  
confidence interval (%) 

 

bootstrap bootstrap( / 1) 100I F − ×  

      
 Weather futures – Monthly indices 
      
January 104.55 104.55 0.30 [103.96 ; 105.14] [-12.8 ; 13.0] 
February 105.67 105.67 0.30 [105.08 ; 106.26] [-10.4 ; 10.4] 
Mars 107.96 107.96 0.30 [107.37 ; 108.54] [-7.4 ; 7.3] 
April 111.09 111.09 0.29 [110.51 ; 111.66] [-5.2 ; 5.1] 
May 114.70 114.70 0.29 [114.13 ; 115.26] [-3.9 ; 3.8] 
June 118.15 118.16 0.28 [117.59 ; 118.72] [-3.1 ; 3.1] 
July 120.34 120.34 0.29 [119.78 ; 120.91] [-2.8 ; 2.8] 
August 120.14 120.14 0.29 [119.58 ; 120.72] [-2.8 ; 2.9] 
September 117.26 117.26 0.29 [116.70 ; 117.84] [-3.3 ; 3.4] 
October 112.68 112.68 0.30 [112.10 ; 113.27] [-4.6 ; 4.7] 
November 108.17 108.18 0.31 [107.58 ; 108.77] [-7.3 ; 7.3] 
December 105.30 105.30 0.30 [104.70 ; 105.93] [-11.3 ; 11.8] 
      
 Weather futures – Winter season index 
      

1st Nov –  
31st March 106.37 106.37 0.26 [105.87 ; 106.89] [-7.9 ; 8.1] 
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Table 3 – Assessment of future price and future price uncertainty by bootstrap. Station = O’Hare Airport. 

 
 Theoretical 

future price 
 

0( )P Θ  

Future price 
median 

 

bootstrapF  

Future price 
std. dev. 

 
 

Future price 95% 
confidence interval 

 

bootstrapI  

Relative 95%  
confidence interval (%) 

 

bootstrap bootstrap( / 1) 100I F − ×  

      
 CDD season 
      
May 53.56 52.77 5.37 [42.7 ; 63.8] [-19.1 ; 20.9] 
June 195.22 196.06 11.95 [172.4 ; 219.5] [-12.1 ; 12.0] 
July 314.90 316.04 14.50 [286.9 ; 344.1] [-9.2 ; 8.9] 
August 256.14 257.09 13.54 [230.8 ; 283.8] [-10.3 ; 10.4] 
September 90.77 90.32 7.68 [75.9 ; 106.2] [-16.0 ; 17.6] 
      
 HDD season 
      
October 397.87 396.90 15.36 [367.1 ; 427.5] [-7.5 ; 7.7] 
November 752.31 752.03 16.87 [719.4 ; 785.5] [-4.4 ; 4.5] 
December 1079.00 1079.05 18.27 [1043.2 ; 1114.8] [-3.4 ; 3.4] 
January 1215.41 1215.35 18.12 [1179.4 ; 1250.5] [-3.0 ; 2.9] 
February 1036.39 1036.22 16.58 [1003.5 ; 1068.3] [-3.2 ; 3.1] 
Mars 901.86 901.42 18.12 [865.7 ; 936.9] [-4.0 ; 4.0] 
April 518.69 517.91 16.40 [486.2 ; 550.9] [-6.2 ; 6.4] 
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Table 4 – Assessment of the future price uncertainty: comparison of the bootstrap and the delta-method 
methodologies.  

 
 Price uncertainty (%)  

(bootstrap) 
 

Price uncertainty (%)  
(delta-method) 

Price uncertainty (%)  
(bootstrap) 

Price uncertainty (%)  
(delta-method) 

     
 LIFFE Weather futures 

station: Paris-Orly 
CME Weather futures 

station: O’Hare Airport 
     
May [-3.9 ; 3.8] ± 3.9 [-19.1 ; 20.9] ± 19.7 
June [-3.1 ; 3.1] ± 3.1 [-12.1 ; 12.0] ± 12.0 
July [-2.8 ; 2.8] ± 2.7 [-9.2 ; 8.9] ± 9.1 
August [-2.8 ; 2.9] ± 2.8 [-10.3 ; 10.4] ± 10.4 
September [-3.3 ; 3.4] ± 3.3 [-16.0 ; 17.6] ± 16.6 
     
     
October [-4.6 ; 4.7] ± 4.6 [-7.5 ; 7.7] ± 7.6 
November [-7.3 ; 7.3] ± 7.3 [-4.4 ; 4.5] ± 4.5 
December [-11.3 ; 11.8] ± 11.4 [-3.4 ; 3.4] ± 3.4 
January [-12.8 ; 13.0] ± 13.1 [-3.0 ; 2.9] ± 2.9 
February [-10.4 ; 10.4] ± 10.5 [-3.2 ; 3.1] ± 3.1 
Mars [-7.4 ; 7.3] ± 7.3 [-4.0 ; 4.0] ± 3.9 
April [-5.2 ; 5.1] ± 5.2 [-6.2 ; 6.4] ± 6.1 
     

1st Nov –  
31st March [-7.9 ; 8.1] ± 7.9   

     
 
 
 
 



 20 

 

Table 5 – Normality testing of the MLE estimator distribution 

 
 Paris Chicago 
  
Marginal distributions Kolmogorov statistic 

d̂  .0060 .0068 
ê  .0059 .0066 

1â  .0046 .0054 

1̂b  .0042 .0049 

2â  .0047 - 

2̂b  .0060 - 
â  .0081 .0045 
b̂  .0040 .0094* 
ĉ  .0043 .0066 

1̂φ  .0059 .0080 

2̂φ  .0084 .0089 

3̂φ  .0035 .0055 
  

Multidimensional 
distribution p-value 

 Skewness test .0251* .0538 
 Kurtosis test .4684 .4192 
 Joint test .0678 .1022 

 

For kolmogorov test, at 5% confidence level, normality is rejected here when the statistic value is 
superior to 0.00895. Stars indicate the cases of rejection at level 5%. 
 
 
 


