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New results for the pricing and hedging of CDOsNew results for the pricing and hedging of CDOs

Hedging issues

− Hedging of default risk in contagion models

Markov chain approach to contagion models

Comparison of models deltas with “market deltas”

− Hedging of credit spread risk in intensity models

Pricing issues with factor models

− Comparison of CDO pricing models through stochastic orders

− Comprehensive approach to copula, structural and 

multivariate Poisson models



Purpose of the presentation
Not trying to embrace all risk management issues

Focus on very specific aspects of default and credit 
spread risk

Overlook of the presentation
Economic background

Tree approach to hedging defaults

Hedging credit spread risks for large portfolios

Hedging Default and Credit Spread Risks within CDOsHedging Default and Credit Spread Risks within CDOs



Hedging CDOs context

About 1 000 papers on defaultrisk.com

About 10 papers dedicated to hedging issues
− In interest rate or equity markets, pricing is related to the cost of 

the hedge

− In credit markets, pricing is disconnect from hedging

Need to relate pricing and hedging

What is the business model for CDOs?
Risk management paradigms
− Static hedging, risk-return arbitrage, complete markets
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Static hedging
Buy a portfolio of credits, split it into tranches and sell the 
tranches to investors

No correlation or model risk for market makers
No need to dynamically hedge with CDS

Only « budget constraint »: 
Sum of the tranche prices  greater than portfolio of credits price
Similar to stripping ideas for Treasury bonds

No clear idea of relative value of tranches
Depends of demand from investors
Markets for tranches might be segmented

I - Economic BackgroundI - Economic Background



I - Economic BackgroundI - Economic Background

Risk – return arbitrage

Historical returns are related to ratings, factor exposure

− CAPM, equilibrium models

− In search of high alphas

− Relative value deals, cross-selling along the capital structure

Depends on the presence of « arbitrageurs »
− Investors with small risk aversion

Trading floors, hedge funds

− Investors without too much accounting, regulatory, rating constraints



The ultimate step : complete markets
− As many risks as hedging instruments
− News products are only designed to save transactions costs and 

are used for risk management purposes
− Assumes a high liquidity of the market

Perfect replication of payoffs by dynamically trading a 
small number of « underlying assets »
− Black-Scholes type framework
− Possibly some model risk

This is further investigated in the presentation
− Dynamic trading of CDS to replicate CDO tranche payoffs
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Default risk
− Default bond price jumps to recovery value at default time.

− Drives the CDO cash-flows

Credit spread risk
− Changes in defaultable bond prices prior to default

Due to shifts in credit quality or in risk premiums

− Changes in the marked to market of tranches

Interactions between credit spread and default risks
− Increase of credit spreads increase the probability of future defaults

− Arrival of defaults may lead to jump in credit spreads

Contagion effects (Jarrow & Yu)
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Credit deltas in copula models

CDS hedge ratios are computed by bumping the marginal 
credit curves
− Local sensitivity analysis

− Focus on credit spread risk

− Deltas are copula dependent

− Hedge over short term horizons

Poor understanding of gamma, theta, vega effects

Does not lead to a replication of CDO tranche payoffs

Last but not least: not a hedge against defaults…

I - Economic BackgroundI - Economic Background



Credit deltas in copula models
− Stochastic correlation model (Burstchell, Gregory & Laurent, 2007)
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Main assumptions and results
− Credit spreads are driven by defaults

Contagion model
Credit spreads are deterministic between two 
defaults

− Homogeneous portfolio

Only need of the CDS index
No individual name effect

− Markovian dynamics

Pricing and hedging CDOs within a binomial tree
Easy computation of dynamic hedging strategies
Perfect replication of CDO tranches

II - Tree approach to hedging defaultsII - Tree approach to hedging defaults



We will start with two names only
Firstly in a static framework
− Look for a First to Default Swap
− Discuss historical and risk-neutral probabilities

Further extending the model to a dynamic framework
− Computation of prices and hedging strategies along the tree
− Pricing and hedging of tranchelets

Multiname case: homogeneous Markovian model
− Computation of risk-neutral tree for the loss
− Computation of dynamic deltas

Technical details can be found in the paper: 
− “hedging default risks of CDOs in Markovian contagion models”
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Some notations :
− τ1, τ2 default times of counterparties 1 and 2, 
− Ht available information at time t,

− P historical probability,

− : (historical)  default intensities:

Assumption of « local » independence between default events
− Probability of 1 and 2 defaulting altogether:

− Local independence: simultaneous joint defaults can be neglected

[ [, ,  1,2P
i t iP t t dt H dt iτ α∈ + = =⎡ ⎤⎣ ⎦
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Building up a tree:
− Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)
− Under no simultaneous defaults assumption p(D,D)=0
− Only three possible states: (D,ND), (ND,D), (ND,ND)
− Identifying (historical) tree probabilities:
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Stylized cash flows of  short term digital CDS on counterparty 1:
− CDS 1 premium

Stylized cash flows of  short term digital CDS on counterparty 2:
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Cash flows of short term digital first to default swap with premium            :

Cash flows of holding CDS 1 + CDS 2:

Perfect hedge of first to default swap by holding 1 CDS 1 + 1 CDS 2
− Delta with respect to CDS 1 = 1, delta with respect to CDS 2 = 1
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Absence of arbitrage opportunities imply:

−

Arbitrage free first to default swap premium

− Does not depend on historical probabilities  

Three possible states: (D,ND), (ND,D), (ND,ND)

Three tradable assets: CDS1, CDS2, risk-free asset

For simplicity, let us assume 
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Three state contingent claims
− Example: claim contingent on state
− Can be replicated by holding
− 1  CDS 1 +            risk-free asset 

− Replication price =   
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Similarly, the replication prices of the               and      claims

Replication price of: 

Replication price =
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Replication price obtained by computing the expected payoff
− Along a risk-neutral tree

Risk-neutral probabilities
− Used for computing replication prices
− Uniquely determined from short term CDS premiums
− No need of historical default probabilities
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Computation of deltas
− Delta with respect to CDS 1:
− Delta with respect to CDS 2:
− Delta with respect to risk-free asset: p

p also equal to up-front premium

− As for the replication price, deltas only depend upon CDS premiums
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Dynamic case:

− CDS 2 premium after default of name 1
− CDS 1 premium after default of name 2
− CDS 1 premium if no name defaults at period 1
− CDS 2 premium if no name defaults at period 1

Change in CDS premiums due to contagion effects
− Usually,                            and 

( , )ND ND

( , )D ND

( , )ND D

( , )ND ND
( )1 21 Q Q dtα α− +

2
Qdtα

1
Qdtα

( )1 21 Q Q dtπ π− +
2
Qdtπ
1
Qdtπ

( , )ND D

( , )D ND

( , )D D

( , )D ND
21 Qdtλ−

2
Qdtλ

( , )D D

( , )ND D11 Qdtκ−

1
Qdtκ

2
Qdtλ

1
Qdtκ

1
Qdtπ
2
Qdtπ

2 2 2
Q Q Qπ α λ< <1 1 1

Q Q Qπ α λ< <

II - Tree approach to hedging defaultsII - Tree approach to hedging defaults



Computation of prices and hedging strategies by backward 
induction
− use of the dynamic risk-neutral tree
− Start from period 2, compute price at period 1 for the three 

possible nodes
− + hedge ratios in short term CDS 1,2 at period 1
− Compute price and hedge ratio in short term CDS 1,2 at time 0

Example to be detailed: 
− computation of CDS 1 premium, maturity = 2
− will denote the periodic premium
− Cash-flow along the nodes of the tree

1p dt
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Computations CDS on name 1, maturity = 2

Premium of CDS on name 1, maturity = 2, time = 0,         solves for:

0
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Example: stylized zero coupon CDO tranchelets
− Zero-recovery, maturity 2
− Aggregate loss at time 2 can be equal to 0,1,2

Equity type tranche contingent on no defaults
Mezzanine type tranche : one default
Senior type tranche : two defaults
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mezzanine tranche
− Time pattern of default payments

− Possibility of taking into account discounting effects
− The timing of premium payments
− Computation of dynamic deltas with respect to short or actual CDS on names 1,2
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In theory, one could also derive dynamic hedging strategies 
for index CDO tranches
− Numerical issues: large dimensional, non recombining trees

− Homogeneous Markovian assumption is very convenient

CDS premiums at a given time t only depend upon 
the current number of defaults

− CDS premium at time 0 (no defaults)

− CDS premium at time 1 (one default)

− CDS premium at time 1 (no defaults)
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Homogeneous Markovian tree

− If we have             , one default at t=1
− The probability to have             , one default at t=2…
− Is                     and does not depend on the defaulted name at t=1
− is a Markov process
− Dynamics of the number of defaults can be expressed through a binomial tree

( , )ND ND

( , )D ND

( , )ND D

( , )ND ND
( )11 2 0,0Qα−

( )0,0Qαi

( )0,0Qαi

( )1 2 1,0Qα− i

( )1,0Qαi

( )1,0Qαi

( , )ND D

( , )D ND

( , )D D

( , )D ND( )1 1,1Qα− i

( )1,1Qαi

( , )D D

( , )ND D( )1 1,1Qα− i

( )1,1Qαi

(1) 1N =

(2) 1N =

( )1 1,1Qα− i

( )N t

II - Tree approach to hedging defaultsII - Tree approach to hedging defaults



From name per name to number of defaults tree ( , )D D
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Easy extension to n names
− Predefault name intensity at time t for         defaults:
− Number of defaults intensity : sum of surviving name intensities:

− can be easily calibrated

− on marginal distributions of by forward induction.
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Previous recombining binomial risk-neutral tree provides a 
framework for the valuation of payoffs depending upon the 
number of defaults
− CDO tranches 
− Credit default swap index

What about the credit deltas?
− In a homogeneous framework, deltas with respect to CDS are all 

the same
− Perfect dynamic replication of a CDO tranche with a credit 

default swap index and the default-free asset
− Credit delta with respect to the credit default swap index
− = change in PV of the tranche / change in PV of the CDS index 
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Example: number of defaults distribution at 5Y generated from a 
Gaussian copula

− Correlation parameter: 30%
− Number of names: 125
− Default-free rate: 3%
− 5Y credit spreads: 20 bps
− Recovery rate: 40%

Figure shows the probabilities of k defaults for a 5Y horizon



Calibration of loss intensities
− For simplicity, assumption of time homogeneous intensities
− Figure below represents loss intensities, with respect to the 

number of defaults
− Increase in intensities: contagion effects

0

2

4

6

8

10

12
0 4 8 12 16 20 24 28 32 36 40 44 48

II - Tree approach to hedging defaultsII - Tree approach to hedging defaults



Dynamics of the 5Y CDS index spread
− In bp pa

0 14 28 42 56 70 84
0 20 19 19 18 18 17 17
1 0 31 30 29 28 27 26
2 0 46 44 43 41 40 38
3 0 63 61 58 56 54 52
4 0 83 79 76 73 70 67
5 0 104 99 95 91 87 83
6 0 127 121 116 111 106 101
7 0 151 144 138 132 126 120
8 0 176 169 161 154 146 140
9 0 203 194 185 176 168 160

10 0 230 219 209 200 190 181
11 0 257 246 235 224 213 203
12 0 284 272 260 248 237 225
13 0 310 298 286 273 260 248
14 0 336 324 311 298 284 271
15 0 0 348 336 323 308 294
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lts

Weeks
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Dynamics of credit deltas: 
− [0,3%] equity tranche, buy protection
− With respect to the 5Y CDS index
− For selected time steps

− Hedging strategy leads to a perfect replication of equity tranche payoff
− Prior to first defaults, deltas are above 1!
− When the number of defaults is > 6, the tranche is exhausted

0 14 28 42 56 70 84
0 3.00% 0.967 0.993 1.016 1.035 1.052 1.065 1.075
1 2.52% 0 0.742 0.786 0.828 0.869 0.908 0.943
2 2.04% 0 0.439 0.484 0.532 0.583 0.637 0.691
3 1.56% 0 0.206 0.233 0.265 0.301 0.343 0.391
4 1.08% 0 0.082 0.093 0.106 0.121 0.141 0.164
5 0.60% 0 0.029 0.032 0.035 0.039 0.045 0.051
6 0.12% 0 0.004 0.005 0.005 0.006 0.006 0.007
7 0.00% 0 0 0 0 0 0 0

N
b 

D
ef

au
lts

WeeksOutStanding 
Nominal
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Credit deltas of the tranche
− Sum of credit deltas of premium and default legs

0 14 28 42 56 70 84
0 3.00% 0.814 0.843 0.869 0.893 0.915 0.933 0.949
1 2.52% 0 0.614 0.658 0.702 0.746 0.787 0.827
2 2.04% 0 0.341 0.384 0.431 0.482 0.535 0.591
3 1.56% 0 0.140 0.165 0.194 0.229 0.269 0.315
4 1.08% 0 0.045 0.054 0.064 0.078 0.095 0.117
5 0.60% 0 0.013 0.015 0.017 0.020 0.024 0.030
6 0.12% 0 0.002 0.002 0.002 0.003 0.003 0.003
7 0.00% 0 0 0 0 0 0 0
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Nominal

Weeks

N
b 

D
ef

au
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0 14 28 42 56 70 84
0 3.00% -0.153 -0.150 -0.146 -0.142 -0.137 -0.132 -0.126
1 2.52% 0 -0.128 -0.127 -0.126 -0.124 -0.120 -0.116
2 2.04% 0 -0.098 -0.100 -0.101 -0.102 -0.101 -0.100
3 1.56% 0 -0.066 -0.068 -0.071 -0.073 -0.074 -0.076
4 1.08% 0 -0.037 -0.039 -0.041 -0.043 -0.045 -0.047
5 0.60% 0 -0.016 -0.017 -0.018 -0.019 -0.020 -0.021
6 0.12% 0 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003
7 0.00% 0 0 0 0 0 0 0
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Credit deltas of the premium leg of the equity tranche
− Premiums based on outstanding nominal
− Arrival of defaults reduces the commitment to pay

Smaller outstanding nominal
Increase in credit spreads (contagion) involve a decrease in 
expected outstanding nominal

− Negative deltas
This is only significant for the equity tranche

– Associated with much larger spreads

0 14 28 42 56 70 84
0 3.00% -0.153 -0.150 -0.146 -0.142 -0.137 -0.132 -0.126
1 2.52% 0 -0.128 -0.127 -0.126 -0.124 -0.120 -0.116
2 2.04% 0 -0.098 -0.100 -0.101 -0.102 -0.101 -0.100
3 1.56% 0 -0.066 -0.068 -0.071 -0.073 -0.074 -0.076
4 1.08% 0 -0.037 -0.039 -0.041 -0.043 -0.045 -0.047
5 0.60% 0 -0.016 -0.017 -0.018 -0.019 -0.020 -0.021
6 0.12% 0 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

Weeks

N
b 

D
ef

au
lts
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Credit deltas for the default leg of the equity tranche
− Are actually between 0 and 1
− Gradually decrease with the number of defaults

Concave payoff, negative gammas
− Credit deltas increase with time

Consistent with a decrease in time value
At maturity date, when number of defaults < 6, delta=1

0 14 28 42 56 70 84
0 3.00% 0.814 0.843 0.869 0.893 0.915 0.933 0.949
1 2.52% 0 0.614 0.658 0.702 0.746 0.787 0.827
2 2.04% 0 0.341 0.384 0.431 0.482 0.535 0.591
3 1.56% 0 0.140 0.165 0.194 0.229 0.269 0.315
4 1.08% 0 0.045 0.054 0.064 0.078 0.095 0.117
5 0.60% 0 0.013 0.015 0.017 0.020 0.024 0.030
6 0.12% 0 0.002 0.002 0.002 0.003 0.003 0.003
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

Weeks

N
b 

D
ef

au
lts
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Dynamics of credit deltas
− Junior mezzanine tranche [3,6%]
− Deltas lie in between 0 and 1
− When the number of defaults is above 12, the tranche is exhausted

0 14 28 42 56 70 84
0 3.00% 0.162 0.139 0.117 0.096 0.077 0.059 0.045
1 3.00% 0 0.327 0.298 0.266 0.232 0.197 0.162
2 3.00% 0 0.497 0.489 0.473 0.448 0.415 0.376
3 3.00% 0 0.521 0.552 0.576 0.591 0.595 0.586
4 3.00% 0 0.400 0.454 0.508 0.562 0.611 0.652
5 3.00% 0 0.239 0.288 0.343 0.405 0.473 0.544
6 3.00% 0 0.123 0.153 0.190 0.236 0.291 0.358
7 2.64% 0 0.059 0.073 0.090 0.115 0.147 0.189
8 2.16% 0 0.031 0.036 0.043 0.052 0.066 0.086
9 1.68% 0 0.019 0.020 0.023 0.026 0.030 0.037

10 1.20% 0 0.012 0.012 0.013 0.014 0.016 0.018
11 0.72% 0 0.007 0.007 0.007 0.007 0.008 0.009
12 0.24% 0 0.002 0.002 0.002 0.002 0.002 0.003
13 0.00% 0 0 0 0 0 0 0
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WeeksOutStanding 
Nominal
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Dynamics of credit deltas (junior mezzanine tranche)
− Gradually increase and then decrease with the number of defaults
− Call spread payoff (convex, then concave)
− Initial delta = 16% (out of the money option)

0 14 28 42 56 70 84
0 3.00% 0.162 0.139 0.117 0.096 0.077 0.059 0.045
1 3.00% 0 0.327 0.298 0.266 0.232 0.197 0.162
2 3.00% 0 0.497 0.489 0.473 0.448 0.415 0.376
3 3.00% 0 0.521 0.552 0.576 0.591 0.595 0.586
4 3.00% 0 0.400 0.454 0.508 0.562 0.611 0.652
5 3.00% 0 0.239 0.288 0.343 0.405 0.473 0.544
6 3.00% 0 0.123 0.153 0.190 0.236 0.291 0.358
7 2.64% 0 0.059 0.073 0.090 0.115 0.147 0.189
8 2.16% 0 0.031 0.036 0.043 0.052 0.066 0.086
9 1.68% 0 0.019 0.020 0.023 0.026 0.030 0.037
10 1.20% 0 0.012 0.012 0.013 0.014 0.016 0.018
11 0.72% 0 0.007 0.007 0.007 0.007 0.008 0.009
12 0.24% 0 0.002 0.002 0.002 0.002 0.002 0.003
13 0.00% 0 0 0 0 0 0 0
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lts

WeeksOutStanding 
Nominal
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Comparison analysis
− After six defaults, the [3,6%] should 

be like a [0,3%] equity tranche
− However, credit delta is much lower

12% instead of 84%
− But credit spreads after six defaults 

are much larger

127 bps instead of 19 bps
− Expected loss of the tranche is much 

larger
− Which is associated with smaller 

deltas
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Dynamics of credit deltas ([6,9%]  tranche)
− Initial credit deltas are smaller (deeper out of the money call spread)

0 14 28 42 56 70 84
0 3.00% 0.017 0.012 0.008 0.005 0.003 0.002 0.001
1 3.00% 0 0.048 0.036 0.025 0.017 0.011 0.006
2 3.00% 0 0.133 0.107 0.083 0.061 0.043 0.029
3 3.00% 0 0.259 0.227 0.193 0.157 0.122 0.090
4 3.00% 0 0.371 0.356 0.330 0.295 0.253 0.206
5 3.00% 0 0.405 0.423 0.428 0.420 0.396 0.358
6 3.00% 0 0.346 0.392 0.433 0.465 0.482 0.481
7 3.00% 0 0.239 0.292 0.350 0.409 0.465 0.510
8 3.00% 0 0.139 0.181 0.232 0.293 0.363 0.436
9 3.00% 0 0.074 0.098 0.132 0.177 0.235 0.307
10 3.00% 0 0.042 0.053 0.070 0.095 0.132 0.183
11 3.00% 0 0.029 0.033 0.040 0.051 0.070 0.098
12 3.00% 0 0.025 0.026 0.028 0.033 0.040 0.053
13 2.76% 0 0.022 0.022 0.022 0.024 0.026 0.031
14 2.28% 0 0.020 0.018 0.018 0.018 0.019 0.020
15 1.80% 0 0 0.015 0.014 0.014 0.014 0.014
16 1.32% 0 0 0.013 0.011 0.010 0.010 0.010
17 0.84% 0 0 0.009 0.008 0.007 0.006 0.006
18 0.36% 0 0 0.005 0.004 0.003 0.003 0.003
19 0.00% 0 0 0 0 0 0 0
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Small dependence of credit deltas with respect to recovery rate
− Equity tranche, R=30%

− Equity tranche, R=40%

0 14 28 42 56 70 84
0 3.00% 0.975 0.997 1.018 1.035 1.050 1.062 1.072
1 2.44% 0.000 0.735 0.775 0.814 0.852 0.888 0.922
2 1.88% 0.000 0.417 0.456 0.499 0.544 0.591 0.641
3 1.32% 0.000 0.178 0.200 0.225 0.253 0.286 0.324
4 0.76% 0.000 0.060 0.066 0.074 0.084 0.095 0.109
5 0.20% 0.000 0.011 0.011 0.013 0.014 0.015 0.017
6 0.00% 0.000 0.000 0.000 0.000 0.000 0.000 0.000

W eeksOutStanding 
Nominal
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0 14 28 42 56 70 84
0 3.00% 0.967 0.993 1.016 1.035 1.052 1.065 1.075
1 2.52% 0 0.742 0.786 0.828 0.869 0.908 0.943
2 2.04% 0 0.439 0.484 0.532 0.583 0.637 0.691
3 1.56% 0 0.206 0.233 0.265 0.301 0.343 0.391
4 1.08% 0 0.082 0.093 0.106 0.121 0.141 0.164
5 0.60% 0 0.029 0.032 0.035 0.039 0.045 0.051
6 0.12% 0 0.004 0.005 0.005 0.006 0.006 0.007
7 0.00% 0 0 0 0 0 0 0

N
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WeeksOutStanding 
Nominal
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Small dependence of credit deltas with respect to recovery rate

− Initial delta with respect to the credit default swap index

− Only a small dependence of credit deltas with respect to recovery rates

Which is rather fortunate

Tranches 10% 20% 30% 40% 50% 60%
[0-3%] 0.9960 0.9824 0.9746 0.9670 0.9527 0.9456
[3-6%] 0.1541 0.1602 0.1604 0.1616 0.1659 0.1604
[6-9%] 0.0164 0.0165 0.0168 0.0168 0.0168 0.0169

Recovery Rates
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Dependence of credit deltas with respect to correlation
− Default leg, equity tranche

=10%ρ

⎧
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⎪
⎪
⎪⎩

0 14 28 42 56 70 84
0 3.00% 0.968 0.974 0.978 0.982 0.985 0.987 0.990
1 2.52% 0 0.933 0.944 0.953 0.962 0.969 0.976
2 2.04% 0 0.835 0.856 0.876 0.895 0.912 0.928
3 1.56% 0 0.653 0.683 0.714 0.744 0.774 0.804
4 1.08% 0 0.405 0.433 0.464 0.496 0.531 0.568
5 0.60% 0 0.170 0.185 0.202 0.221 0.243 0.268
6 0.12% 0 0.027 0.030 0.033 0.037 0.041 0.046
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

Weeks

N
b 

D
ef
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0 14 28 42 56 70 84
0 3.00% 0.814 0.843 0.869 0.893 0.915 0.933 0.949
1 2.52% 0 0.614 0.658 0.702 0.746 0.787 0.827
2 2.04% 0 0.341 0.384 0.431 0.482 0.535 0.591
3 1.56% 0 0.140 0.165 0.194 0.229 0.269 0.315
4 1.08% 0 0.045 0.054 0.064 0.078 0.095 0.117
5 0.60% 0 0.013 0.015 0.017 0.020 0.024 0.030
6 0.12% 0 0.002 0.002 0.002 0.003 0.003 0.003
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal
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10%, (14) 0, 97%
30%, (14) 0, 84%
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Equity deltas decrease as correlation increases
Value of equity default leg under different correlation assumptions

− Number of defaults on the x - axis



Smaller correlation
− Prior to first default, higher expected losses on the tranche

Should lead to smaller deltas
− But smaller contagion effects

When shifting from zero to one default
The expected loss on the index jumps due to…

– Default arrival and jumps in credit spreads
– Smaller jumps in credit spreads for smaller 

correlation
Smaller correlation is associated with smaller jumps in 
the expected loss of the index
Leads to higher deltas

– Since we have negative gamma
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Computing deltas with market inputs
− Base correlations (5Y), as for iTraxx, June 2007

− Probabilities of k defaults

II - Tree approach to hedging defaultsII - Tree approach to hedging defaults
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Loss intensities for the Gaussian copula and market 
case examples

− Number of defaults on the x - axis
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Credit spread dynamics
− Base correlation inputs

− Similar to Gaussian copula at the first default
− Dramatic increases in credit spreads after a few defaults
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0 14 28 42 56 70 84
0 20 19 18 18 17 16 16
1 0 31 28 25 23 21 20
2 0 95 80 67 57 49 43
3 0 269 225 185 150 121 98
4 0 592 515 437 361 290 228
5 0 1022 934 834 723 607 490
6 0 1466 1395 1305 1193 1059 905
7 0 1870 1825 1764 1680 1567 1420
8 0 2243 2214 2177 2126 2052 1945
9 0 2623 2597 2568 2534 2488 2423
10 0 3035 3003 2971 2939 2903 2859
11 0 3491 3450 3410 3371 3331 3290
12 0 4001 3947 3896 3845 3795 3747
13 0 4570 4501 4434 4369 4306 4245
14 0 5206 5117 5031 4948 4868 4790
15 0 5915 5801 5691 5586 5484 5386

Weeks

N
b 

D
ef
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Comparison of Gaussian copula and market inputs

− Expected losses on the credit portfolio after 14 weeks
− With respect to the number of observed defaults

Much bigger contagion effects with steep base correlation
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Comparison of credit deltas 
− Gaussian copula and market case examples
− Smaller credit deltas for the equity tranche

− Dynamic correlation effects
− After the first default, due to magnified contagion, 
− New defaults are associated with big shifts in correlation
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0 14 28 42 56 70 84
0 3.00% 0.645 0.731 0.814 0.890 0.953 1.003 1.038
1 2.52% 0.000 0.329 0.402 0.488 0.584 0.684 0.777
2 2.04% 0.000 0.091 0.115 0.149 0.197 0.264 0.351
3 1.56% 0.000 0.023 0.028 0.035 0.045 0.062 0.090
4 1.08% 0.000 0.008 0.008 0.009 0.011 0.013 0.018
5 0.60% 0.000 0.004 0.004 0.003 0.003 0.003 0.004
6 0.12% 0.000 0.001 0.001 0.001 0.001 0.001 0.001
7 0.00% 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N
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WeeksOutStanding 
Nominal



Comparison of credit deltas
− Market and model deltas at inception
− Equity tranche

− Figures are roughly the same

Though the base copula market and the contagion 
model are quite different models

− Smaller equity tranche deltas for contagion model

Base correlation sticky deltas underestimate the 
increase in contagion after the first defaults

− Recent market shifts go in favour of the contagion model
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[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA



Comparison of credit deltas
− Arnsdorf & Halperin (2007)
− Credit spread deltas in a 2D Markov chain

− Confirms previous results
− Model deltas in A&H are smaller than market deltas for the 

equity tranche
− Credit spreads deltas in A&H are quite similar to credit 

deltas in the 1D Markov chain

II - Tree approach to hedging defaultsII - Tree approach to hedging defaults

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 26.5 4.5 1.25 0.65 0.25
model deltas 21.9 4.81 1.64 0.79 0.38



What do we learn from this hedging approach?
− Thanks to stringent assumptions: 

– credit spreads driven by defaults 
– homogeneity 
– Markov property

− It is possible to compute a dynamic hedging strategy
– Based on the CDS index

− That fully replicates the CDO tranche payoffs
– Model matches market quotes of liquid tranches
– Very simple implementation
– Credit deltas are easy to understand

− Improve the computation of default hedges
– Since it takes into account credit contagion

− Credit spread dynamics needs to be improved
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When dealing with the risk management of CDOs, traders
− concentrate upon credit spread and correlation risk
− Neglect default risk

What about default risk ?
− For large indices, default of one name has only a small direct 

effect on the aggregate loss

Is it possible to build a framework where hedging default 
risk can be neglected?
And where one could only consider the hedging of credit 
spread risk?
− See paper “A Note on the risk management of CDOs”
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Main and critical assumption
− Default times follow a multivariate Cox process

For instance, affine intensities 
Duffie & Garleanu, Mortensen, Feldhütter, Merrill Lynch

No contagion effects
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No contagion effects
− credit spreads drive defaults but defaults do not drive credit 

spreads

− For a large portfolio, default risk is perfectly diversified

− Only remains credit spread risks: parallel & idiosyncratic

Main result
− With respect to dynamic hedging, default risk can be neglected

− Only need to focus on dynamic hedging of credit spread risks

With CDS

− Similar to interest rate derivatives markets

III - Hedging credit spread risks for large portfoliosIII - Hedging credit spread risks for large portfolios



Formal setup

− default times

− default indicators

− natural filtration of default times

− background (credit spread filtration)

− enlarged filtration,  P historical measure

− time t price of an asset paying           at 

time T

1, , nτ τ…
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Sketch of the proof
Step 1: consider some smooth shadow risky bonds
− Only subject to credit spread risk
− Do not jump at default times

Projection of the risky bond prices on the credit spread filtration
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Step 2: Smooth the aggregate loss process
… and thus the tranche payoffs
− Remove default risk and only consider credit spread risk 
− Projection of aggregate loss on credit spread filtration
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Step 3: compute perfect hedge ratios of the smoothed 
payoff

With respect to the smoothed risky bonds
− Smoothed payoff and risky bonds only depend upon credit spread 

dynamics
− Both idiosyncratic and parallel credit spread risks
− Similar to a multivariate interest rate framework
− Perfect hedging in the smooth market
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Step 4: apply the hedging strategy to the true defaultable bonds
Main result
− Bound on the hedging error following the previous hedging strategy
− When hedging an actual CDO tranche with actual defaultable bonds
− Hedging error decreases with the number of names

Default risk diversification
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Provides a hedging technique for CDO tranches
− Known theoretical properties

− Takes into account idiosyncratic and parallel gamma risks

− Good theoretical properties rely on no simultaneous defaults, no
contagion effects assumptions

− Empirical work remains to be done

Thought provocative
− To construct a practical hedging strategy, do not forget default risk

− Equity tranche [0,3%]

− iTraxx or CDX first losses cannot be considered as smooth
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Linking pricing and hedging ?

The black hole in CDO modeling ?

Standard valuation approach in derivatives markets

Complete markets

Price = cost of the hedging/replicating portfolio

Mixing of dynamic hedging strategies 
− for credit spread risk

And diversification/insurance techniques
− For default risk
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Comparing hedging approachesComparing hedging approaches

Two different models have been investigated
Contagion homogeneous Markovian models
− Perfect hedge of default risks
− Easy implementation
− Poor dynamics of credit spreads
− No individual name effects

Multivariate Cox processes
− Rich dynamics of credit spreads
− But no contagion effects
− Thus, default risk can be diversified at the index level
− Replication of CDO tranches is feasible by hedging only credit 

spread risks.



Comparison results for credit risk portfoliosComparison results for credit risk portfolios

Pricing issues with factor models

− Comparison of CDO pricing models through stochastic orders

− Comprehensive approach to copula, structural and multivariate 

Poisson models

− Relevance of the conditional default probabilities

Drive the tranche pricing

− For simplicity, we further restrict to homogeneous portfolios

− We provide a general comparison of pricing models methodology

− By looking for the distribution of conditional default probabilities
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Comparison of Exchangeable Bernoulli random vectors
Application to Credit Risk Management

Conclusion

Exchangeability assumption
De Finetti Theorem and Factor representation
Stochastic orders

Exchangeability assumption

n defaultable firms

τ1, . . . , τn default times

(D1, . . . , Dn) = (1{τ1≤t}, . . . , 1{τn≤t}) default indicators

Homogeneity assumption: default dates are assumed to be exchangeable

Definition (Exchangeability)

A random vector (τ1, . . . , τn) is exchangeable if its distribution function is
invariant by permutation: ∀σ ∈ Sn

(τ1, . . . , τn)
d
= (τσ(1), . . . , τσ(n))

Same marginals

Areski COUSIN Comparison results for homogenous credit portfolios



Comparison of Exchangeable Bernoulli random vectors
Application to Credit Risk Management

Conclusion

Exchangeability assumption
De Finetti Theorem and Factor representation
Stochastic orders

De Finetti Theorem and Factor representation

Suppose that D1, . . . , Dn, . . . is an exchangeable sequence of Bernoulli
random variables

There exists a random factor p̃ such that

D1, . . . , Dn are independent knowing p̃

Denote by Fp̃ the distribution function of p̃, then:

P(D1 = d1, . . . , Dn = dn) =

∫ 1

0
p

∑
i di (1− p)n−

∑
i di Fp̃(dp)

p̃ is characterized by:

1
n

n∑
i=1

Di
a.s−→ p̃ as n →∞

Areski COUSIN Comparison results for homogenous credit portfolios
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Stochastic orders

X ≤cx Y if E [f (X )] ≤ E [f (Y )] for all convex functions f

X ≤sl Y if E [(X − K)+] ≤ E [(Y − K)+] for all K ∈ IR

X ≤sl Y and E [X ] = E [Y ] ⇔ X ≤cx Y

X ≤sm Y if E [f (X )] ≤ E [f (Y )] for all supermodular functions f

Definition (Supermodular function)

A function f : Rn → R is supermodular if for all x ∈ IRn, 1 ≤ i < j ≤ n and
ε, δ > 0 holds

f (x1, . . . , xi + ε, . . . , xj + δ, . . . , xn)− f (x1, . . . , xi + ε, . . . , xj , . . . , xn)

≥ f (x1, . . . , xi , . . . , xj + δ, . . . , xn)− f (x1, . . . , xi , . . . , xj , . . . , xn)

consequences of new defaults are always worse when other defaults have
already occurred

Areski COUSIN Comparison results for homogenous credit portfolios
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Stochastic orders

(D1, . . . , Dn) and (D∗
1 . . . , D∗

n ) two exchangeable default indicator vectors

Mi loss given default

Aggregate losses:

Lt =
n∑

i=1

MiDi

L∗t =
n∑

i=1

MiD∗
i

Müller(1997)
Stop-loss order for portfolios of dependent risks.

(D1, . . . , Dn) ≤sm (D∗
1 . . . , D∗

n ) ⇒ Lt ≤sl L∗t

Areski COUSIN Comparison results for homogenous credit portfolios
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Stochastic orders

Theorem

Let D = (D1, . . . , Dn) and D∗ = (D∗
1 , . . . , D∗

n ) be two exchangeable Bernoulli
random vectors with (resp.) F and F ∗ as mixture distributions. Then:

F ≤cx F ∗ ⇒ D ≤sm D∗ and

Theorem

Let D1, . . . , Dn, . . . and D∗
1 , . . . , D∗

n , . . . be two exchangeable sequences of
Bernoulli random variables. We denote by F (resp. F ∗) the distribution
function associated with the mixing measure. Then,

(D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n ),∀n ∈ N ⇒ F ≤cx F ∗.
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Multivariate Poisson model

Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)

N̄ i
t Poisson with parameter λ̄: idiosyncratic risk

Nt Poisson with parameter λ: systematic risk

(B i
j )i,j Bernoulli random variable with parameter p

All sources of risk are independent

N i
t = N̄ i

t +
∑Nt

j=1 B i
j , i = 1 . . . n

τi = inf{t > 0|N i
t > 0}, i = 1 . . . n
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Multivariate Poisson model

τi ∼ Exp(λ̄ + pλ)

Di = 1{τi≤t}, i = 1 . . . n are independent knowing Nt

1
n

∑n
i=1 Di

a.s−→ E [Di | Nt ] = P(τi ≤ t | Nt)

Conditional default probability:

p̃ = 1− (1− p)Nt exp(−λ̄t)
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Multivariate Poisson model

Comparison of two multivariate Poisson models with parameter sets
(λ̄, λ, p) and (λ̄∗, λ∗, p∗)

Supermodular order comparison requires equality of marginals:
λ̄ + pλ = λ̄∗ + p∗λ∗

Comparison directions:

p = p∗: λ̄ v.s λ
λ = λ∗: λ̄ v.s p
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Multivariate Poisson model

Theorem (p = p∗)

Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + pλ∗,
then:

λ ≤ λ∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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Multivariate Poisson model

Theorem (λ = λ∗)

Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + p∗λ,
then:

p ≤ p∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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Structural Model

Hull, Predescu and White(2005)

Consider n firms

Let X i
t , i = 1 . . . n be their asset dynamics

X i
t = ρWt +

√
1− ρ2W i

t , i = 1 . . . n

W , W i , i = 1 . . . n are independent standard Wiener processes

Default times as first passage times:

τi = inf{t ∈ IR+|X i
t ≤ f (t)}, i = 1 . . . n, f : IR → IR continuous

Di = 1{τi≤T} , i = 1 . . . n are independent knowing σ(Wt , t ∈ [0, T ])

1
n

∑n
i=1 Di

a.s−→ p̃
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Structural Model

Theorem

For any fixed time horizon T , denote by Di = 1{τi≤T}, i = 1 . . . n and
D∗

i = 1{τ∗i ≤T}, i = 1 . . . n the default indicators corresponding to (resp.) ρ
and ρ∗, then:

ρ ≤ ρ∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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p̃(ρ) ≤cx p̃(ρ∗)
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Archimedean copula

Copula name Generator ϕ V -distribution
Clayton t−θ − 1 Gamma(1/θ)
Gumbel (− ln(t))θ α-Stable, α = 1/θ

Franck − ln
[
(1− e−θt)/(1− e−θ)

]
Logarithmic series

Theorem

α ≤ α∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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θ increase

p̃(θ) ≤cx p̃(θ∗)
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Additive copula framework

Vi = ρV +
√

1− ρ2V̄i

V , Vi i = 1 . . . n independent

Laws of V , Vi i = 1 . . . n do not depend on the dependence parameter ρ

Standard copula models:

Gaussian, Student t
Double t: Hull and White(2004)
NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid
and Werner(2005)
Double Variance Gamma: Moosbrucker(2005)

Theorem

ρ ≤ ρ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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Conclusion

Characterization of supermodular order for exchangeable Bernoulli random
vectors

Comparison of CDO tranche premiums in several pricing models

Unified way of presenting default risk models
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