New results for the pricing and hedging of CDOs

WBS 4th Fixed Income Conference London 20th September 2007

Jean-Paul LAURENT Professor, ISFA Actuarial School, University of Lyon, Scientific consultant, BNP PARIBAS <u>http://laurent.jeanpaul.free.fr</u>

Presentation related to papers A note on the risk management of CDOs (2007) Hedging default risks of CDOs in Markovian contagion models (2007) Comparison results for credit risk portfolios (2007) Available on www.defaultrisk.com

New results for the pricing and hedging of CDOs

- Hedging issues
 - Hedging of default risk in contagion models

≻Markov chain approach to contagion models

≻Comparison of models deltas with "market deltas"

- Hedging of credit spread risk in intensity models
- Pricing issues with factor models
 - Comparison of CDO pricing models through stochastic orders
 - Comprehensive approach to copula, structural and multivariate Poisson models

- Hedging CDOs context
- About 1 000 papers on defaultrisk.com
- About 10 papers dedicated to hedging issues
 - In interest rate or equity markets, pricing is related to the cost of the hedge
 - In credit markets, pricing is disconnect from hedging
- Need to relate pricing and hedging
- What is the business model for CDOs?
- Risk management paradigms
 - Static hedging, risk-return arbitrage, complete markets

- Static hedging
- Buy a portfolio of credits, split it into tranches and sell the tranches to investors

> No correlation or model risk for market makers

≻ No need to dynamically hedge with CDS

• Only « budget constraint »:

Sum of the tranche prices greater than portfolio of credits price

Similar to stripping ideas for Treasury bonds

• No clear idea of relative value of tranches

Depends of demand from investors

> Markets for tranches might be segmented

- Risk return arbitrage
- Historical returns are related to ratings, factor exposure
 - CAPM, equilibrium models
 - In search of high alphas
 - Relative value deals, cross-selling along the capital structure
- Depends on the presence of « arbitrageurs »
 - Investors with small risk aversion
 - Trading floors, hedge funds
 - Investors without too much accounting, regulatory, rating constraints

- The ultimate step : complete markets
 - As many risks as hedging instruments
 - News products are only designed to save transactions costs and are used for risk management purposes
 - Assumes a high liquidity of the market
- Perfect replication of payoffs by dynamically trading a small number of « underlying assets »
 - Black-Scholes type framework
 - Possibly some model risk
- This is further investigated in the presentation
 - Dynamic trading of CDS to replicate CDO tranche payoffs

- Default risk
 - Default bond price jumps to recovery value at default time.
 - Drives the CDO cash-flows
- Credit spread risk
 - Changes in defaultable bond prices prior to default
 - > Due to shifts in credit quality or in risk premiums
 - Changes in the marked to market of tranches
- Interactions between credit spread and default risks
 - Increase of credit spreads increase the probability of future defaults
 - Arrival of defaults may lead to jump in credit spreads
 - Contagion effects (Jarrow & Yu)

- Credit deltas in copula models
- CDS hedge ratios are computed by bumping the marginal credit curves
 - Local sensitivity analysis
 - Focus on credit spread risk
 - Deltas are copula dependent
 - Hedge over short term horizons

> Poor understanding of gamma, theta, vega effects

> Does not lead to a replication of CDO tranche payoffs

• Last but not least: not a hedge against defaults...

• Credit deltas in copula models

- Stochastic correlation model (Burstchell, Gregory & Laurent, 2007)

- Main assumptions and results
 - Credit spreads are driven by defaults
 - ➢Contagion model
 - Credit spreads are deterministic between two defaults
 - Homogeneous portfolio
 - ≻Only need of the CDS index
 - ≻No individual name effect
 - Markovian dynamics
 - ≻Pricing and hedging CDOs within a binomial tree
 - ≻Easy computation of dynamic hedging strategies
 - >Perfect replication of CDO tranches

- We will start with two names only
- Firstly in a static framework
 - Look for a First to Default Swap
 - Discuss historical and risk-neutral probabilities
- Further extending the model to a dynamic framework
 - Computation of prices and hedging strategies along the tree
 - Pricing and hedging of tranchelets
- Multiname case: homogeneous Markovian model
 - Computation of risk-neutral tree for the loss
 - Computation of dynamic deltas
- Technical details can be found in the paper:
 - "hedging default risks of CDOs in Markovian contagion models"

- Some notations :
 - $-\tau_1, \tau_2$ default times of counterparties 1 and 2,
 - \mathcal{H}_t available information at time *t*,
 - -P historical probability,

- α_1^P, α_2^P : (historical) default intensities: $P[\tau_i \in [t, t + dt[|H_t] = \alpha_i^P dt, i = 1, 2]$

• Assumption of « local » independence between default events – Probability of 1 and 2 defaulting altogether: $P[\tau_1 \in [t, t + dt[, \tau_2 \in [t, t + dt[|H_t]] = \alpha_1^P dt \times \alpha_2^P dt \text{ in } (dt)^2]$

- Local independence: simultaneous joint defaults can be neglected

- Building up a tree:
 - Four possible states: (*D*,*D*), (*D*,*ND*), (*ND*,*D*), (*ND*,*ND*)
 - Under no simultaneous defaults assumption $p_{(D,D)}=0$
 - Only three possible states: (*D*,*ND*), (*ND*,*D*), (*ND*,*ND*)
 - Identifying (historical) tree probabilities:

$$\alpha_{1}^{P}dt \quad (D, ND)$$

$$\alpha_{2}^{P}dt \quad (ND, D)$$

$$1 - (\alpha_{1}^{P} + \alpha_{2}^{P})dt \quad (ND, ND)$$

$$\begin{cases} p_{(D,D)} = 0 \Rightarrow p_{(D,ND)} = p_{(D,D)} + p_{(D,ND)} = p_{(D,.)} = \alpha_1^P dt \\ p_{(D,D)} = 0 \Rightarrow p_{(ND,D)} = p_{(D,D)} + p_{(ND,D)} = p_{(.,D)} = \alpha_2^P dt \\ p_{(ND,ND)} = 1 - p_{(D,.)} - p_{(.,D)} \end{cases}$$

- Stylized cash flows of short term digital CDS on counterparty 1:
 - $\alpha_1^Q dt$ CDS 1 premium

$$\alpha_1^P dt \quad 1 - \alpha_1^Q dt \quad (D, ND)$$

$$\alpha_2^P dt \quad -\alpha_1^Q dt \quad (ND, D)$$

$$1 - (\alpha_1^P + \alpha_2^P) dt \quad -\alpha_1^Q dt \quad (ND, ND)$$

• Stylized cash flows of short term digital CDS on counterparty 2:

 $\alpha_1^P dt - \alpha_2^Q dt \quad (D, ND)$ $0 \xrightarrow{\alpha_2^P dt} 1 - \alpha_2^Q dt \quad (ND, D)$ $1 - (\alpha_1^P + \alpha_2^P) dt - \alpha_2^Q dt \quad (ND, ND)$

• Cash flows of short term digital first to default swap with premium $\alpha_F^Q dt$:

$$\alpha_{1}^{P}dt = 1 - \alpha_{F}^{Q}dt \quad (D, ND)$$

$$\alpha_{2}^{P}dt = 1 - \alpha_{F}^{Q}dt \quad (ND, D)$$

$$1 - (\alpha_{1}^{P} + \alpha_{2}^{P})dt - \alpha_{F}^{Q}dt \quad (ND, ND)$$

- Cash flows of holding CDS 1 + CDS 2: $\alpha_1^P dt = 1 - (\alpha_1^Q + \alpha_2^Q) dt \quad (D, ND)$ $0 = \frac{\alpha_2^P dt}{1 - (\alpha_1^Q + \alpha_2^Q) dt \quad (ND, D)}$ $1 - (\alpha_1^P + \alpha_2^P) dt = -(\alpha_1^Q + \alpha_2^Q) dt \quad (ND, ND)$
- Perfect hedge of first to default swap by holding 1 CDS 1 + 1 CDS 2
 - Delta with respect to CDS 1 = 1, delta with respect to CDS 2 = 1

- Absence of arbitrage opportunities imply:
 - $\alpha_F^Q = \alpha_1^Q + \alpha_2^Q$
- Arbitrage free first to default swap premium
 - Does not depend on historical probabilities α_1^P, α_2^P
- Three possible states: (*D*,*ND*), (*ND*,*D*), (*ND*,*ND*)
- Three tradable assets: CDS1, CDS2, risk-free asset

• For simplicity, let us assume r = 0

- Three state contingent claims
 - Example: claim contingent on state (*D*, *ND*)
 - Can be replicated by holding
 - 1 CDS 1 + $\alpha_1^Q dt$ risk-free asset

$$\alpha_{1}^{P}dt \xrightarrow{\alpha_{1}^{Q}dt} (D,ND) \qquad \qquad \alpha_{1}^{P}dt (D,ND) \\ \alpha_{1}^{Q}dt \xrightarrow{\alpha_{2}^{P}dt} \alpha_{1}^{Q}dt (ND,D) + 0 \xrightarrow{\alpha_{1}^{P}dt} -\alpha_{1}^{Q}dt (ND,D) \\ 1 - (\alpha_{1}^{P} + \alpha_{2}^{P})dt \qquad \qquad 1 - (\alpha_{1}^{P} + \alpha_{2}^{P})dt \\ \alpha_{1}^{Q}dt (ND,ND) + 0 \xrightarrow{\alpha_{1}^{P}dt} -\alpha_{1}^{Q}dt (ND,ND)$$

- Replication price =
$$\alpha_1^Q dt$$

 $\alpha_1^P dt$

 $\alpha_2^P dt$ $\alpha_1^{\mathcal{Q}} dt$

• Similarly, the replication prices of the (ND, D) and (ND, ND) claims

• Replication price of:

$$\begin{array}{c}
\alpha_{1}^{p}dt & 0 \quad (D, ND) \\
\alpha_{2}^{Q}dt & \alpha_{2}^{p}dt \\
1 \quad (ND, D) \\
1 - (\alpha_{1}^{r} + \alpha_{2}^{p})dt \\
0 \quad (ND, ND) \\
\end{array}$$

$$\begin{array}{c}
\alpha_{1}^{p}dt & a \quad (D, ND) \\
1 - (\alpha_{1}^{r} + \alpha_{2}^{p})dt \\
1 \quad (ND, ND) \\
\end{array}$$

$$\begin{array}{c}
\alpha_{1}^{p}dt & a \quad (D, ND) \\
1 - (\alpha_{1}^{r} + \alpha_{2}^{p})dt \\
1 - (\alpha_{1}^{r} + \alpha_{2}^{p})dt \\
1 - (\alpha_{1}^{r} + \alpha_{2}^{p})dt \\
\end{array}$$

• Replication price = $\alpha_1^Q dt \times a + \alpha_2^Q dt \times b + (1 - (\alpha_1^Q + \alpha_2^Q) dt)c$

- Replication price obtained by computing the expected payoff
 - Along a risk-neutral tree

$$\alpha_1^{\varrho}dt \times a + \alpha_2^{\varrho}dt \times b + \left(1 - (\alpha_1^{\varrho} + \alpha_2^{\varrho})dt\right)c \xrightarrow{\alpha_2^{\varrho}dt} b (ND, D)$$

$$1 - \left(\alpha_1^{\varrho} + \alpha_2^{\varrho}\right)dt \xrightarrow{c} (ND, ND)$$

- Risk-neutral probabilities
 - Used for computing replication prices
 - Uniquely determined from short term CDS premiums
 - No need of historical default probabilities

- Computation of deltas
 - Delta with respect to CDS 1: δ_1
 - Delta with respect to CDS 2: δ_2
 - Delta with respect to risk-free asset: p

 $\succ p$ also equal to up-front premium

$$\begin{cases} a = p + \delta_1 \times \overbrace{\left(1 - \alpha_1^{\mathcal{Q}} dt\right)}^{\text{payoff CDS 1}} + \delta_2 \times \overbrace{\left(-\alpha_2^{\mathcal{Q}} dt\right)}^{\text{payoff CDS 2}} \\ b = p + \delta_1 \times \left(-\alpha_1^{\mathcal{Q}} dt\right) + \delta_2 \times \left(1 - \alpha_2^{\mathcal{Q}} dt\right) \\ c = p + \delta_1 \times \underbrace{\left(-\alpha_1^{\mathcal{Q}} dt\right)}_{\text{payoff CDS 1}} + \delta_2 \times \underbrace{\left(-\alpha_2^{\mathcal{Q}} dt\right)}_{\text{payoff CDS 2}} \end{cases}$$

- As for the replication price, deltas only depend upon CDS premiums

Dynamic case:

- $-\kappa_1^{\varrho} dt$ CDS 1 premium after default of name 2
- $\pi_1^Q dt$ CDS 1 premium if no name defaults at period 1
- $\pi_2^Q dt$ CDS 2 premium if no name defaults at period 1
- Change in CDS premiums due to contagion effects
 - Usually, $\pi_1^Q < \alpha_1^Q < \lambda_1^Q$ and $\pi_2^Q < \alpha_2^Q < \lambda_2^Q$

- Computation of prices and hedging strategies by backward induction
 - use of the dynamic risk-neutral tree
 - Start from period 2, compute price at period 1 for the three possible nodes
 - + hedge ratios in short term CDS 1,2 at period 1
 - Compute price and hedge ratio in short term CDS 1,2 at time 0
- Example to be detailed:
 - computation of CDS 1 premium, maturity = 2
 - $p_1 dt$ will denote the periodic premium
 - Cash-flow along the nodes of the tree

Computations CDS on name 1, maturity = $2 \frac{\lambda_2^Q dt}{\lambda_2^Q dt}$ (D,D) $\alpha_{1}^{Q}dt \xrightarrow{1-p_{1}dt} (D,ND) \xrightarrow{1-\lambda_{2}^{Q}dt} 0 \quad (D,ND)$ $0 \xrightarrow{\alpha_{2}^{Q}dt} -p_{1}dt \quad (ND,D) \xrightarrow{\kappa_{1}^{Q}dt} 1-p_{1}dt \quad (D,D)$ $1-(\alpha_{1}^{Q}+\alpha_{2}^{Q})dt \xrightarrow{-p_{1}dt} (ND,ND) \xrightarrow{\pi_{1}^{Q}dt} 1-p_{1}dt \quad (ND,D)$ $-p_{1}dt \quad (ND,ND) \xrightarrow{\pi_{2}^{Q}dt} -p_{1}dt \quad (ND,D)$ $1-(\pi_{1}^{Q}+\pi_{2}^{Q})dt \xrightarrow{-p_{1}dt} (ND,ND)$

• Premium of CDS on name 1, maturity = 2, time = 0, $p_1 dt$ solves for: $0 = (1 - p_1)\alpha_1^Q + (-p_1 + (1 - p_1)\kappa_1^Q - p_1(1 - \kappa_1^Q))\alpha_2^Q + (-p_1 + (1 - p_1)\pi_1^Q - p_1\pi_2^Q - p_1(1 - \pi_1^Q - \pi_2^Q))(1 - \alpha_1^Q - \alpha_2^Q)$

- Example: stylized zero coupon CDO tranchelets
 - Zero-recovery, maturity 2
 - Aggregate loss at time 2 can be equal to 0,1,2
 - Equity type tranche contingent on no defaults
 - Mezzanine type tranche : one default
 - Senior type tranche : two defaults

(D,D) $\lambda_2^Q dt$ $\frac{\lambda D}{1 - \lambda_2^{\varrho} dt}$ $\alpha_1^{\mathcal{Q}}dt \times \kappa_2^{\mathcal{Q}}dt + \alpha_2^{\mathcal{Q}}dt \times \kappa_1^{\mathcal{Q}}dt$ senior up-front premium default leg tranche payoff

- Possibility of taking into account discounting effects
- The timing of premium payments
- Computation of dynamic deltas with respect to short or actual CDS on names 1,2

- In theory, one could also derive dynamic hedging strategies for index CDO tranches
 - Numerical issues: large dimensional, non recombining trees
 - Homogeneous Markovian assumption is very convenient

CDS premiums at a given time *t* only depend upon the current number of defaults N(t)

- CDS premium at time 0 (no defaults) $\alpha_1^Q dt = \alpha_2^Q dt = \alpha_2^Q (t = 0, N(0) = 0)$
- CDS premium at time 1 (one default) $\lambda_2^Q dt = \kappa_1^Q dt = \alpha_{\cdot}^Q (t = 1, N(t) = 1)$
- CDS premium at time 1 (no defaults) $\pi_1^Q dt = \pi_2^Q dt = \alpha_{\cdot}^Q (t = 1, N(t) = 0)$

- Homogeneous Markovian tree
- $\begin{array}{c} \overset{\varrho}{\cdot}(0,0) & (D,ND) \\ & \overset{\alpha}{\cdot}^{\varrho}(0,0) & (ND,D) & \overset{\alpha}{\cdot}^{\varrho}(1,1) & (\nu, \cdot) \\ & 1 \alpha \overset{\varrho}{\cdot}(1,1) & (ND,D) \\ & 1 2\alpha_{1}^{\varrho}(0,0) & (ND,ND) & \overset{\alpha}{\cdot}^{\varrho}(1,0) & (D,ND) \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & &$ - If we have N(1) = 1, one default at t=1
 - The probability to have N(2) = 1, one default at t=2...
 - Is $1 \alpha^{Q}(1,1)$ and does not depend on the defaulted name at t=1
 - N(t) is a Markov process
 - Dynamics of the number of defaults can be expressed through a binomial tree

• Easy extension to *n* names

- Predefault name intensity at time t for N(t) defaults: $\alpha^Q_{\cdot}(t, N(t))$
- Number of defaults intensity : sum of surviving name intensities:

- $\alpha_{\cdot}^{\mathcal{Q}}(0,0), \alpha_{\cdot}^{\mathcal{Q}}(1,0), \alpha_{\cdot}^{\mathcal{Q}}(1,1), \alpha_{\cdot}^{\mathcal{Q}}(2,0), \alpha_{\cdot}^{\mathcal{Q}}(2,1), \dots \text{ can be easily calibrated}$
- on marginal distributions of N(t) by forward induction.

- Previous recombining binomial risk-neutral tree provides a framework for the valuation of payoffs depending upon the number of defaults
 - CDO tranches
 - Credit default swap index
- What about the credit deltas? $N(0) = 0 < \infty$

- Perfect dynamic replication of a CDO tranche with a credit default swap index and the default-free asset
- Credit delta with respect to the credit default swap index
- = change in PV of the tranche / change in PV of the CDS index

• Example: number of defaults distribution at 5Y generated from a Gaussian copula

- Correlation parameter: 30%
- Number of names: 125
- Default-free rate: 3%
- 5Y credit spreads: 20 bps
- Recovery rate: 40%

• Figure shows the probabilities of *k* defaults for a 5Y horizon

- Calibration of loss intensities
 - For simplicity, assumption of time homogeneous intensities
 - Figure below represents loss intensities, with respect to the number of defaults
 - Increase in intensities: contagion effects

- Dynamics of the 5Y CDS index spread
 - In bp pa

		Weeks								
		0	14	28	42	56	70	84		
	0	20	19	19	18	18	17	17		
	1	0	31	30	29	28	27	26		
	2	0	46	44	43	41	40	38		
	3	0	63	61	58	56	54	52		
	4	0	83	79	76	73	70	67		
	5	0	104	99	95	91	87	83		
Nb Defaults	6	0	127	121	116	111	106	101		
	7	0	151	144	138	132	126	120		
	8	0	176	169	161	154	146	140		
	9	0	203	194	185	176	168	160		
	10	0	230	219	209	200	190	181		
	11	0	257	246	235	224	213	203		
	12	0	284	272	260	248	237	225		
	13	0	310	298	286	273	260	248		
	14	0	336	324	311	298	284	271		
	15	0	0	348	336	323	308	294		

- Dynamics of credit deltas:
 - [0,3%] equity tranche, buy protection
 - With respect to the 5Y CDS index
 - For selected time steps

		OutStanding	Weeks								
		Nominal	0	14	28	42	56	70	84		
Nb Defaults	0	3.00%	0.967	0.993	1.016	1.035	1.052	1.065	1.075		
	1	2.52%	0	0.742	0.786	0.828	0.869	0.908	0.943		
	2	2.04%	0	0.439	0.484	0.532	0.583	0.637	0.691		
	3	1.56%	0	0.206	0.233	0.265	0.301	0.343	0.391		
	4	1.08%	0	0.082	0.093	0.106	0.121	0.141	0.164		
	5	0.60%	0	0.029	0.032	0.035	0.039	0.045	0.051		
	6	0.12%	0	0.004	0.005	0.005	0.006	0.006	0.007		
	7	0.00%	0	0	0	0	0	0	0		

- Hedging strategy leads to a perfect replication of equity tranche payoff
- Prior to first defaults, deltas are above 1!
- When the number of defaults is > 6, the tranche is exhausted

• Credit deltas of the tranche

- Sum of credit deltas of premium and default legs

(OutStanding	Weeks						
			Nominal	0	14	28	42	56	70	84
		0	3.00%	-0.153	-0.150	-0.146	-0.142	-0.137	-0.132	-0.126
nromium		1	2.52%	0	-0.128	-0.127	-0.126	-0.124	-0.120	-0.116
premium	1	2	2.04%	0	-0.098	-0.100	-0.101	-0.102	-0.101	-0.100
leg			1.56%	0	-0.066	-0.068	-0.071	-0.073	-0.074	-0.076
108		4	1.08%	0	-0.037	-0.039	-0.041	-0.043	-0.045	-0.047
		5	0.60%	0	-0.016	-0.017	-0.018	-0.019	-0.020	-0.021
		6	0.12%	0	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
C		7	0.00%	0	0	0	0	0	0	0
<i>,</i>			OutStanding	Weeks						
			Nominal	0	14	28	42	56	70	84
		0	3.00%	0.814	0.843	0.869	0.893	0.915	0.933	0.949
defeu1t		1	2.52%	0	0.614	0.658	0.702	0.746	0.787	0.827
default	1		2.04%	0	0.341	0.384	0.431	0.482	0.535	0.591
leg		3	1.56%	0	0.140	0.165	0.194	0.229	0.269	0.315
icg			1.08%	0	0.045	0.054	0.064	0.078	0.095	0.117
		o 5	0.60%	0	0.013	0.015	0.017	0.020	0.024	0.030
		6	0.12%	0	0.002	0.002	0.002	0.003	0.003	0.003
		7	0.00%	0	0	0	0	0	0	0

		OutStanding				Weeks			132-0.126120-0.116101-0.100074-0.076045-0.047						
		Nominal	0	14	28	42	56	70	84						
	0	3.00%	-0.153	-0.150	-0.146	-0.142	-0.137	-0.132	-0.126						
	1	2.52%	0	-0.128	-0.127	-0.126	-0.124	-0.120	-0.116						
Defaults	2	2.04%	0	-0.098	-0.100	-0.101	-0.102	-0.101	-0.100						
fau	3	1.56%	0	-0.066	-0.068	-0.071	-0.073	-0.074	-0.076						
De	4	1.08%	0	-0.037	-0.039	-0.041	-0.043	-0.045	-0.047						
qN	5	0.60%	0	-0.016	-0.017	-0.018	-0.019	-0.020	-0.021						
	6	0.12%	0	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003						
	7	0.00%	0	0	0	0	0	0	0						

• Credit deltas of the premium leg of the equity tranche

- Premiums based on outstanding nominal
- Arrival of defaults reduces the commitment to pay
 - Smaller outstanding nominal
 - Increase in credit spreads (contagion) involve a decrease in expected outstanding nominal
- Negative deltas
 - > This is only significant for the equity tranche
 - Associated with much larger spreads

		OutStanding				Weeks			84 0.949 0.827 0.591 0.315						
		Nominal	0	14	28	42	56	70	84						
	0	3.00%	0.814	0.843	0.869	0.893	0.915	0.933	0.949						
	1	2.52%	0	0.614	0.658	0.702	0.746	0.787	0.827						
Defaults	2	2.04%	0	0.341	0.384	0.431	0.482	0.535	0.591						
fal	3	1.56%	0	0.140	0.165	0.194	0.229	0.269	0.315						
De	4	1.08%	0	0.045	0.054	0.064	0.078	0.095	0.117						
qN	5	0.60%	0	0.013	0.015	0.017	0.020	0.024	0.030						
	6	0.12%	0	0.002	0.002	0.002	0.003	0.003	0.003						
	7	0.00%	0	0	0	0	0	0	0						

• Credit deltas for the default leg of the equity tranche

- Are actually between 0 and 1
- Gradually decrease with the number of defaults

Concave payoff, negative gammas

Credit deltas increase with time

Consistent with a decrease in time value

≻ At maturity date, when number of defaults < 6, delta=1

- Dynamics of credit deltas
 - Junior mezzanine tranche [3,6%]
 - Deltas lie in between 0 and 1
 - When the number of defaults is above 12, the tranche is exhausted

		OutStanding				Weeks		770.0590.045320.1970.162480.4150.376910.5950.586620.6110.652050.4730.544360.2910.358							
		Nominal	0	14	28	42	56	70	84						
	0	3.00%	0.162	0.139	0.117	0.096	0.077	0.059	0.045						
	1	3.00%	0	0.327	0.298	0.266	0.232	0.197	0.162						
	2	3.00%	0	0.497	0.489	0.473	0.448	0.415	0.376						
	3	3.00%	0	0.521	0.552	0.576	0.591	0.595	0.586						
	4	3.00%	0	0.400	0.454	0.508	0.562	0.611	0.652						
Defaults	5	3.00%	0	0.239	0.288	0.343	0.405	0.473	0.544						
fal	6	3.00%	0	0.123	0.153	0.190	0.236	0.291	0.358						
De	7	2.64%	0	0.059	0.073	0.090	0.115	0.147	0.189						
qN	8	2.16%	0	0.031	0.036	0.043	0.052	0.066	0.086						
_	9	1.68%	0	0.019	0.020	0.023	0.026	0.030	0.037						
	10	1.20%	0	0.012	0.012	0.013	0.014	0.016	0.018						
	11	0.72%	0	0.007	0.007	0.007	0.007	0.008	0.009						
	12	0.24%	0	0.002	0.002	0.002	0.002	0.002	0.003						
	13	0.00%	0	0	0	0	0	0	0						

• Dynamics of credit deltas (junior mezzanine tranche)

- Gradually increase and then decrease with the number of defaults
- Call spread payoff (convex, then concave)
- Initial delta = 16% (out of the money option)

		OutStanding				Weeks			
		Nominal	0	14	28	42	56	70	84
	0	3.00%	0.162	0.139	0.117	0.096	0.077	0.059	0.045
	1	3.00%	0	0.327	0.298	0.266	0.232	0.197	0.162
	2	3.00%	0	0.497	0.489	0.473	0.448	0.415	0.376
	3	3.00%	0	0.521	0.552	0.576	0.591	0.595	0.586
	4	3.00%	0	0.400	0.454	0.508	0.562	0.611	0.652
Defaults	5	3.00%	0	0.239	0.288	0.343	0.405	0.473	0.544
fau	6	3.00%	0	0.123	0.153	0.190	0.236	0.291	0.358
De	7	2.64%	0	0.059	0.073	0.090	0.115	0.147	0.189
qN	8	2.16%	0	0.031	0.036	0.043	0.052	0.066	0.086
	9	1.68%	0	0.019	0.020	0.023	0.026	0.030	0.037
	10	1.20%	0	0.012	0.012	0.013	0.014	0.016	0.018
	11	0.72%	0	0.007	0.007	0.007	0.007	0.008	0.009
	12	0.24%	0	0.002	0.002	0.002	0.002	0.002	0.003
	13	0.00%	0	0	0	0	0	0	0

- Comparison analysis
 - After six defaults, the [3,6%] should be like a [0,3%] equity tranche
 - However, credit delta is much lower
 - ▶ 12% instead of 84%
 - But credit spreads after six defaults are much larger
 - ► 127 bps instead of 19 bps
 - Expected loss of the tranche is much larger
 - Which is associated with smaller deltas

		OutStanding		
		Nominal	0	14
	0	3.00%	0.162	0.139
	1	3.00%	0	0.327
	2	3.00%	0	0.497
	3	3.00%	0	0.521
	4	3.00%	0	0.400
ults	5	3.00%	0	0.239
faı	6	3.00%	0	0.123
De	7	2.64%	0	0.059
Nb Defaults	8	2.16%	0	0.031
_	9	1.68%	0	0.019
	10	1.20%	0	0.012
	11	0.72%	0	0.007
	12	0.24%	0	0.002
	13	0.00%	0	0

		OutStanding		
		Nominal	0	14
	0	3.00%	0.814	0.843
	1	2.52%	0	0.614
Defaults	2	2.04%	0	0.341
fau	3	1.56%	0	0.140
100 M	4	1.08%	0	0.045
qN	5	0.60%	0	0.013
	6	0.12%	0	0.002
	7	0.00%	0	0

- Dynamics of credit deltas ([6,9%] tranche)
 - Initial credit deltas are smaller (deeper out of the money call spread)

		OutStanding				Weeks			
		Nominal	0	14	28	42	56	70	84
	0	3.00%	0.017	0.012	0.008	0.005	0.003	0.002	0.001
	1	3.00%	0	0.048	0.036	0.025	0.017	0.011	0.006
	2	3.00%	0	0.133	0.107	0.083	0.061	0.043	0.029
	3	3.00%	0	0.259	0.227	0.193	0.157	0.122	0.090
	4	3.00%	0	0.371	0.356	0.330	0.295	0.253	0.206
	5	3.00%	0	0.405	0.423	0.428	0.420	0.396	0.358
	6	3.00%	0	0.346	0.392	0.433	0.465	0.482	0.481
	7	3.00%	0	0.239	0.292	0.350	0.409	0.465	0.510
Defaults	8	3.00%	0	0.139	0.181	0.232	0.293	0.363	0.436
efau	9	3.00%	0	0.074	0.098	0.132	0.177	0.235	0.307
De	10	3.00%	0	0.042	0.053	0.070	0.095	0.132	0.183
qN	11	3.00%	0	0.029	0.033	0.040	0.051	0.070	0.098
	12	3.00%	0	0.025	0.026	0.028	0.033	0.040	0.053
	13	2.76%	0	0.022	0.022	0.022	0.024	0.026	0.031
	14	2.28%	0	0.020	0.018	0.018	0.018	0.019	0.020
	15	1.80%	0	0	0.015	0.014	0.014	0.014	0.014
	16	1.32%	0	0	0.013	0.011	0.010	0.010	0.010
	17	0.84%	0	0	0.009	0.008	0.007	0.006	0.006
	18	0.36%	0	0	0.005	0.004	0.003	0.003	0.003
	19	0.00%	0	0	0	0	0	0	0

• Small dependence of credit deltas with respect to recovery rate

– Equity tranche, *R*=30%

		OutStanding			Weeks							
		Nominal	0	14	28	42	56	70	84			
	0	3.00%	0.975	0.997	1.018	1.035	1.050	1.062	1.072			
lts	1	2.44%	0.000	0.735	0.775	0.814	0.852	0.888	0.922			
Defaults	2	1.88%	0.000	0.417	0.456	0.499	0.544	0.591	0.641			
Dei	3	1.32%	0.000	0.178	0.200	0.225	0.253	0.286	0.324			
qN	4	0.76%	0.000	0.060	0.066	0.074	0.084	0.095	0.109			
	5	0.20%	0.000	0.011	0.011	0.013	0.014	0.015	0.017			
	6	0.00%	0.000	0.000	0.000	0.000	0.000	0.000	0.000			

- Equity tranche, *R*=40%

		OutStanding				Weeks			
		Nominal	0	14	28	42	56	70	84
	0	3.00%	0.967	0.993	1.016	1.035	1.052	1.065	1.075
	1	2.52%	0	0.742	0.786	0.828	0.869	0.908	0.943
ults	2	2.04%	0	0.439	0.484	0.532	0.583	0.637	0.691
Defau	3	1.56%	0	0.206	0.233	0.265	0.301	0.343	0.391
De	4	1.08%	0	0.082	0.093	0.106	0.121	0.141	0.164
qN	5	0.60%	0	0.029	0.032	0.035	0.039	0.045	0.051
	6	0.12%	0	0.004	0.005	0.005	0.006	0.006	0.007
	7	0.00%	0	0	0	0	0	0	0

- Small dependence of credit deltas with respect to recovery rate
 - Initial delta with respect to the credit default swap index

		Recovery Rates									
Tranches	10%	20%	30%	40%	50%	60% 0.9456 0.1604					
[0-3%]	0.9960	0.9824	0.9746	0.9670	0.9527	0.9456					
[3-6%]	0.1541	0.1602	0.1604	0.1616	0.1659	0.1604					
[6-9%]	0.0164	0.0165	0.0168	0.0168	0.0168	0.0169					

- Only a small dependence of credit deltas with respect to recovery rates

>Which is rather fortunate

• Dependence of credit deltas with respect to correlation

- Default leg, equity tranche

 $\rho = 10\%$

		OutStanding				Weeks			
		Nominal	0	14	28	42	56	70	84
	0	3.00%	0.968	0.974	0.978	0.982	0.985	0.987	0.990
10	1	2.52%	0	0.933	0.944	0.953	0.962	0.969	0.976
Defaults	2	2.04%	0	0.835	0.856	0.876	0.895	0.912	0.928
ifal	3	1.56%	0	0.653	0.683	0.714	0.744	0.774	0.804
De	4	1.08%	0	0.405	0.433	0.464	0.496	0.531	0.568
qN	5	0.60%	0	0.170	0.185	0.202	0.221	0.243	0.268
	6	0.12%	0	0.027	0.030	0.033	0.037	0.041	0.046
	7	0.00%	0	0	0	0	0	0	0

	C			OutStanding		Weeks							
					0	14	28	42	56	70	84		
			0	3.00%	0.814	0.843	0.869	0.893	0.915	0.933	0.949		
			1	2.52%	0	0.614	0.658	0.702	0.746	0.787	0.827		
$\rho = 30\%$		ults	2	2.04%	0	0.341	0.384	0.431	0.482	0.535	0.591		
		Defaul	3	1.56%	0	0.140	0.165	0.194	0.229	0.269	0.315		
	De	De	4	1.08%	0	0.045	0.054	0.064	0.078	0.095	0.117		
		qN	5	0.60%	0	0.013	0.015	0.017	0.020	0.024	0.030		
l	L		6	0.12%	0	0.002	0.002	0.002	0.003	0.003	0.003		
			7	0.00%	0	0	0	0	0	0	0		

$$\left(\begin{array}{l} \rho = 10\%, N(14) = 0, \delta = 97\% \\ \rho = 30\%, N(14) = 0, \delta = 84\% \end{array} \right)$$

- Equity deltas decrease as correlation increases
- Value of equity default leg under different correlation assumptions

- Number of defaults on the *x* - axis

- Smaller correlation
 - Prior to first default, higher expected losses on the tranche
 - Should lead to smaller deltas
 - But smaller contagion effects
 - ≻When shifting from zero to one default
 - \succ The expected loss on the index jumps due to...
 - Default arrival and jumps in credit spreads
 - Smaller jumps in credit spreads for smaller correlation
 - Smaller correlation is associated with smaller jumps in the expected loss of the index
 - >Leads to higher deltas
 - Since we have negative gamma

- Computing deltas with market inputs
 - Base correlations (5Y), as for iTraxx, June 2007

3%	6%	9%	12%	22%
16%	24%	30%	35%	50%

- Probabilities of k defaults

• Loss intensities for the Gaussian copula and market case examples

Number of defaults on the x - axis

• Credit spread dynamics

- Base correlation inputs

		Weeks						
		0	14	28	42	56	70	84
	0	20	19	18	18	17	16	16
	1	0	31	28	25	23	21	20
	2	0	95	80	67	57	49	43
	3	0	269	225	185	150	121	98
	4	0	592	515	437	361	290	228
	5	0	1022	934	834	723	607	490
Defaults	6	0	1466	1395	1305	1193	1059	905
fau	7	0	1870	1825	1764	1680	1567	1420
De	8	0	2243	2214	2177	2126	2052	1945
qN	9	0	2623	2597	2568	2534	2488	2423
	10	0	3035	3003	2971	2939	2903	2859
	11	0	3491	3450	3410	3371	3331	3290
	12	0	4001	3947	3896	3845	3795	3747
	13	0	4570	4501	4434	4369	4306	4245
	14	0	5206	5117	5031	4948	4868	4790
	15	0	5915	5801	5691	5586	5484	5386

- Similar to Gaussian copula at the first default
- Dramatic increases in credit spreads after a few defaults

• Comparison of Gaussian copula and market inputs

- Expected losses on the credit portfolio after 14 weeks
- With respect to the number of observed defaults
- Much bigger contagion effects with steep base correlation

Comparison of credit deltas

- Gaussian copula and market case examples
- Smaller credit deltas for the equity tranche

		OutStanding		Weeks					
		Nominal	0	14	28	42	56	70	84
	0	3.00%	0.645	0.731	0.814	0.890	0.953	1.003	1.038
	1	2.52%	0.000	0.329	0.402	0.488	0.584	0.684	0.777
Defaults	2	2.04%	0.000	0.091	0.115	0.149	0.197	0.264	0.351
fal	3	1.56%	0.000	0.023	0.028	0.035	0.045	0.062	0.090
De	4	1.08%	0.000	0.008	0.008	0.009	0.011	0.013	0.018
qN	5	0.60%	0.000	0.004	0.004	0.003	0.003	0.003	0.004
	6	0.12%	0.000	0.001	0.001	0.001	0.001	0.001	0.001
	7	0.00%	0.000	0.000	0.000	0.000	0.000	0.000	0.000

- Dynamic correlation effects
- After the first default, due to magnified contagion,
- New defaults are associated with big shifts in correlation

Comparison of credit deltas

Market and model deltas at inception

- Equity tranche

	[0-3%]	[3-6%]	[6-9%]	[9-12%]	[12-22%]
market deltas	27	4.5	1.25	0.6	0.25
model deltas	21.5	4.63	1.63	0.9	NA

Figures are roughly the same

- Though the base copula market and the contagion model are quite different models
- Smaller equity tranche deltas for contagion model
 - ➢ Base correlation sticky deltas underestimate the increase in contagion after the first defaults
- Recent market shifts go in favour of the contagion model

- Comparison of credit deltas
 - Arnsdorf & Halperin (2007)
 - Credit spread deltas in a 2D Markov chain

	[0-3%]	[3-6%]	[6-9%]	[9-12%]	[12-22%]
market deltas	26.5	4.5	1.25	0.65	0.25
model deltas	21.9	4.81	1.64	0.79	0.38

- Confirms previous results
- Model deltas in A&H are smaller than market deltas for the equity tranche
- Credit spreads deltas in A&H are quite similar to credit deltas in the 1D Markov chain

- What do we learn from this hedging approach?
 - Thanks to stringent assumptions:
 - credit spreads driven by defaults
 - homogeneity
 - Markov property
 - It is possible to compute a dynamic hedging strategy
 - Based on the CDS index
 - That fully replicates the CDO tranche payoffs
 - Model matches market quotes of liquid tranches
 - Very simple implementation
 - Credit deltas are easy to understand
 - Improve the computation of default hedges
 - Since it takes into account credit contagion
 - Credit spread dynamics needs to be improved

- When dealing with the risk management of CDOs, traders
 - concentrate upon credit spread and correlation risk
 - Neglect default risk
- What about default risk ?
 - For large indices, default of one name has only a small direct effect on the aggregate loss
- Is it possible to build a framework where hedging default risk can be neglected?
- And where one could only consider the hedging of credit spread risk?
 - See paper "A Note on the risk management of CDOs"

- Main and critical assumption
 - Default times follow a multivariate Cox process
 - ≻ For instance, affine intensities
 - Duffie & Garleanu, Mortensen, Feldhütter, Merrill Lynch
- 2. the default times follow a multivariate Cox process:

$$\tau_i = \inf\left\{t \in \mathbb{R}^+, U_i \ge \exp\left(-\int_0^t \lambda_{i,u} du\right)\right\}, \quad i = 1, \dots, n$$
(2.2)

where $\lambda_1, \ldots, \lambda_n$ are strictly positive, \mathcal{F} - progressively measurable processes, U_1, \ldots, U_n are independent random variables uniformly distributed on [0,1] under Q and \mathcal{F} and $\sigma(U_1, \ldots, U_n)$ are independent under Q.

• No contagion effects

- No contagion effects
 - credit spreads drive defaults but defaults do not drive credit spreads
 - For a large portfolio, default risk is perfectly diversified
 - Only remains credit spread risks: parallel & idiosyncratic
- Main result
 - With respect to dynamic hedging, default risk can be neglected
 - Only need to focus on dynamic hedging of credit spread risks
 ➢ With CDS
 - Similar to interest rate derivatives markets

• Formal setup

- τ_1, \ldots, τ_n default times
- $N_i(t) = 1_{\{\tau_i \le t\}}, i = 1, ..., n$ default indicators
- $H_t = \bigvee_{i=1,...,n} \sigma(N_i(s), s \le t)$ natural filtration of default times
- F_t background (credit spread filtration)
- $G_t = H_t \ V F_t$ enlarged filtration, *P* historical measure
- $l_i(t,T), i = 1,...,n$ time *t* price of an asset paying $N_i(T)$ at time *T*

- Sketch of the proof
- Step 1: consider some smooth shadow risky bonds
 - Only subject to credit spread risk
 - Do not jump at default times
- Projection of the risky bond prices on the credit spread filtration

Definition 3.2 The default free T forward loss process associated with name $i \in \{0, ..., n\}$, denoted by $p^i(., T)$ is such that for $0 \le t \le T$:

$$p^{i}(t,T) \stackrel{\Delta}{=} E^{Q} \left[p^{i}(T) \mid \mathcal{F}_{t} \right] = E^{Q} \left[N_{i}(T) \mid \mathcal{F}_{t} \right] = Q(\tau_{i} \leq T \mid \mathcal{F}_{t}).$$
(3.2)

Lemma 3.1 $p^i(t,T)$, i = 1, ..., n are projections of the forward price processes $l^i(t,T)$ on \mathcal{F}_t :

$$p^{i}(t,T) = E^{Q} \left[l^{i}(t,T) \mid \mathcal{F}_{t} \right], \qquad (3.3)$$

for $i = 1, ..., n \text{ and } 0 \le t \le T$.

- Step 2: Smooth the aggregate loss process
- ... and thus the tranche payoffs
 - Remove default risk and only consider credit spread risk
 - Projection of aggregate loss on credit spread filtration

Definition 3.1 We denote by $p^i(.)$, the **default-free running loss process** associated with name $i \in \{0, ..., n\}$, which is such that for $0 \le t \le T$:

$$p^{i}(t) \stackrel{\Delta}{=} E^{Q}[N_{i}(t) \mid \mathcal{F}_{t}] = Q(\tau_{i} \leq t \mid \mathcal{F}_{t}) = 1 - \exp\left(-\Lambda_{i,t}\right). \tag{3.1}$$

Definition 3.5 default-free aggregate running loss process The default free aggregate running loss at time t is such that for $0 \le t \le T$:

$$p_n(t) \stackrel{\Delta}{=} \frac{1}{n} \sum_{i=1}^n p^i(t). \tag{3.7}$$

• Step 3: compute perfect hedge ratios of the smoothed payoff

≻With respect to the smoothed risky bonds

- Smoothed payoff and risky bonds only depend upon credit spread dynamics
- Both idiosyncratic and parallel credit spread risks
- Similar to a multivariate interest rate framework
- Perfect hedging in the smooth market

Assumption 2 There exists some bounded \mathcal{F} - predictable processes $\theta_1(.), \ldots, \theta_n(.)$ such that:

$$(p_n(T) - K)^+ = E^Q \left[(p_n(T) - K)^+ \right] + \frac{1}{n} \sum_{i=1}^n \int_0^T \theta_i(t) dp^i(t, T) + z_n, \quad (4.2)$$

where z_n is \mathcal{F}_T -measurable, of Q-mean zero and Q-strongly orthogonal to $p^1(.,T), \ldots, p^n(.,T)$.

- Step 4: apply the hedging strategy to the <u>true</u> defaultable bonds
- Main result
 - Bound on the hedging error following the previous hedging strategy
 - When hedging an actual CDO tranche with actual defaultable bonds
 - Hedging error decreases with the number of names
 Default risk diversification

Proposition 1 Under Assumptions (1) and (2), the hedging error ε_n defined as:

$$\varepsilon_n = (l_n(T) - K)^+ - E^Q \left[(l_n(T) - K)^+ \right] - \frac{1}{n} \sum_{i=1}^n \int_0^T \theta_i(t) dl^i(t, T), \quad (4.4)$$

is such that $E^{P}[| \varepsilon_{n} |]$ is bounded by:

$$\frac{1}{\sqrt{2n}} \left(1 + \left(E^Q \left[\left(\frac{dP}{dQ} \right)^2 \right] \right)^{1/2} \right) + \frac{1}{n} \left(E^Q \left[\left(\frac{dP}{dQ} \right)^2 \right] \right)^{1/2} \left(\sum_{i=1}^n \left(Q(\tau_i \le T) + E^Q \left[B_i \right]_T \right] \right) \right)^{1/2} + E^P [|z_n|].$$

- Provides a hedging technique for CDO tranches
 - Known theoretical properties
 - Takes into account idiosyncratic and parallel gamma risks
 - Good theoretical properties rely on no simultaneous defaults, no contagion effects assumptions
 - Empirical work remains to be done
- Thought provocative
 - To construct a practical hedging strategy, do not forget default risk
 - Equity tranche [0,3%]
 - iTraxx or CDX first losses cannot be considered as smooth

- Linking pricing and hedging ?
- The black hole in CDO modeling ?
- Standard valuation approach in derivatives markets

≻Complete markets

Price = cost of the hedging/replicating portfolio

- Mixing of dynamic hedging strategies
 - for credit spread risk
- And diversification/insurance techniques
 - For default risk

Comparing hedging approaches

- Two different models have been investigated
- Contagion homogeneous Markovian models
 - Perfect hedge of default risks
 - Easy implementation
 - Poor dynamics of credit spreads
 - No individual name effects
- Multivariate Cox processes
 - Rich dynamics of credit spreads
 - But no contagion effects
 - Thus, default risk can be diversified at the index level
 - Replication of CDO tranches is feasible by hedging only credit spread risks.

Comparison results for credit risk portfolios

- Pricing issues with factor models
 - Comparison of CDO pricing models through stochastic orders
 - Comprehensive approach to copula, structural and multivariate
 Poisson models
 - Relevance of the conditional default probabilities
 - Drive the tranche pricing
 - For simplicity, we further restrict to homogeneous portfolios
 - We provide a general comparison of pricing models methodology
 - By looking for the distribution of conditional default probabilities

Contents

Comparison of Exchangeable Bernoulli random vectors

- Exchangeability assumption
- De Finetti Theorem and Factor representation
- Stochastic orders

2 Application to Credit Risk Management

- Multivariate Poisson model
- Structural model
- Factor copula models
 - Archimedean copula
 - Additive copula framework

Exchangeability assumption De Finetti Theorem and Factor representation Stochastic orders

Exchangeability assumption

- n defaultable firms
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators
- Homogeneity assumption: default dates are assumed to be exchangeable

Definition (Exchangeability)

A random vector (τ_1, \ldots, τ_n) is exchangeable if its distribution function is invariant by permutation: $\forall \sigma \in S_n$

$$(\tau_1,\ldots,\tau_n) \stackrel{d}{=} (\tau_{\sigma(1)},\ldots,\tau_{\sigma(n)})$$

Same marginals

Exchangeability assumption De Finetti Theorem and Factor representation Stochastic orders

De Finetti Theorem and Factor representation

- Suppose that D_1, \ldots, D_n, \ldots is an exchangeable sequence of Bernoulli random variables
- There exists a random factor \tilde{p} such that
- D_1, \ldots, D_n are independent knowing \tilde{p}
- Denote by $F_{\tilde{p}}$ the distribution function of \tilde{p} , then:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum_i d_i} (1-p)^{n-\sum_i d_i} F_{\bar{p}}(dp)$$

• \tilde{p} is characterized by:

$$\frac{1}{n}\sum_{i=1}^n D_i \xrightarrow{\text{a.s.}} \tilde{p} \quad \text{as} \ n \to \infty$$

Stochastic orders

• $X \leq_{cx} Y$ if $E[f(X)] \leq E[f(Y)]$ for all convex functions f

•
$$X \leq_{sl} Y$$
 if $E[(X - K)^+] \leq E[(Y - K)^+]$ for all $K \in \mathbb{R}$

•
$$X \leq_{sl} Y$$
 and $E[X] = E[Y] \Leftrightarrow X \leq_{cx} Y$

• $X \leq_{sm} Y$ if $E[f(X)] \leq E[f(Y)]$ for all supermodular functions f

Definition (Supermodular function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is supermodular if for all $x \in \mathbb{R}^n$, $1 \le i < j \le n$ and $\varepsilon, \delta > 0$ holds

$$f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j+\delta,\ldots,x_n)-f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j,\ldots,x_n)$$

 $\geq f(x_1,\ldots,x_i,\ldots,x_j+\delta,\ldots,x_n)-f(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)$

• consequences of new defaults are always worse when other defaults have already occurred

マボン イラン イラン

Stochastic orders

- (D_1, \ldots, D_n) and $(D_1^* \ldots, D_n^*)$ two exchangeable default indicator vectors
- M; loss given default
- Aggregate losses:

$$L_t = \sum_{i=1}^n M_i D_i$$
$$L_t^* = \sum_{i=1}^n M_i D_i^*$$

Müller(1997)

Stop-loss order for portfolios of dependent risks.

$$(D_1,\ldots,D_n)\leq_{sm} (D_1^*\ldots,D_n^*) \Rightarrow L_t\leq_{sl} L_t^*$$

Exchangeability assumption De Finetti Theorem and Factor representation Stochastic orders

Stochastic orders

Theorem

Let $\mathbf{D} = (D_1, \dots, D_n)$ and $\mathbf{D}^* = (D_1^*, \dots, D_n^*)$ be two exchangeable Bernoulli random vectors with (resp.) F and F^* as mixture distributions. Then:

 $F \leq_{cx} F^* \Rightarrow \mathbf{D} \leq_{sm} \mathbf{D}^*$ and

Theorem

Let D_1, \ldots, D_n, \ldots and $D_1^*, \ldots, D_n^*, \ldots$ be two exchangeable sequences of Bernoulli random variables. We denote by F (resp. F^*) the distribution function associated with the mixing measure. Then,

$$(D_1,\ldots,D_n)\leq_{sm} (D_1^*,\ldots,D_n^*), \forall n\in\mathbb{N}\Rightarrow F\leq_{cx}F^*.$$

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)

- $\bar{N_t^i}$ Poisson with parameter $\bar{\lambda}$: idiosyncratic risk
- N_t Poisson with parameter λ : systematic risk
- $(B_i^i)_{i,j}$ Bernoulli random variable with parameter p
- All sources of risk are independent

•
$$N_t^i = \bar{N}_t^i + \sum_{j=1}^{N_t} B_j^i, \ i = 1 \dots n$$

•
$$\tau_i = \inf\{t > 0 | N_t^i > 0\}, \ i = 1 \dots n$$

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

- $\tau_i \sim Exp(\bar{\lambda} + p\lambda)$
- $D_i = \mathbb{1}_{\{\tau_i \leq t\}}, \ i = 1 \dots n$ are independent knowing N_t
- $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} E[D_{i} \mid N_{t}] = P(\tau_{i} \leq t \mid N_{t})$
- Conditional default probability:

$$\tilde{p} = 1 - (1 - p)^{N_t} \exp(-\bar{\lambda}t)$$

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

- Comparison of two multivariate Poisson models with parameter sets $(\bar{\lambda},\lambda,p)$ and $(\bar{\lambda}^*,\lambda^*,p^*)$
- Supermodular order comparison requires equality of marginals: $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda^*$
- Comparison directions:
 - *p* = *p**: λ v.s λ
 λ = λ*: λ v.s *p*

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

Theorem $(p = p^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p\lambda^*$, then:

$$\lambda \leq \lambda^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow oldsymbol{ ilde{p}} \leq_{\mathsf{cx}} oldsymbol{ ilde{p}}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

Areski COUSIN Comparison results for homogenous credit portfolios

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

Theorem $(\lambda = \lambda^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow ar{p} \leq_{\sf cx} ar{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\sf sm} (D_1^*, \dots, D_n^*)$$

Areski COUSIN Comparison results for homogenous credit portfolios

Multivariate Poisson model Structural model Factor copula models

Structural Model

Hull, Predescu and White(2005)

- Consider *n* firms
- Let X_t^i , $i = 1 \dots n$ be their asset dynamics

$$X_t^i = \rho W_t + \sqrt{1 - \rho^2} W_t^i, \quad i = 1 \dots n$$

- W, Wⁱ, i = 1...n are independent standard Wiener processes
- Default times as first passage times:

$$au_i = \inf\{t \in {I\!\!R}^+ | X_t^i \leq f(t)\}, \ i = 1 \dots n, \ f: I\!\!R o I\!\!R$$
 continuous

•
$$D_i = 1_{\{\tau_i \leq T\}}$$
, $i = 1 \dots n$ are independent knowing $\sigma(W_t, t \in [0, T])$
• $\frac{1}{n} \sum_{i=1}^n D_i \xrightarrow{a.s} \tilde{p}$

Multivariate Poisson model Structural model Factor copula models

Structural Model

Theorem

For any fixed time horizon T, denote by $D_i = 1_{\{\tau_i \leq \tau\}}$, $i = 1 \dots n$ and $D_i^* = 1_{\{\tau_i^* \leq \tau\}}$, $i = 1 \dots n$ the default indicators corresponding to (resp.) ρ and ρ^* , then:

$$ho \leq
ho^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

Areski COUSIN

Multivariate Poisson model Structural model Factor copula models

Archimedean copula

Copula name	Generator $arphi$	V-distribution
Clayton	$t^{- heta}-1$	Gamma(1/ heta)
Gumbel	$(-\ln(t))^{ heta}$	lpha-Stable, $lpha=1/ heta$
Franck	$-\ln\left[(1-e^{- heta t})/(1-e^{- heta}) ight]$	Logarithmic series

Theorem

 $\alpha \leq \alpha^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$

Multivariate Poisson model Structural model Factor copula models

Additive copula framework

- $V_i = \rho V + \sqrt{1 \rho^2} \overline{V}_i$
- $V, V_i \ i = 1 \dots n$ independent
- Laws of $V, V_i \ i = 1 \dots n$ do not depend on the dependence parameter ρ
- Standard copula models:
 - Gaussian, Student t
 - Double t: Hull and White(2004)
 - NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid and Werner(2005)
 - Double Variance Gamma: Moosbrucker(2005)

Theorem

$$ho \leq
ho^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

Conclusion

- Characterization of supermodular order for exchangeable Bernoulli random vectors
- Comparison of CDO tranche premiums in several pricing models
- Unified way of presenting default risk models

