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New results for the pricing and hedging of CDOs

* Hedgingissues

— Hedging of default risk in contagion models
»Markov chain approach to contagion models
» Comparison of models deltas with “market deltas’
— Hedging of credit spread risk in intensity models
®* Pricingissueswith factor models

— Comparison of CDO pricing modelsthrough stochastic orders

— Comprehensive approach to copula, structural and

multivariate Poisson models




Hedging Default and Credit Spread Risks within CDOs

* Purpose of the presentation

»Not trying to embrace all risk management issues
» Focus on very specific aspects of default and credit
Spread risk
* Overlook of the presentation
» Economic background
» Tree approach to hedging defaults
»Hedging credit spread risks for large portfolios




| - Economic Background

Hedging CDOs context

About 1 000 papers on defaultrisk.com

About 10 papers dedicated to hedging issues

— Ininterest rate or equity markets, pricingisrelated to the cost of
the hedge

— In credit markets, pricing isdisconnect from hedging
Need to relate pricing and hedging

What 1s the business model for CDOs?

Risk management paradigms
— Static hedging, risk-return arbitrage, complete markets



| - Economic Background

Static hedging
Buy a portfolio of credits, split it into tranches and sell the
tranches to investors
» No correlation or model risk for market makers
» No need to dynamically hedge with CDS
Only « budget constraint »:
» Sum of the tranche prices greater than portfolio of credits price
» Similar to stripping ideas for Treasury bonds

No clear idea of relative value of tranches

» Depends of demand from investors
» Markets for tranches might be segmented



| - Economic Background

* Risk —return arbitrage

* Historical returns are related to ratings, factor exposure

— CAPM, equilibrium models
— In search of high alphas

— Reélative value deals, cross-selling along the capital structure

* Depends on the presence of « arbitrageurs »
— Investors with small risk aversion

» Trading floors, hedge funds

— Investors without too much accounting, regulatory, rating constraints




| - Economic Background

* The ultimate step : complete markets
— As many risks as hedging instruments

— News products are only designed to save transactions costs and
are used for risk management purposes

— Assumes a high liquidity of the market
* Perfect replication of payoffs by dynamically trading a
small number of « underlying assets »
— Black-Scholes type framework
— Possibly some model risk
* Thisisfurther investigated in the presentation
— Dynamic trading of CDS to replicate CDO tranche payoffs




| - Economic Background

* Default risk
— Default bond price jumps to recovery value at default time.
— Drivesthe CDO cash-flows

* Credit spread risk
— Changes in defaultable bond prices prior to default

» Dueto shiftsin credit quality or in risk premiums
— Changes in the marked to market of tranches

* |nteractions between credit spread and default risks
— Increase of credit spreads increase the probability of future defaults

— Arrival of defaults may lead to jump in credit spreads
» Contagion effects (Jarrow & Yu)




| - Economic Background

* Credit deltasin copula models

* CDS hedge ratios are computed by bumping the marginal
credit curves
— Local sensitivity analysis
— Focus on credit spread risk
— Deltas are copula dependent
— Hedge over short term horizons
» Poor understanding of gamma, theta, vega effects
» Does not lead to areplication of CDO tranche payoffs

* | ast but not |least: not a hedge against defaullts...




| - Economic Background

* Credit deltasin copula models
— Stochastic correlation model (Burstchell, Gregory & Laurent, 2007)
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|l - Tree approach to hedging defaults

* Main assumptions and results
— Credit spreads are driven by defaults

» Contagion model

» Credit spreads are deterministic between two
defaults

— Homogeneous portfolio

»Only need of the CDS index

»No individual nhame effect
— Markovian dynamics

» Pricing and hedging CDOs within abinomial tree
» Easy computation of dynamic hedging strategies
» Perfect replication of CDO tranches




|l - Tree approach to hedging defaults

We will start with two names only

Firstly in a static framework
— Look for aFirst to Default Swap
— Discuss historical and risk-neutral probabilities
Further extending the model to a dynamic framework
— Computation of prices and hedging strategies along the tree
— Pricing and hedging of tranchelets
Multiname case: homogeneous Markovian model
— Computation of risk-neutral tree for the loss
— Computation of dynamic deltas
Technical details can be found in the paper:
— “hedging default risks of CDOs in Markovian contagion models’



|l - Tree approach to hedging defaults

¢ Some notations:

— T4, T, default times of counterparties 1 and 2,
— 7, available information at timet,

— P historical probability,
— a;,a, : (historical) default intensities:
5 Plre[tt+di|H, |=aldt, i=12

* Assumption of «local » independence between default events
— Probability of 1 and 2 defaulting altogether:
> Plre[tt+d,z,e[tt+dt|H,]=aldtxafdt in (dt)

— Local independence: simultaneous joint defaults can be neglected




|l - Tree approach to hedging defaults

* Building up atree:
— Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)
— Under no simultaneous defaults assumption pp, ,=0
— Only three possible states: (D,ND), (ND,D), (ND,ND)
— ldentifying (historical) tree probabilities:

a;dt_ (D,ND)

P
a., dt (ND, D)
1—(a1 Zp)dt
(ND, ND)

Pop) = 0= Pono) = Poo)y T Pono) = Pp,) =% dt
Poo) = 0= Pino.o) = Pooy T Pino.o) = Pro) = @2 dt
Pinoo) =1~ Po,) ~ Pio

N




|| - Tree approach to hedging defaults

Stylized cash flows of short term digital CDS on counterparty 1.
— a2 dt CDS 1 premium

/ 1- g dt  (D,ND)
;
a, dt —a dt (ND, D)

1- (al

—al °dt  (ND,ND)

Stylized cash flows of short term digital CDS on counterparty 2:
/ —a, Sdt  (D,ND)
adt 149t (ND,D)

1- (051

—ant (ND, ND)



|l - Tree approach to hedging defaults

® (Cashflows of short term digital first to default swap with premium a?dt ;

/1 o dt  (D,ND)
o, dt  1- 4%t (ND,D)

1- (al 2 dt
—a2dt (ND,ND)

® (Cashflowsof holding CDS 1+ CDS2:
alpd 1—(051Q +a§)dt (D,ND)

0 — (o + a3 )dt (ND,D)

1- (alp dt
al +a2 dt (ND,ND)

* Peafect hedge of first to default swap by holding 1 CDS 1+ 1 CDS?2
— Deltawith respect to CDS 1 =1, deltawith respect to CDS2 =1



|l - Tree approach to hedging defaults

* Absence of arbitrage opportunities imply:

— a®=a2+af

® Arbitrage free first to default swap premium

— Does not depend on historical probabilities ¢, ,a,
®* Threepossible states: (D,ND), (ND,D), (ND,ND)
®* Threetradable assets. CDS1, CDS2, risk-free asset

/fd/ 1+r (D,ND)
=)
1<% 14¢ (\D.D)
1th

1+r (ND,ND)

®* For simplicity, let usassume r =0




|l - Tree approach to hedging defaults

o dt 1 (D,ND)

®* Three state contingent claims

P
— Example: claim contingent on state (D,ND) ~ ? 7l 0 (ND,D)
— Can be replicated by holding 5
Q . 1- (051 )dt
— 1 CDS1+ o dt risk-free asset 0 (ND, ND)
o, dt alet (D,ND) a’d 1- alet (D,ND)
P
aldt <~ % a a’dt (ND,D) + O o dit —a°dt (ND,D)
1- (o gy )t 1- (o Peg )t

a2dt (ND,ND) —a°dt (ND,ND)

— Replication price = adlt afdt_~1 (D,ND)

o dt

1— (o kot )dt
0 (ND,ND)

o, dt

0 (ND,D)




|| - Tree approach to hedging defaults

* Similarly, the replication prices of the(ND, D) and (ND,ND) claims
afdt - 0 (D,ND) afdr~ 0 (D,ND)
ol dt /
o dt 2 1 (ND,D) 1—(a§+a§)dt %d (ND, D)
1th 1—(a1 azp)dt
0 (ND,ND) 1 (ND,ND)
/af’d!/a (D, ND)
o, dt
* Replication priceof: 7 : b (ND,D)
1th
C (ND,ND)

e Replication price = aletxa+a§dt><b+(l— (a1Q+a§)dt)C




|l - Tree approach to hedging defaults

* Replication price obtained by computing the expected payoff
— Along arisk-neutral tree

Q
afdtxa+a§dtxb+(1—(af+a§)dt)c Z b (ND,D)

1- (al af)dt
C (ND,ND)

® Risk-neutral probabilities
— Used for computing replication prices
— Uniquely determined from short term CDS premiums
— No need of historical default probabilities




|l - Tree approach to hedging defaults

®* Computation of deltas
— Deltawith respect to CDS 1: 0,
— Deltawith respect to CDS 2: 0,
— Deltawith respect to risk-free asset: p

» p aso equal to up-front premium

payoff CDS 1 payoff CDS 2
a= o+51><( thj+5 ( )
‘b= :)+51><( th) +5, x( afdt)
C=p+6,%(-a dt) +0,x (—agdt)

payoff CDS 1. payoif CDS 2

— Asfor thereplication price, deltas only depend upon CDS premiums



|l - Tree approach to hedging defaults

AJdt—(D,D)
O ' -

Dynamic case: o2dtt~ (D:ND) <T—og; (D, ND)
- 0 (D,D)

= dt
1—(a aQ)dt (ND, D)

. S 20t
(ND, ND) : (D,ND)
(ND, D)

1—(7[1Q+7z§

. (ND, ND)
— Aydt CDS 2 premium after default of name 1

—  x2dt CDS 1 premium after default of name 2

— m°dt CDS 1 premium if no name defaults at period 1

— 7z7dt CDS 2 premium if no name defaults at period 1
®* Changein CDS premiums due to contagion effects

— Usudly, zl<al<A? and 72 <al <Ay



|l - Tree approach to hedging defaults

* Computation of prices and hedging strategies by backward
Induction
— use of the dynamic risk-neutral tree

— Start from period 2, compute price at period 1 for the three
possible nodes

— + hedge ratios in short term CDS 1,2 at period 1
— Compute price and hedge ratio in short term CDS 1,2 at time O

* Example to be detalled:
— computation of CDS 1 premium, maturity = 2
— p,dt will denote the periodic premium
— Cash-flow along the nodes of the tree



|l - Tree approach to hedging defaults

® Computations CDS on name 1, maturity = 2 19 0 (D,D)
2
o2t 1~ Pt (DND) =7 50— 0 (D.RD)
Qdt o 1- pldt (D,D)
0 a, — p,dt (ND,D){
=c<dt
1- (al ag)dt —pdt  (ND,D)

Q
—pdt (ND, ND) mdt g pdt (D,ND)
—pdt (ND,ND)
* Premium of CDS on name 1, maturity = 2, time = 0, pdt solvesfor:

0= (1_ pl)alQ +(_ p1+(1_ p1)K1Q - p1<1_ KlQ))aS

+ (_p1+(1_ pl)”lQ_ plﬂ.g_ pl(l—ﬂf—ﬂg))(l—af—ag)




|l - Tree approach to hedging defaults

* Example: stylized zero coupon CDO tranchelets
— Zero-recovery, maturity 2
— Aqggregate loss at time 2 can be equal to0 0,1,2
» Equity type tranche contingent on no defaults
» Mezzanine type tranche : one default
» Senior type tranche : two defaults
1 (D,D)

0 (D,ND)

1 (D,D)

A2dt

(D.ND) <o

o dt x x7dt + a7 dt x i dt

-

up-front premmm default leg

0 (D,ND)
0 (ND,D)
0 (ND,ND)

senior
> tranche
payoff
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|l - Tree approach to hedging defaults

® mezzanine tranche
— Time pattern of default payments

Q
1 (D,ND) /lzag/

— 7Q
odt + adt /%Qd!/ : :; )
(1 (al +a, )dt)( Q)dt aat

T2 + 75 1 (ND,D)

up-front premlum default leg 1— (al ag ) dt

— Possibility of taking into account discounting effects
— Thetiming of premium payments

— Computation of dynamic deltas with respect to short or actual CDS on names 1,2

0 (D,D)
O (D,ND)

o (D,D)

1 (ND,D)

0 (ND,ND) °

meZZ @
> tranche
payofi

ine



|l - Tree approach to hedging defaults

* |ntheory, one could also derive dynamic hedging strategies
for index CDO tranches
— Numerical issues. large dimensional, non recombining trees
— Homogeneous Markovian assumption is very convenient

»CDS premiums at agiven timet only depend upon
the current number of defaults N(t)
— CDS premium at time 0 (no defaults) a2dt = o2dt = a° (t=0,N(0) = 0)
— CDS premium at time 1 (one default) A2dt = x2dt = a2 (t =1 N(t) =1)
— CDSpremium at time 1 (no defaults)  7z2dt = z9dt = 2 (t =1, N(t) = 0)




|l - Tree approach to hedging defaults
(D,D)
Homogeneous Markovian tree 0.0 %(D ND)
a, , ’

(D,D)
Y (ND, D)

1- 222(0,0)
“Q(]’O (D, ND)

(ND, ND) ,
%(ND,D)
— If we have N1 =1, one default at t=1 (ND,ND)

— The probability to haveN(2) =1, one default at t=2..

— Is 1-a?(1,1) and does not depend on the defaulted name at t=1

— N(t) isaMarkov process

— Dynamics of the number of defaults can be expressed through a binomial tree




|l - Tree approach to hedging defaults

* From name per name to number of defaults tree /(119/ (D,D)

/ (D,ND) = 1I-g2(z1)(P-ND)
(D,D)

a2 (0,0) (ND, D) %

1- 22%(0,0) (ND, D)

a?(10)

(ND, ND) (D,ND)
%(ND D)
N(2)=2 (ND, NOj)
a‘Q@(r)/ number
ND) =1 “1=g%(ay N2 =1 ‘of defaults

20£.Q ] O) . (:L O) tree

N(0)=0 N@)=0 N(2)=0
O e00) 1 2ato)




|l - Tree approach to hedging defaults

® Easy extension to n names
— Predefault name intensity at timet for N(t) defaults: o (t,N(t))
— Number of defaults intensity : sum of surviving name intensities:

A(LN() =(n—=N(t)) e (t,N(t)) W N(3) =3
N(2) =2 EA=Dal(22) 5 _ 5

1AN-1)a° (1) N(2) -1 ~Da’(21) N(3)=1

(2.2)
(21)
na2(2,0)
7(2.0)

N(1) =1 (
"2 480) 2(1,0)

M=t 1-ne,’(0,0) e 1-na*(1,0) N(2)=0

N(3)=0
1-ne (2,

— 22(0,0),e¢2(10),a°(11),22(2,0),22(21).... can be easily calibrated

— on marginal distributions of N(t)by forward induction.




|l - Tree approach to hedging defaults

Previous recombining binomial risk-neutral tree provides a
framework for the valuation of payoffs depending upon the
number of defaults
— CDO tranches "
— Credit default swap index i\m |
What about the credit deltas? - i

— |In ahomogeneous framework, deltas with respect to CDS are all
the same

— Perfect dynamic replication of a CDO tranche with a credit
default swap index and the default-free asset

— Credit deltawith respect to the credit default swap index
— = changein PV of the tranche/ change in PV of the CDS index

N(3)=0
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|l - Tree approach to hedging defaults

e Calibration of loss intensities

— For smplicity, assumption of time homogeneous intensities
— Figure below represents loss intensities, with respect to the

number of defaults
— Increase in intensities. contagion effects
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|l - Tree approach to hedging defaults I

* Dynamics of the 5Y CDS index spread

— Inbp pa
Weeks

0 124 28 42 56 70 84

0 20 19 19 18 18 17 17

1 0 31 30 29 28 27 26

2 0 26 44 43 41 20 38

3 0 63 61 53 56 54 52

Z 0 83 79 76 73 70 67

5 0 104 99 95 91 87 83
216 0 127 121 116 111 106 101
N 0 51 | 1424 | 138 | 132 | 126 | 120
Al s 0 176 169 161 154 146 140
2 [ 0 203 194 185 176 168 160
10 0 230 219 209 200 190 181
11 0 257 246 235 224 213 203
12 0 284 272 260 248 237 225
13 0 310 298 286 273 260 248
12 0 336 324 311 298 284 271
15 0 0 348 336 323 308 294




Dynamics of credit deltas:

— [0,3%] equity tranche, buy protection

— With respect to the 5Y CDS index
— For selected time steps

|l - Tree approach to hedging defaults I

OutStanding Weeks
Nominal 0 14 28 42 56 70 84
0 3.00% 967 | 0993 | 1.016 | 1.035 | 1.052 | 1.065 | 1.075
1 2.52% 0 0.742 | 0.786 | 0.828 | 0.869 | 0.908 | 0.943
=2 2.04% 0 0.439 | 0.484 | 0532 | 0.583 | 0.637 | 0.691
E 3 1.56% 0 0.206 | 0.233 | 0.265 | 0.301 | 0.343 | 0.391
al4 1.08% 0 0.082 | 0.093 | 0.106 | 0.121 | 0.141 | 0.164
= = 0.60% 0 0.029 | 0.032 | 0.035 | 0.039 | 0.045 | 0.051
6 0.12% 0 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.007
7 0.00% 0 0 0 0 0 0 0

— Hedging strategy |eads to a perfect replication of equity tranche payoff

— Prior to first defaults, deltas are above 1!

— When the number of defaultsis > 6, the tranche is exhausted




|l - Tree approach to hedging defaults

® Credit deltas of the tranche
— Sum of credit deltas of premium and default legs

premium
<

leg

default
<

leg

-

OutStanding Weeks
Nominal 0 14 28 42 56 70 84

0 3.00% -0.153 | -0.150 | -0.146 | -0.142 | -0.137 | -0.132 | -0.126

1 2.52% 0 -0.128 | -0.127 | -0.126 | -0.124 | -0.120 | -0.116
2 2 2.04% 0 -0.098 | -0.100 | -0.101 } -0.102 | -0.101 | -0.100
5_35 3 1.56% 0 -0.066 | -0.068 | -0.071 | -0.073 | -0.074 | -0.076
a 4 1.08% 0 -0.037 | -0.039 | -0.041 ] -0.043 | -0.045 | -0.047
> 5 0.60% 0 -0.016 | -0.017 | -0.018 | -0.019 | -0.020 | -0.021

6 0.12% 0 -0.003 | -0.003 | -0.003 | -0.003 | -0.003 | -0.003

7 0.00% 0 0 0 0 0 0 0

OutStanding Weeks
Nominal 0 14 28 42 56 70 84

0 3.00% 0.814 | 0.843 | 0.869 | 0.893 | 0.915 | 0.933 | 0.949

1 2.52% 0 0.614 | 0.658 | 0.702 | 0.746 | 0.787 | 0.827
% 2 2.04% 0 0.341 | 0.384 | 0.431 | 0.482 | 0.535 | 0.591
& 3 1.56% 0 0.140 | 0.165 | 0.194 | 0.229 | 0.269 | 0.315
A 4 1.08% 0 0.045 | 0.054 | 0.064 | 0.078 | 0.095 | 0.117
> 5 0.60% 0 0.013 | 0.015 | 0.017 | 0.020 | 0.024 | 0.030

6 0.12% 0 0.002 | 0.002 | 0.002 |} 0.003 } 0.003 | 0.003

7 0.00% 0 0 0 0 0 0 0




|l - Tree approach to hedging defaults

OutStanding Weeks

Nominal 0 14 28 42 56 70 84
0 3.00% 153 ] -0.150 | -0.146 | -0.142 | -0.137 | -0.132 | -0.126
1 2.52% 0 -0.128 | -0.127 | -0.126 | -0.124 | -0.120 | -0.116
2 2 2.04% 0 -0.098 | -0.100 | -0.101 | -0.102 | -0.101 | -0.100
§ 3 1.56% 0 -0.066 | -0.068 | -0.071 | -0.073 | -0.074 | -0.076
A 4 1.08% 0 -0.037 | -0.039 | -0.041 | -0.043 | -0.045 | -0.047
= 5 0.60% 0 -0.016 | -0.017 | -0.018 | -0.019 | -0.020 | -0.021
6 0.12% 0 -0.003 | -0.003 | -0.003 | -0.003 | -0.003 | -0.003

7 0.00% 0 0 0 0 0 0 0

Credit deltas of the premium leg of the equity tranche

— Premiums based on outstanding nominal
— Arrival of defaultsreducesthe commitment to pay
» Smaller outstanding nominal

» Increase in credit spreads (contagion) involve a decrease in
expected outstanding nominal

— Negative deltas
» Thisisonly significant for the equity tranche
— Associated with much larger spreads




|l - Tree approach to hedging defaults

OutStanding Weeks
Nominal 0 14 28 42 56 70 84

0 3.00% 814 | 0.843 | 0.869 | 0.893 | 0.915 | 0.933 | 0.949

1 2.52% 0 0.614 | 0.658 | 0.702 | 0.746 | 0.787 | 0.827
£ 2 2.04% 0 0.341 | 0.384 | 0.431 | 0.482 | 0.535 | 0.591
E 3 1.56% 0 0.140 | 0.165 | 0.194 | 0.229 | 0.269 | 0.315
A 4 1.08% 0 0.045 | 0.054 | 0.064 | 0.078 | 0.095 | 0.117
> 5 0.60% 0 0.013 | 0.015 | 0.017 | 0.020 | 0.024 | 0.030

6 0.12% 0 0.002 | 0.002 | 0.002 |} 0.003 | 0.003 | 0.003

7 0.00% 0 0 0 0 0 0 0

Credit deltasfor the default leg of the equity tranche
— Areactually between O and 1

— Gradually decrease with the number of defaults

— Credit deltasincrease with time

» Concave payoff, negative gammas

» Consistent with a decrease in time value
» At maturity date, when number of defaults < 6, delta=1




|l - Tree approach to hedging defaults

* Dynamics of credit deltas
— Junior mezzanine tranche [3,6%]

— Deéltasliein between 0 and 1
— When the number of defaultsis above 12, the tranche i1s exhausted

OutStanding Weeks

Nominal 0 14 28 42 56 70 84
0 3.00% 162 | 0.139 | 0.117 | 0.096 | 0.077 | 0.059 | 0.045
1 3.00% 0 0.327 | 0.298 | 0.266 | 0.232 | 0.197 | 0.162
2 3.00% 0 0.497 | 0.489 | 0.473 | 0.448 | 0.415 | 0.376
3 3.00% 0 0.521 | 0.552 | 0.576 | 0.591 | 0.595 | 0.586
4 3.00% 0 0.400 | 0.454 | 0.508 | 0.562 | 0.611 | 0.652
2 5 3.00% 0 0.239 | 0.288 | 0.343 | 0.405 | 0.473 | 0.544
E 6 3.00% 0 0.123 | 0.153 | 0.190 | 0.236 | 0.291 | 0.358
A 7 2.64% 0 0.059 | 0.073 | 0.090 | 0.115 | 0.147 | 0.189
> 8 2.16% 0 0.031 | 0.036 | 0.043 | 0.052 | 0.066 | 0.086
9 1.68% 0 0.019 | 0.020 | 0.023 | 0.026 | 0.030 | 0.037
10 1.20% 0 0.012 | 0.012 | 0.013 | 0.014 | 0.016 | 0.018
11 0.72% 0 0.007 | 0.007 | 0.007 | 0.007 | 0.008 | 0.009
12 0.24% 0 0.002 | 0.002 | 0.002 | 0.002 | 0.002 § 0.003

13 0.00% 0 0 0 0 0 0 0




|l - Tree approach to hedging defaults I

* Dynamicsof credit deltas (junior mezzanine tranche)
— Gradually increase and then decrease with the number of defaults
— Call spread payoff (convex, then concave)
— Initial delta= 16% (out of the money option)

OutStanding Weeks

Nominal 0 14 28 42 56 70 84
0 3.00% 162 | 0.139 | 0.117 | 0.096 | 0.077 | 0.059 | 0.045
1 3.00% 0 0.327 | 0.298 | 0.266 | 0.232 | 0.197 | 0.162
2 3.00% 0 0.497 | 0.489 | 0.473 | 0.448 | 0.415 | 0.376
3 3.00% 0 0.521 | 0552 | 0.576 | 0.591 | 0.595 | 0.586
4 3.00% 0 0.400 | 0.454 | 0.508 | 0.562 | 0.611 | 0.652
2 5 3.00% 0 0.239 | 0.288 | 0.343 | 0.405 | 0.473 | 0.544
E 6 3.00% 0 0.123 | 0.153 | 0.190 | 0.236 | 0.291 | 0.358
a 7 2.64% 0 0.059 | 0.073 | 0.090 J 0.115 | 0.147 | 0.189
> 8 2.16% 0 0.031 | 0.036 | 0.043 | 0.052 | 0.066 | 0.086
9 1.68% 0 0.019 | 0.020 | 0.023 | 0.026 | 0.030 | 0.037
10 1.20% 0 0.012 | 0.012 |} 0.013 | 0.014 | 0.016 | 0.018
11 0.72% 0 0.007 | 0.007 |} 0.007 |} 0.007 | 0.008 | 0.009
12 0.24% 0 0.002 | 0.002 | 0.002 }J 0.002 | 0.002 | 0.003

13 0.00% 0 0 0 0 0 0 0




* Comparison analysis

After six defaults, the [3,6%] should
belikea[0,3%] equity tranche

However, credit deltais much lower

> 12% instead of 84%

But credit spreads after six defaults
are much larger

» 127 bps instead of 19 bps

Expected loss of the trancheis much
lar ger

Which is associated with smaller
deltas

|l - Tree approach to hedging defaults I

OutStanding

Nominal 0 14

0 3.00% 162 | 0.139

7 3.00% 0 0327

2 3.00% 0 0.497

3 3.00% 0 0.521

3 3.00% 0 0.400

% 5 3.00% 0 0.239

G 3.00% 0 0123

a7 2.64% 0 0.059

2 78 2.16% 0 0.031

9 1.68% 0 0.019

10 1.20% 0 0012

11 0.72% 0 0.007

12 0.04% 0 0.002

13 0.00% 0 0
OutStanding

Nominal 0 14

0 3.00% 814 | 0843

1 2.50% 0 0614

% 2 2.04% 0 0.341

a[ 3 1 56% 0 0.140

AT 4 T.08% 0 0.045

2 75 0.60% 0 0.013

6 0.12% 0 0.002

7 0.00% 0 0




|l - Tree approach to hedging defaults

®* Dynamics of credit deltas ([6,9%] tranche)
— Initial credit deltas are smaller (deeper out of the money call spread)

OutStanding Weeks
Nominal 0 14 28 42 56 70 84
0 3.00% 0.017 | 0.012 | 0.008 | 0.005 | 0.003 | 0.002 | 0.001
1 3.00% 0 0.048 | 0.036 | 0.025 | 0.017 | 0.011 | 0.006
2 3.00% 0 0.133 | 0.107 | 0.083 | 0.061 | 0.043 | 0.029
3 3.00% 0 0.259 | 0.227 | 0.193 | 0.157 | 0.122 ] 0.090
4 3.00% 0 0.371 | 0.356 | 0.330 | 0.295 | 0.253 | 0.206
5 3.00% 0 0.405 | 0.423 | 0.428 | 0.420 | 0.396 | 0.358
6 3.00% 0 0.346 | 0.392 | 0.433 | 0.465 | 0.482 | 0.481
7 3.00% 0 0.239 | 0.292 | 0.350 | 0.409 | 0.465 | 0.510
£ 8 3.00% 0 0.139 | 0.181 | 0.232 | 0.293 | 0.363 | 0.436
E 9 3.00% 0 0.074 | 0.098 | 0.132 | 0.177 | 0.235 | 0.307
& 10 3.00% 0 0.042 | 0.053 | 0.070 | 0.095 | 0.132 | 0.183
> 11 3.00% 0 0.029 | 0.033 | 0.040 | 0.051 | 0.070 | 0.098
12 3.00% 0 0.025 | 0.026 | 0.028 | 0.033 | 0.040 | 0.053
13 2.76% 0 0.022 | 0.022 | 0.022 | 0.024 | 0.026 | 0.031
14 2.28% 0 0.020 | 0.018 | 0.018 | 0.018 | 0.019 | 0.020
15 1.80% 0 0 0.015 | 0.014 | 0.014 | 0.014 | 0.014
16 1.32% 0 0 0.013 | 0.011 | 0.010 | 0.010 | 0.010
17 0.84% 0 0 0.009 | 0.008 | 0.007 | 0.006 | 0.006
18 0.36% 0 0 0.005 | 0.004 | 0.003 | 0.003 | 0.003
19 0.00% 0 0 0 0 0 0 0




|l - Tree approach to hedging defaults

— Equity tranche, R=30%

* Small dependence of credit deltas with respect to recovery rate

OutStanding Weeks
Nominal 0 14 28 42 56 70 84
0 3.00% 0.975 | 0.997 | 1.018 | 1.035 | 1.050 | 1.062 | 1.072
2 [ 1 2 44% 0.000 | 0.735 | 0.775 | 0.814 | 0.852 | 0.888 | 0.922
2 [2 1.88% 0.000 | 0.417 | 0.456 | 0.499 | 0.544 | 0.591 | 0.641
2 3 1.32% 0.000 | 0.178 | 0.200 | 0.225 | 0.253 | 0.286 | 0.324
s [ 4 0.76% 0.000 | 0.060 | 0.066 | 0.074 | 0.084 | 0.095 | 0.109
5 0.20% 0.000 | 0.011 | 0.011 | 0.013 | 0.014 | 0.015 | 0.017
6 0.00% 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
— Equity tranche, R=40%
OutStanding Weeks
Nominal 0 14 28 42 56 70 84
0 3.00% 0.967 | 0993 | 1.016 | 1.035 | 1.052 | 1.065 | 1.075
1 2.52% 0 0.742 | 0.786 | 0.828 | 0.869 | 0.908 | 0.943
212 2.04% 0 0439 | 0484 | 0532 | 0583 | 0.637 | 0.691
8 [3 1.56% 0 0.206 | 0233 | 0.265 | 0.301 | 0.343 | 0.391
Al 2 1.08% 0 0.082 | 0.093 | 0.106 | 0.121 | 0.141 [ 0.164
2 ['5 0.60% 0 0.029 | 0.032 [ 0.035 | 0.039 | 0.045 | 0.051
6 0.12% 0 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.007
7 0.00% 0 0 0 0 0 0 0




|l - Tree approach to hedging defaults

* Small dependence of credit deltas with respect to recovery rate

— Initial delta with respect to the credit default swap index

Recovery Rates
Tranches 10% 20% 30% 40% 50% 60%
[0-3%] 0.9960 0.9824 0.9746 0.9670 0.9527 0.9456
[3-6%] 0.1541 0.1602 0.1604 0.1616 0.1659 0.1604
[6-9%)] 0.0164 0.0165 0.0168 0.0168 0.0168 0.0169

— Only asmall dependence of credit deltas with respect to recovery rates

>»Which israther fortunate




* Dependence of credit deltaswith respect to correlation

|l - Tree approach to hedging defaults

— Default leg, equity tranche

0=10%

0=30%-

OutStanding Weeks

Nominal 0 14 28 42 56 70 84
0 3.00% 0.968 | 0.974 | 0.978 | 0.982 | 0.985 | 0.987 | 0.990
1 2.52% 0 0.933 | 0.944 | 0.953 | 0.962 | 0.969 | 0.976
% 2 2.04% 0 0.835 | 0.856 | 0.876 | 0.895 | 0.912 | 0.928
& 3 1.56% 0 0.653 | 0.683 | 0.714 | 0.744 | 0.774 | 0.804
a 4 1.08% 0 0.405 | 0.433 | 0.464 | 0.496 | 0.531 | 0.568
3 5 0.60% 0 0.170 | 0.185 | 0.202 | 0.221 | 0.243 | 0.268
6 0.12% 0 0.027 | 0.030 | 0.033 | 0.037 | 0.041 | 0.046

7 0.00% 0 0 0 0 0 0 0

OutStanding Weeks

Nominal 0 14 28 42 56 70 84
0 3.00% 0.814 | 0.843 | 0.869 | 0.893 | 0.915 | 0.933 | 0.949
1 2.52% 0 0.614 | 0.658 | 0.702 | 0.746 | 0.787 | 0.827
2 2 2.04% 0 0.341 | 0.384 | 0.431 | 0.482 | 0.535 | 0.591
E 3 1.56% 0 0.140 | 0.165 | 0.194 | 0.229 | 0.269 | 0.315
A 4 1.08% 0 0.045 | 0.054 | 0.064 | 0.078 | 0.095 | 0.117
= 5 0.60% 0 0.013 | 0.015 | 0.017 | 0.020 | 0.024 | 0.030
6 0.12% 0 0.002 | 0.002 | 0.002 |} 0.003 | 0.003 | 0.003

7 0.00% 0 0 0 0 0 0 0




|l - Tree approach to hedging defaults

0 =10%, N(14) = 0,5 = 97%
0 = 30%, N(14) = 0,5 = 84%

®* Equity deltasdecrease as correlation increases

® Valueof equity default leg under different correlation assumptions

—&— |osses

—— correlation 0%
=& correlation 10%
—&— correlation 20%
=& correlation 30%
—&— correlation 40%

10 1 12

— Number of defaultson the x - axis




|l - Tree approach to hedging defaults

* Smaller correlation
— Prior to first default, higher expected |osses on the tranche
» Should lead to smaller deltas
— But smaller contagion effects
»\When shifting from zero to one default
» The expected |oss on the index jumps due to...

— Default arrival and jumpsin credit spreads

— Smaller jJumpsin credit spreadsfor smaller
correlation

» Smaller correlation is associated with smaller jumpsin
the expected loss of the index

» Leads to higher deltas
— Since we have negative gamma
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* Computing deltaswith market inputs
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|l - Tree approach to hedging defaults

* | ossintensitiesfor the Gaussian copula and mar ket

250 | | | | | |
254~ — - — -~ — — — - i e e e = -
20— - — - — [ -
175,7 777777777 ‘7,7,J,7,7
‘ ‘ B Gaussian copula
0 +— - — - — - — - — - 1—7—7—17—7—
| | El Market case
125 +—
100
75
50
25 -
01 2 3 45 6 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
— Number of defaultson the x - axis




|l - Tree approach to hedging defaults

* Credit spread dynamics
— Base correlation inputs

Weeks
0 14 28 42 56 70 84
0 20 19 18 18 17 16 16
1 0 31 28 25 23 21 20
2 0 95 80 67 57 49 43
3 0 269 225 185 150 121 98
4 0 592 515 437 361 290 228
5 0 1022 934 834 723 607 490
% 6 0 1466 1395 1305 1193 1059 905
& 7 0 1870 1825 1764 1680 1567 1420
8 8 0 2243 2214 2177 2126 2052 1945
-§ 9 0 2623 2597 2568 2534 2488 2423
10 0 3035 3003 2971 2939 2903 2859
11 0 3491 3450 3410 3371 3331 3290
12 0 4001 3947 3896 3845 3795 3747
13 0 4570 4501 4434 4369 4306 4245
14 0 5206 5117 5031 4948 4868 4790
15 0 5915 5801 5691 5586 5484 5386

— Similar to Gaussian copula at the first default

— Dramatic increasesin credit spreads after a few defaults




|l - Tree approach to hedging defaults

* Comparison of Gaussian copula and market inputs

65% | | | | |
P T et 08008
ZZ; S ="
) A R T R R R A D O e
P I A S R U S o N SO N IR B
30% {— - if—fi—f—if—f‘ ——i———i——:reezlljss??(:opulainputs—i———i———l
U e T
10% | | | | ‘ | | \ | | \
— EXxpected losses on the credit portfolio after 14 weeks
— With respect to the number of observed defaults
* Much bigger contagion effectswith steep base correlation




|l - Tree approach to hedging defaults I

Comparison of credit deltas
— Gaussian copula and market case examples
— Smaller credit deltasfor the equity tranche

OutStanding Weeks
Nominal 0 14 28 42 56 70 84
0 3.00% 0.645 | 0.731 | 0.814 | 0.890 | 0.953 | 1.003 | 1.038
1 2.52% 0.000 | 0.329 | 0.402 | 0.488 | 0.584 | 0.684 | 0.777
=12 2.04% 0.000 | 0.091 | 0.115 | 0.149 | 0.197 | 0.264 | 0.351
5_:3 3 1.56% 0.000 | 0.023 | 0.028 | 0.035 | 0.045 | 0.062 | 0.090
al4 1.08% 0.000 | 0.008 | 0.008 | 0.009 |} 0.011 J 0.013 | 0.018
315 0.60% 0.000 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.004
6 0.12% 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 j 0.001
7 0.00% 0.000 | 0.000 | 0.000 |} 0.000 | 0.000 | 0.000 j} 0.000

— Dynamic correlation effects
— After thefirst default, due to magnified contagion,
— New defaults are associated with big shiftsin correlation




|l - Tree approach to hedging defaults

* Comparison of credit deltas
— Market and model deltas at inception
— Equity tranche

[0-3%] [3-69%0] [6-9%] [9-12%] [12-22%)]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA

— Figuresareroughly the same

» Though the base copula market and the contagion
model are quite different models
— Smaller equity tranche deltas for contagion model
» Base correlation sticky deltas underestimate the
Increase in contagion after the first defaults
— Recent market shiftsgo in favour of the contagion model




|l - Tree approach to hedging defaults

* Comparison of credit deltas
— Arnsdorf & Halperin (2007)
— Credit spread deltasin a 2D Markov chain

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 26.5 4.5 1.25 0.65 0.25
model deltas 21.9 4.81 1.64 0.79 0.38

— Confirms previousresults

— Modd deltasin A& H are smaller than market deltasfor the
equity tranche

— Credit spreadsdeltasin A& H are quite similar to credit
deltasin the 1D Markov chain




|l - Tree approach to hedging defaults

What do we learn from this hedging approach?

Thanks to stringent assumptions:
— credit spreadsdriven by defaults
— homogeneity
— Markov property
It is possible to compute a dynamic hedging strategy
— Based on the CDS index
That fully replicates the CDO tranche payoffs
— Model matches market quotes of liquid tranches
— Very smple implementation
— Credit deltas are easy to under stand
|mprove the computation of default hedges
— Sinceit takesinto account credit contagion

Credit spread dynamics needs to be improved



Il - Hedging credit spread risks for large portfolios

When dealing with the risk management of CDOs, traders
— concentrate upon credit spread and correlation risk
— Neglect default risk

What about default risk ?

— For large indices, default of one name has only a small direct
effect on the aggregate loss

Is it possible to build aframework where hedging default
risk can be neglected?
And where one could only consider the hedging of credit
spread risk?

— See paper “A Note on the risk management of CDOs’



Il - Hedging credit spread risks for large portfolios

* Main and critical assumption
— Default times follow a multivariate Cox process
» For instance, affine intensities
» Duffie & Garleanu, Mortensen, Feldhitter, Merrill Lynch

2. the default times follow a multivariate Cox process:

t
Tz-—inf{tER+,U@->exp (/ A@-,ude,)}, 1=1,...,n (2.2)
0

where A1, ..., A, are strictly positive, F - progressively measurable processes, Uy, ... U,
are independent random variables uniformly distributed on [0,1] wnder Q and F and

o(Uy,...  U,) are independent under Q.

* No contagion effects



Il - Hedging credit spread risks for large portfolios

* No contagion effects

— credit spreads drive defaults but defaults do not drive credit
Spreads

— For alarge portfolio, default risk is perfectly diversified
— Only remains credit spread risks: parallel & idiosyncratic

* Main result
— With respect to dynamic hedging, default risk can be neglected
— Only need to focus on dynamic hedging of credit spread risks
> With CDS

— Similar to interest rate derivatives markets




Il - Hedging credit spread risks for large portfolios

®* Formal setup

—  T3...,7,  default times

- N(@)=1,.i=L..n defaultindicators

- H=V nG(Ni(S),SS t) natural filtration of default times
- kK B;ckground (credit spread filtration)

— G, =H, VF enlargedfiltration, P historical measure

— L(t,T),i=1....,n timet price of an asset paying N.(T) at

time T




Il - Hedging credit spread risks for large portfolios

® Sketch of the proof

* Step 1: consider some smooth shadow risky bonds

— Only subject to credit spread risk
— Do not jump at default times

* Projection of the risky bond prices on the credit spread filtration

Definition 3.2 The default free T' forward loss process associated with name 1 €
{0,... ,n}, denoted by p*(.,T) is such that for 0 <t < T:

pP(tT) 2 B [p'(T) | ] = B2 [N(T) | F] = Q(r: < T | ). (3.2)

Lemma 3.1 p(¢,7), i = 1,... ,n are projections of the forward price processes I'(t,T) on
-T_-t :

p'(t,T) = B9 [I'(¢,T) | o) , (3.3)

fori=1,... ,nand 0 <t < T,



Il - Hedging credit spread risks for large portfolios

* Step 2. Smooth the aggregate |0ss process

® .. andthusthe tranche payoffs
— Remove default risk and only consider credit spread risk
— Projection of aggregate loss on credit spread filtration

Definition 3.1 We denote by p'(.), the default-free running loss process associated
with name ¢ € {0,... ,n}, which is such that for 0 <t < T

pi(t) £ E9[Ni(t) | Fi] = Q(ri <t | Ft) =1 — exp(—Ayy). (3.1)

Definition 3.5 default-free aggregate running loss process The default free aggregate
running loss at time t 18 such that for 0 <t <1

palt) 2 23" 9(0) 3.7



Il - Hedging credit spread risks for large portfolios

* Step 3. compute perfect hedge ratios of the smoothed
payof f
»With respect to the smoothed risky bonds

— Smoothed payoff and risky bonds only depend upon credit spread
dynamics

— Both idiosyncratic and parallel credit spread risks

— Similar to amultivariate interest rate framework

— Perfect hedging in the smooth market

Assumption 2 There exists some bounded F - predictable processes 01(.),... ,0,(.) such
that:
D)~ K)* = B2 (a0~ )] + 23 [ 000 T) 4 (42)
1=1

where z, is Fp-measurable, of Q-mean zero and Q -strongly orthogonal to p* (., T), ... ,p™(.,T).



Il - Hedging credit spread risks for large portfolios

* Step 4. apply the hedging strategy to the true defaultable bonds

® Main result
— Bound on the hedging error following the previous hedging strategy
— When hedging an actual CDO tranche with actual defaultable bonds
— Hedging error decreases with the number of names

» Default risk diversification
Proposition 1 Under Assumptions (1) and (2), the hedging error e, defined as:

en = (L(T) — K)" — B9 [(1I,(T) - — = Z/ Hdli(t, T), (4.4)

is such that EX[| e, || is bounded by:

(- () 4

+E7| 2 [].

(%ﬂ ) (S @ <)+ 59 B

(4.5)



Il - Hedging credit spread risks for large portfolios

* Provides a hedging technique for CDO tranches

— Known theoretical properties
— Takesinto account idiosyncratic and parallel gamma risks

— Good theoretical properties rely on no simultaneous defaults, no
contagion effects assumptions

— Empirical work remains to be done

* Thought provocative
— To construct a practical hedging strategy, do not forget default risk
— Equity tranche [0,3%]

— I Traxx or CDX first losses cannot be considered as smooth




Il - Hedging credit spread risks for large portfolios

Linking pricing and hedging ?
The black hole in CDO modeling ?
Standard valuation approach in derivatives markets
» Complete markets
» Price = cost of the hedging/replicating portfolio
Mixing of dynamic hedging strategies
— for credit spread risk

And diversification/insurance techniques
— For default risk



Comparing hedging approaches

* Two different models have been investigated

* Contagion homogeneous Markovian models
— Perfect hedge of default risks
— Easy implementation
— Poor dynamics of credit spreads
— No individual name effects

* Multivariate Cox processes
— Rich dynamics of credit spreads
— But no contagion effects
— Thus, default risk can be diversified at the index level

— Replication of CDO tranches isfeasible by hedging only credit
spread risks.



Comparison results for credit risk portfolios

Pricing issues with factor models

Comparison of CDO pricing modelsthrough stochastic orders

Comprehensive approach to copula, structural and multivariate

Poisson models
Relevance of the conditional default probabilities
» Drive the tranche pricing
For ssimplicity, we further restrict to homogeneous portfolios

We provide a general comparison of pricing models methodology

By looking for the distribution of conditional default probabilities
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Comparison of Exchangeable Bernoulli random vectors Exchangeability assumption
De Finetti Theorem and Factor representation
Stochastic orders

Exchangeability assumption

@ n defaultable firms
@ T1,...,7n default times
@ (D1,...,Dn) = (1{ry<t},- -+, 1{r,<¢}) default indicators

@ Homogeneity assumption: default dates are assumed to be exchangeable

Definition (Exchangeability)

A random vector (71, ...,7n) is exchangeable if its distribution function is
invariant by permutation: Vo € S,

d
(11,---,70) = (To@@)s - - - s To(n))

@ Same marginals

Areski COUSIN Comparison results for homogenous credit portfolios



Comparison of Exchangeable Bernoulli random vectors Exchangeability assumption
De Finetti Theorem and Factor representation
Stochastic orders

De Finetti Theorem and Factor representation

@ Suppose that Dy, ..., D,, ... is an exchangeable sequence of Bernoulli
random variables

There exists a random factor p such that

D1, ..., Dy are independent knowing p

Denote by Fj the distribution function of p, then:
1
PO = dh,....D =) = [ p=rH(1— )" ()
0
@ p is characterized by:

n
]- a.s ~
fE Di = p as n— o
n

i=1

Areski COUSIN Comparison results for homogenous credit portfolios



Comparison of Exchangeable Bernoulli random vectors Exchangeability assumption
De Finetti Theorem and Factor representation
Stochastic orders

Stochastic orders

0 X < Y if E[f(X)] < E[f(Y)] for all convex functions f
@ X<y YIfE[(X—-K)T<E[(Y—-K)]forall KER
o X<gYand E[X] = E[Y] & X <o Y
0 X <.m Y if E[f(X)] < E[f(Y)] for all supermodular functions f

Definition (Supermodular function)

A function f : R” — R is supermodular if for all x e R", 1 < i <j < n and
€,0 > 0 holds

f(x1,.oosXite, oo, xi+08,.. %) — (X1, s Xi + &0y Xjyoeny Xn)

> (X, ooy Xiye ooy Xj 0y e oy Xn) — F(XLy e v oy Xiy e e oy Xjy e v oy Xn)

@ consequences of new defaults are always worse when other defaults have
already occurred =

Areski COUSIN Comparison results for homogenous credit portfolios



Comparison of Exchangeable Bernoulli random vectors Exchangeability assumption
De Finetti Theorem and Factor representation

Stochastic orders

Stochastic orders

@ (D1,...,Dyn) and (D5 ..., D;) two exchangeable default indicator vectors
@ M, loss given default

o Aggregate losses:
n
Ly = Z M;D;
i=1

Ly => MD;
i=1
[d Miiller(1997)

Stop-loss order for portfolios of dependent risks.

(D1, ..., D) <em (Di ..., D}) = Lt < L]

5

Areski COUSIN Comparison results for homogenous credit portfolios




Comparison of Exchangeable Bernoulli random vectors Exchangeability assumption
De Finetti Theorem and Factor representation
Stochastic orders

Stochastic orders

Let D= (Ds,...,D,) and D* = (D7, ..., D;;) be two exchangeable Bernoulli
random vectors with (resp.) F and F* as mixture distributions. Then:

F<«F" = D<.,D* and

Let D1,...,Dp,... and Df,..., Dy, ... be two exchangeable sequences of
Bernoulli random variables. We denote by F (resp. F*) the distribution
function associated with the mixing measure. Then,

(D]_,...,Dn) Ssm (Df,,D;),VnGN#FSCX F*

Areski COUSIN Comparison results for homogenous credit portfolios



Multivariate Poisson model
Application to Credit Risk Management Structural mode
Factor copula models

Multivariate Poisson model

[§ Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)
° I\_Ig Poisson with parameter \: idiosyncratic risk
N Poisson with parameter \: systematic risk

J

°
@ (B!):; Bernoulli random variable with parameter p
@ All sources of risk are independent

°

N =N+ M B, i=1...n
7 =inf{t > 0|N{ >0}, i=1...n

5]

Areski COUSIN Comparison results for homogenous credit portfolios



Multivariate Poisson model
Application to Credit Risk Management Structural mode
Factor copula models

Multivariate Poisson model

o 7 ~ Exp(A + p))

@ D; =1(;,<s, i =1...n are independent knowing NN;
© 1271 Di =5 E[Di | Ne] = P(7i < t | Ne)

@ Conditional default probability:

p=1—(1-p)" exp(—At)

5]

Areski COUSIN Comparison results for homogenous credit portfolios



Multivariate Poisson model
Application to Credit Risk Management Structural mode
Factor copula models

Multivariate Poisson model

@ Comparison of two multivariate Poisson models with parameter sets
(A, A, p) and (A", A", p*)
@ Supermodular order comparison requires equality of marginals:
A+ pPA= A"+ p "
@ Comparison directions:
e p=p": 5_\ V.S A
e A=)A" Avsp

Areski COUSIN Comparison results for homogenous credit portfolios



Multivariate Poisson model
Application to Credit Risk Management Structural mode
Factor copula models

Multivariate Poisson model

Theorem (p = p*)

Let parameter sets (\, A, p) and (\*,\*, p*) be such that X + pA = X\* + p\~,
then:

)‘SA*a S‘ZX*:>I3SCX5*:>(D17"'7Dﬂ)Ssm(va"'7D;)

0.08 T - - - - - .
\ 01
0,07 =0.05
% A=0.01
0.06F ]
\
£ \ p=0.1
E 0.05[ t=5 years 1
£ P(1£ 1)=0.08
s
w 0.04f 1
2
S
g
£ 003t 1
0.02 1
0.01f R 1
\\1“
0 L L L Ee=S3 4
0 005 01 015 02 025 03 035 04

retention level

Areski COUSIN Comparison results for homogenous credit portfolios



Multivariate Poisson model
Application to Credit Risk Management Structural mode
Factor copula models

Multivariate Poisson model

Theorem (A = \*)

Let parameter sets (\, A, p) and (\*,\*, p*) be such that X + pA = X\* + p*),
then:

psp*a XZX*iﬁSCXﬁ*:}(Dlw"aD")SS""(D;)"'?D:)

0.08f- ! . . . .
.

N —— p=03
0.07H\ p=0. 1
\ p=0.2

p=0.1
0.06f 1
A=0.05
L 1=5 years ]
005 P(T‘Sy 1=0.08

stop loss premium
o
o
R
.

e

Maeat sy OO

0 0.1 0.2 0.3 0.4 05 0.6
retention level
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Structural Model

[@ Hull, Predescu and White(2005)
@ Consider n firms

@ Let X/, i=1...n be their asset dynamics
Xi=pWe+ /1 —-p2W/, i=1...n

e W, W', i =1...n are independent standard Wiener processes

@ Default times as first passage times:
i =inf{t e RT|X{ < f(t)}, i=1...n, f: R— R continuous

@ Dj=1¢,<7},i=1...n are independent knowing o(W;, t € [0, T])
° 1X0,Di 255
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Structural Model

For any fixed time horizon T, denote by D; = 1{,,<7y, i =1...n and
D = Lizr<ry, i=1...n the default indicators corresponding to (resp.) p
and p*, then:

pgp* = (D17~--,Dn) <sm (Df,,D;)

Distributions of Conditionnal Default Probabilities

1 T T T
0.9 —p=01 1
—p=0.9
0.8 Normal copula
Normal copula
0.7 4
06 Portfolio size=10000 1
X=0 . .
05 Threshold=-2 7 o p(p) <ex p(p )
t=1 year -
0.4 delta=0.01 B

P(1<1)=0.033
03

0.2

0.1
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Archimedean copula

Copula name Generator ¢ V-distribution
Clayton 71 Gamma(1/0)
Gumbel (= In(t))? a-Stable, « =1/6
Franck —In[(1—e")/(1—e?)] | Logarithmic series

* ~ ~
a<a*"=p<sp" = (Di,...,Dn) <sm (D1,...,D})
1

v/
09
0.8 Independence

Bincrease Comonotomne
07 — 07{0.01;0.1,0.2,0.4}
06
05 ,
~ ~ *

04 ] ® p(0) <ex P(O7)
03
02
01

0

0 01 02 03 04 05 06 07 08 09 1
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Additive copula framework

Vi=pV+/1-p2V;
V,V;i=1...nindependent

Laws of V,V;i=1...n do not depend on the dependence parameter p

Standard copula models:

o Gaussian, Student t

o Double t: Hull and White(2004)

e NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid
and Werner(2005)

o Double Variance Gamma: Moosbrucker(2005)
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Conclusion

Conclusion

@ Characterization of supermodular order for exchangeable Bernoulli random
vectors

@ Comparison of CDO tranche premiums in several pricing models

@ Unified way of presenting default risk models
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