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Abstract 

 
Up to the 2007 crisis, research within bottom-up CDO models mainly concentrated on the 
dependence between defaults. Since then, due to substantial increases in market prices of systemic 
credit risk protection, more attention has been paid to recovery rate assumptions.  

In this paper, we use stochastic orders theory to assess the impact of recovery on CDOs and 
show that, in a factor copula framework, a decrease of recovery rates leads to an increase of the 
expected loss on senior tranches, even though the expected loss on the portfolio is kept fixed. This 
result applies to a wide range of latent factor models and is not specific to the Gaussian copula 
model. 

We then suggest introducing stochastic recovery rates in such a way that the conditional on 
the factor expected loss (or equivalently the large portfolio approximation) is the same as in the 
recovery markdown case. However, granular portfolios behave differently. We show that a 
markdown is associated with riskier portfolios that when using the stochastic recovery rate 
framework. As a consequence, the expected loss on a senior tranche is larger in the former case, 
whatever the attachment point. 

We also deal with implementation and numerical issues related to the pricing of CDOs within 
the stochastic recovery rate framework. Due to differences across names regarding the conditional 
(on the factor) losses given default, the standard recursion approach becomes problematic. We 
suggest approximating the conditional on the factor loss distributions, through expansions around 
some base distribution. 

Finally, we show that the independence and comonotonic cases provide some easy to 
compute bounds on expected losses of senior or equity tranches. 
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Introduction. 
 
The importance of recovery rate modelling in credit risk assessment has been recognized for 
a long time. Schuermann [2004], Altman et al. [2004], Altman et al. [2005], Altman [2006], 
Chava et al. [2008] provide a review of results and emphasize the negative correlation 
between default probabilities and recovery rates. Focusing on the tails on the loss 
distribution, Frye [2000a, 2000b], Pykhtin [2003], Chabaane et al. [2004, 2005] exhibit a 
dramatic increase of measures of credit risk and the need of extra economic capital to deal 
with the previous effect.  
 
In the credit derivatives field, as research on CDOs was considering alternatives to the 
Gaussian copula to account for tail risk, stochastic recovery rate effects started to be 
investigated. These were discussed in, among others, Andersen and Sidenius [2004], Gregory 
and Laurent [2004], Hull and White [2004]. It appeared that idiosyncratic recovery rate risk 
would rather well be diversified in senior tranches and that such recovery rate effects poorly 
explained the so‐called correlation smiles2. Therefore, until the 2007 credit crisis, the 
standard method for quoting synthetic CDO tranches within investment banks was the one‐
factor Gaussian copula model with deterministic recovery consistent with flow CDS trading. 
Stochastic recovery models were not necessary to fit the market at that time and recovery 
distribution and correlation with losses was severely underspecified given the absence of 
market information concerning recovery in isolation.  
 
As the spreads of super-senior tranches increased during the credit crisis, market 
participants could not calibrate anymore correlation parameters from market data. A 
common interpretation of this breakdown is that if the number of defaulting assets 
increased to the point where the senior tranches are hit, the economy would be in a bad 
shape, one in which recovery rates would be expected to be low. Thus the relevant quantity 
for predicting a default payout is the recovery rate conditional on a tranche being hit, and 
not simply the individual names' expected recovery as used by vanilla credit default swap 
traders to convert a running spread to an upfront value and vice versa. Actually, Das and 
Hanouna [2008] show negative correlation between recovery rates and default probabilities 
in the risk-neutral world. This feature is included in the models studied by Amraoui and 
Hitier [2008], Krekel [2008], Bennani and Maetz [2009], Elouerkhaoui [2009], Kakodkar et al. 
[2009], Li [2009], Prampolini and Dinnis [2009]. This state dependent approach to recovery 
rates appears as a convenient way to fatten the right tail of portfolio loss distributions. It is 
further investigated in the paper and compared with the simpler approach of marking down 
the recovery rates, either on all names underlying the credit portfolio on or a subset of 
names. These analyses lead the path to a more accurate management of recovery rate risks 
within books of CDOs. 
                                                 
2 Let us notice that the notion of recovery rate in a CDO pricing context depends upon the precise 
definition of a default event and of the settlement procedures. This concerns especially the notion of 
restructuring and auction mechanism. Thus, one should use historical data with caution, as 
emphasized in Guo et al. [2008] or Verde et al. [2009]. Let us also stress that as far as CDO tranche 
pricing is involved, we need to consider the joint distribution of default times and recovery rates 
across all names, which also includes the cross‐sectional dependence between recovery rates, which 
is not usually addressed in the econometrics literature. Eventually, one needs to consider risk-neutral 
recovery rates as in Pan and Singleton [2008]. 
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The paper involves various concepts related to stochastic orders3 which appear to be the 
right tool to achieve our practical goal of comparing CDO models. Given this, we chose to 
proceed by gradual extensions. Various results and related proofs can be put in a larger 
setting. From time to time, we point this out, such as the use of other dependence 
structures than the Gaussian copula, or within the Gaussian copula framework, the use of 
multifactor models that can be useful in bespoke pricing. 
 
The paper is organized as follows:  

- Section I studies the impact of recovery on the expected tranche losses in a 
deterministic recovery model. Section I also introduces the stochastic orders results 
that will be used throughout the paper. 

- Section II recalls the stochastic recovery rate modelling framework introduced by 
Amraoui and Hitier [2008] and states some bounds and monotonicity results on 
recovery rates. It is shown that stochastic and deterministic recovery rates models 
share the same large portfolio approximations.  

- Section III discusses the implementation and numerical issues related to the pricing 
of CDOs in the stochastic recovery framework. Subsection III.1 deals with large and 
granular portfolios. Subsection III.2 compares the conditional variances of portfolio 
losses in the stochastic recovery rate framework and under a recovery markdown. 
Pricing methods need to be updated in case of stochastic recovery rates. Thus, 
subsection III.3 is dedicated to the computation of CDO tranches using expansion 
techniques, while subsection III.4 investigates the accuracy of such approaches. 
Finally, subsection III.5 aims at comparing the pricing of tranches under a recovery 
markdown assumption and in the stochastic recovery framework.  

- Section IV provides an account of the behaviour of CDO tranche premiums with 
respect to the correlation parameter. Subsection IV.1 deals with the comonotonic 
default dates case, while subsection IV.2 is dedicated to independent default dates. 
Subsection IV.3 deals with the behaviour of tranche premiums as the correlation 
parameter increases. 

- Section V concludes. 
 

Most mathematical proofs are postponed to the appendices. 
 
Default dependence modelling. As usual, we will be given some abstract probability space 
under which we can define a pricing measure  . In the remainder of the paper, we consider 
a single time horizon t  setting. As for the default indicators to time t , we consider the 
standard one factor Gaussian copula model: 1i iV V Vρ ρ= + − , where 0 1ρ≤ ≤  and 

1, , , nV V V  are independent standard Gaussian random variables. ( )1
i i it V Pτ −≤ ⇔ ≤ Φ , 

where iτ  is the default date of name i , ( )i iP F t=  is the marginal probability that name i  
defaults before t 4 and Φ  denotes the Gaussian distribution function. The default indicator 

                                                 
3 We refer to Müller and Stoyan [2002] or Shaked and Shanthikumar [2007] for textbooks that survey 
the topic. 
4 For simplicity, we omit the dependence in t  in the default probability iP . 
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associated with name i  can then be written as: { } ( ){ }11 1
i i i

t V Pτ −≤ ≤Φ
= . ρ  is known as the 

tetrachoric correlation coefficient as opposed to the linear correlation of default indicators. 
The conditional default probabilities will be denoted by: 

( ) ( ) ( )
1

1
i

i i

P V
t V P V

ρ
τ

ρ

− Φ −
≤ = Φ =  − 

 . 

We chose to specify the dependence structure of default indicators instead of that of default 
times5.  
 
This choice of dependence structure is rather expository as will be stressed below, since 
most stated results hold for any latent factor model. 
 
I) Recovery impact on CDO tranches. 
 
In a first step, we consider how a deterministic recovery rate assumption drives the 
expected losses of senior tranches. The recovery rate for name i  is denoted by iR  and the 
corresponding loss given default iM . Note that the recovery rates do not need to be equal 
across names.  
 
One can predict the effect of a recovery markdown in a large number of dependence models 
associated with latent factors, including the above flat correlation Gaussian copula, on the 
expected loss of senior tranches. Actually, a recovery markdown leads to an increase of the 
expected loss of a senior tranche and a converse effect on an equity tranche6. This provides 
the sign of a recovery delta, when there is no premium leg, in almost all models used in the 
industry. 
 
Though the formal proofs depend upon the theory of stochastic orders, due to the non 
Gaussian features of risks involved, the way the loss variance moves gives us an intuition of 
the result. Let us discuss that now and consider a downward shift of a recovery rate

i i iR R R δ→ = − , 0iR δ≥ > .  
- The default probability decreases accordingly to iP  so that the expected loss 

associated with name i  remains unchanged: ( ) ( )1 1i i i iR P R P− = − . In other words, 

                                                 
5 We refer the reader to Li [2009] for a discussion of the differences between the two approaches. 
Just as Gaussian correlation observed on equity tranches varies with maturity, which is compatible 
with the copula of default indicator approach, but not the copula of default time, the stochastic 
recovery model proposed here aims to be compatible with the copula of default indicators only. The 
CDO price can be obtained as a linear combination of options on the portfolio loss maturing at 
different times t . When practitioners are asked to price a linear combination of options, on different 
underlyings, the option model corresponding to each underlying is used rather than trying to come 
up with a model consistent with all the underlyings at once. 
6 Part of this result is obvious. If the recovery rate goes down, say from 40% to 15%, then all senior 
tranches [ ],100%b  with 60% 85%b≤ ≤  will have a zero premium with the 40% recovery 
assumption. With positive default probabilities, they obviously have a positive premium with the 
latter recovery rate assumption. The point that we make here is that this results remains true for all 

[ ]0,1b∈ . 
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default frequency is smaller but the default magnitude is bigger. In the extreme case 
where 1iP = , the variance of the loss associated with name i  is equal to zero. Simple 
algebra shows the larger iP , the smaller the variance of the loss associated with 
name i . So one can expect that the recovery markdown (thus a decrease of default 
probabilities) leads to an increase of the risk associated with name i .  

- On the other hand, since all risks associated with different names are usually 
positively correlated, an increase in the variance of an individual risk leads to an 
increase in the variance of the portfolio loss. Therefore, one can expect an increase 
of the expected loss on senior tranches and conversely a decrease of the expected 
loss on equity tranches. 

 
Let us now proceed to a rigorous analysis. As a first step, we need to compare the loss on 
name i  before and after the markdown. 
 
Lemma I.1: Let us consider i iR R δ= − , with 0 1iR< < , 0iR δ≥ >  and iP  such that 

( ) ( )1 1i i i iR P R P− = − , 1iP ≤ . Then:  

( ) ( ){ } ( ) ( ){ }1 11 1 1 1
i i i i

i cx iV P V P
R R− −≤Φ ≤Φ

− ≤ − , 

where cx≤  stands for the convex order7. 
 
The proof of Lemma 1.1 is detailed in appendix A.1.  
 
Let us notice that this inequality between losses on name i  before and after the markdown, 
with respect to the convex order, is not specific to the Gaussian copula. One should not be 
deceived about the use of Gaussian latent variables iV , which is here simply a matter of 
notational convenience. The (univariate) convex order involves a comparison between two 
marginal distributions. These are binary in both cases, taking values 0 with probability 1 iP−  
and 1 iR−  with probability iP  for the left hand term of the inequality and values 0 with 
probability 1 iP−  and 1 iR−  with probability iP  for the right hand term8. This will be of 
importance when extending comparison results to a larger class of credit models. 
 

                                                 
7 We recall that given two random variables ,X Y , we say that X  is smaller than Y  with respect to 
the convex order, and we denote cxX Y≤  if [ ] [ ]( ) ( )E f X E f Y≤  for all convex functions f  such 
that the expectations are well-defined. Convex order is a standard tool in actuarial studies and 
reliability theory. Since f Id=  and f Id= −  are convex, cxX Y≤  implies that [ ] [ ]E X E Y= . If we 
think of X  and Y  as losses, they can be compared with respect to the convex order only if they 
share the same expectation. Moreover, since 2x x→  is convex, we readily have: 

[ ] [ ]cxX Y Var X Var Y≤ ⇒ ≤ . It can be shown that cxX Y≤  is equivalent to [ ] [ ]E X E Y=  and 

[ ] [ ]( ) ( )E u Y E u X≤  for all increasing and concave functions u . The latter condition means that X  is 
less risky than Y  with respect to second order stochastic dominance, commonly used in 
microeconomics. When ,X Y  are Gaussian, that is equivalent to [ ] [ ]E X E Y=  and ( ) ( )Var X Var Y≤ .  
8 See appendix A for details about comparing the two distribution functions. 
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The next step is to compare the riskiness of portfolio losses that are sums of these individual 
losses. Since their distributions are not identical, the vectors of individual losses cannot be 
compared through the supermodular order, which was the key tool in Burtschell et al. [2008] 
or Cousin and Laurent [2008a]. 
 
One of the required mathematical tools is the comparison of random vectors through the 
directional convex order. Let us consider a function : nf →  . We define the difference 
operator i

ε∆ , 0ε > , 1 i n≤ ≤  by ( )( ) ( )i if x f x e f xε ε∆ = + − , where ie  is the i -th unit vector. 

f  is called directionally convex if for all 1 i j n≤ ≤ ≤  and , 0ε δ > , ( ) 0i j f xε δ∆ ∆ ≥  for all 
nx∈ 9. 

 
Given two n - dimensional random vectors ,X Y , we say that X  is smaller than Y  with 
respect to the directionally convex order if ( ) ( )E f X E f Y≤        for all directionally 

convex functions f  such that the previous expectations are well-defined10. More details 
about the directional convex order can be found in Rüschendorf [2004]. 
 
We also need to consider a notion of positive dependence between the components of a 
random vector, which are here the individual losses. 
 
Definition: A random vector ( )1, , nX X X=   is said to be conditionally increasing if 

( ) ( )i j j J
E X Xφ

∈
 
  

 is increasing in the jX ’s for all { }1, ,J n⊂  , i J∉  and increasing 

functions φ  such that the expectation is well-defined.  
 
Let F  be the joint distribution function of X  and C  a copula function associated with F . 
Proposition 3.5 of Müller and Scarsini [2001] states that if C  is conditionally increasing11, 
then F  is conditionally increasing. That makes clear that the notion of conditional increase 
is related to the dependence structure and not to the marginals. We may also note that if X  
is conditionally increasing the same applies to X− . 
 
We now recall a useful theorem from Müller and Scarsini [2001]. 
 
Theorem I.1: Let X  and Y  be random vectors with a common conditional increasing copula 
and assume that i cx iX Y≤  for all { }1, ,i n∈  . Then, dcxX Y≤ . 
 

                                                 
9  For any convex function :g →  , ( ) ( )1 1, , n nf x x g x x= + +   is directionally convex. For 

instance, ( ) ( )1 1, , n nf x x x x K += + + −   is directionally convex, which we will use for the analysis 
of senior tranches. 
10  Let us notice that a directionally convex function is supermodular. As a consequence, 

sm dcxX Y X Y≤ ⇒ ≤ , where sm≤  stands for the supermodular order. 
11 Clearly the notion of conditional increase is law-invariant. Thus, we can compare distribution 
functions instead of the corresponding random vectors. 
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Let us now address the most usual case where dependence between default events is 
associated with a Gaussian copula. As a consequence, in the case of deterministic recovery 
rates, the individual losses also admit the same Gaussian copula. Usually too, the correlation 
matrix is associated with non negative terms. As discussed in Rüschendorf [1981], this notion 
of positive dependence is too weak, since it may not lead to conditional increase. However, 
it is simple to state whether a Gaussian vector is conditionally increasing (see Theorem 2 in 
Rüschendorf [1981] or Theorem 3.6 in Müller and Scarsini [2001]). 
 
Theorem I.2: Let us consider a Gaussian vector ( )1, , nV V  with an invertible covariance 
matrix Σ . Then the following statements are equivalent: 

a) ( )1, , nV V  is conditionally increasing. 

b) 1−Σ  is a M -matrix. 
 
We recall that ( )

1 ,ij i j n
A a

≤ ≤
=  is an M -matrix if 0ija ≤ , i j∀ ≠ , and if all principal minors are 

positive. There are other characterizations of M -matrices. For instance, 1−Σ  is an M -matrix 
if Σ  is non singular, entrywise nonnegative and if 1−Σ  has nonpositive off-diagonal entries. 
M -matrices have been used for a long time in connexion with Gaussian distributions (see 
Tong [1990]). 
 
Property I.1: Let us consider a Gaussian vector ( )1, , nV V  associated with a “flat” 

correlation structure 1i iV V Vρ ρ= + − , where 1, , , nV V V  are independent standard 
Gaussian random variables and 0 1ρ< < . Then, the corresponding Gaussian copula is 
conditionally increasing. 
 
The proof of property 1.1 is detailed in appendix A.2.  
 
Note that this property can be extended to non flat correlation structures (see appendix 
A.3.1) and to some multifactor Gaussian vectors associated with intra-inter-class correlation 
matrices as defined by Eaton [1993] and used in a credit context by Gregory and Laurent 
[2004] (see appendix A.3.3). However we would like to emphasize the fact that not all factor 
models with positive factor loadings lead to conditional increasing copulas. We refer to 
appendix A.3.2 for more details. 
 
Property I.2: Given a Gaussian copula with flat correlation, 0 1ρ< < , the expected loss on a 
senior tranche increases after a recovery markdown while the converse applies to equity 
tranches. 
 
On mathematical grounds, this is a mere consequence of the stochastic inequality: 

( ) ( ){ } ( ) ( ){ }1 1

1 1
1 1 1 1

i i i i

n n

i cx iV P V P
i i

R R− −≤Φ ≤Φ
= =

− ≤ −∑ ∑ ,  

where the left hand term corresponds to the portfolio loss before the markdown and the 
right hand term to the portfolio loss after the markdown. In other words, a markdown 
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actually leads to an increase of risk of the credit portfolio12. This property, whose proof is 
available in appendix A.3, is illustrated numerically in appendix A.4. 
 
Notice that no homogeneity assumption on default probabilities or recovery rates is 
required. In particular, we can think of applying a recovery markdown on a single name or a 
subset of names. 
 
Another remark concerns the losses conditional on the latent factor. These do change after 
the recovery markdown, thus the two models do not share the same large portfolio 
approximations.  
 
The previous analysis has been performed under the assumption of a Gaussian copula. For 
numerical illustrations, we refer to appendix A.5. To demonstrate the usefulness of the 
above techniques, we show in appendix A.6 how to deal with the case of Archimedean 
copulas, based on results of Müller and Scarsini [2001]. We obtain quite similar results since, 
in most useful cases, Archimedean copulas are conditionally increasing. We subsequently 
show that similar results also hold for most one factor models, including additive factor 
copulas, random factor loadings, frailty models, multivariate Poisson models, affine intensity 
models (see appendix A.7). The analysis is based on papers by Holland [1981], Holland and 
Rosenbaum [1986] about item response models and unidimensional monotone latent 
variable models. 
 
II) Stochastic Recovery Model. 
 
The use of recovery markdown is easy to handle but leads to substantial shifts in the 
valuation of a book of single name CDS: If the expected loss is unchanged, as assumed in 
section I, the value of the default legs of plain CDS remains the same. However, this does not 
hold for the value of premium legs, which involve only the default probabilities and not the 
recovery rates. The decrease of marginal default probabilities associated with a recovery 
markdown will increase the value of a long position in the premium leg of a CDS and 
therefore the value of a sell protection position on the CDS13. 
 
On the contrary, a suitable stochastic recovery rate modelling does not impact the expected 
losses on individual names nor the marginal default probabilities (and thus the value of a 
book of CDS) but typically puts more weight on large losses, which subsequently leads to a 
flatter base correlation structure. As we mentioned above, a flat base correlation structure is 
desirable since it usually eases the pricing of tranchelets14 and smooths out the credit spread 
deltas. 
                                                 
12 Stated slightly differently, while the expected loss is kept unchanged, all convex risk measures 
increase after a markdown. 
13 A well-managed trading book of CDS is likely to behave as a portfolio of long positions in premiums 
legs of CDS, since it corresponds to the outcome of profitable CDS trades after hedging the default 
leg exposure. This is likely to change after the big bang CDS protocol since undoing a CDS trade will 
only result in an upfront premium. 
14  Arbitrage opportunities such as negative tranchelet prices may occur if one uses spline 
interpolation without caution. These unpleasant effects occur less frequently when the base 
correlations associated with different detachment points are of the same magnitude. 
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We consider a suitable stochastic modelling of recovery rates, where those are related to 
the common factor driving default events. In such a framework, for a unit nominal, the loss 
given default on name i  is related to the latent factor V  and the marginal default 
probability iP  by:  

( ) ( )

( )

( )

1

min 1

1
1

1

i

i
i

i

P V

M V R
P V

ρ

ρ

ρ
ρ

−

−

 Φ −
 Φ
 − = −
 Φ −

Φ  − 

, 

with min0 1i
iR R≤ ≤ ≤  and ( ) ( )min1 1i

i i iP R P R− = − . This specification corresponds to the 

stochastic recovery rate model introduced by Amraoui and Hitier [2008] and further 
discussed by Elouerkhaoui [2009], Kakodkar et al. [2009], Li [2009], Prampolini and Dinnis 
[2009]15. It can be shown that min

iR  is a lower bound for the stochastic recovery rate. This 
bound can be name specific, though in the simplest case we can set min 0iR = , which 
guarantees that any senior tranche will be traded at a positive premium.  
 
As one could expect ( )iM V  is decreasing in V . Thus, larger losses given default are related 
to more likely defaults. We refer to appendix B for more details and proofs of the stated 
results.  
 
The loss on name i  can be written ( ) ( ){ }11

i i
i V P

M V −≤Φ
 in the Gaussian copula case with 

stochastic recovery rate. Since ( ) ( ){ } ( )1 min1 1
i i

i
i iV P

E M V P R−≤Φ

  = −  
and given that

( ) ( )min1 1i
i i iP R P R− = − , the expected loss associated with name i  is the same in the 

stochastic recovery and in the prior model with fixed recovery rate iR 16. 
 
While the exposition focuses on the Gaussian copula for ease of exposition, the stochastic 
recovery framework can readily be generalized to most factor models. As an example, let us 
consider a Clayton copula, belonging to the class of frailty models. The conditional default 
probabilities can be written as: 

( ) ( )( )exp 1i it V V P θτ −≤ = − , 

                                                 
15 Krekel [2008] is another example of a suitable stochastic recovery rate model for the pricing of 
CDO tranches. While our approach is associated with dichotomous individual losses, Krekel model 
can be viewed as a multivariate polytomous item response probit model, using the statistical 
terminology, which extends the standard multivariate dichotomous item response probit model 
associated with the Gaussian copula and fixed recovery. The use of factor models in that framework 
can be traced back to Bock and Lieberman [1970]. In the credit field, one may also notice that Krekel 
approach is quite similar to the one used by Gupton et al. [1997] in Creditmetrics. The only difference 
is that the former considers different levels of default severity while the latter concentrate on pre-
default quality, by looking at rating migrations. 
16 Since marginal default probabilities also remain unchanged, using the stochastic recovery rate 
model will have no effect on the value of a book of credit default swaps. 
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where V  follows a standard Gamma distribution with shape parameter 1/θ , 0θ >  and iP  is 
the marginal default probability. The stochastic loss given default is then given by: 

( ) ( ) ( )( )
( )( )min

exp 1
1

exp 1
ii

i
i

V P
M V R

V P

θ

θ

−

−

−
= −

−
, 

with min0 1i
iR R≤ ≤ ≤  and ( ) ( )min1 1i

i i iP R P R− = − , the latter equation having the same 

economic meaning as in the Gaussian copula case. Then, the loss associated with name i  in 

the stochastic recovery rate model writes ( ) { }1
i ii V PM V ≤ , with ln i

i
UV

V
ψ  = − 
 

, where ψ  is 

the Laplace transform associated with the above Gamma distribution and 1, , nU U  are 
uniform random variables, 1, , ,nU U V  being jointly independent (see Burtschell et al. 
[2008] for details). The corresponding individual loss associated with a markdown of the 
recovery rate to min

iR  is provided by ( ) { }min1 1
i i

i
V PR
≤

− .  

 
We notice that losses given default are perfectly driven by the common factor, thus there is 
no idiosyncratic recovery rate risk there. The same feature is shared in the modelling of 
Nedeljkovic et al. [2009]. One can also notice that the correlation parameter ρ  in the 
Gaussian copula case (θ  in the Clayton copula case) impacts both the dependence between 
default indicators and the marginal distributions of recovery rates. This can be seen as a 
drawback of the approach, but also means the model is parsimonious, which we feel is quite 
important for effective risk management. 
 
III) Computation of CDO tranche premiums. 
 
III.1 Large portfolio approximations. 
 
The loss on the portfolio at time t  , associated with the stochastic recovery rate model, is 

given by: ( ) ( ){ }1

1
1

i i

n

i V P
i

L M V −≤Φ
=

=∑ . We discuss in appendix C.1 some dynamic properties of 

the portfolio loss and possible alternative models. 

We denote by: ( ) ( )1

min
1

1
1

n
ii

LP
i

P V
L E L V R

ρ

ρ

−

=

 Φ −
 =   = − Φ   − 

∑ . LPL  is also known as the 

large portfolio approximation and can be viewed as the limit of a series of portfolio losses 
where diversification of credit risk is achieved at the name level, idiosyncratic risks are wiped 
off and the portfolio is only driven by factor risk. 
 
Let us emphasize that the portfolio loss associated with the stochastic recovery rate model 

( ) ( ){ }1

1
1

i i

n

i V P
i

L M V −≤Φ
=

=∑  and the simpler markdown specification ( ) ( ){ }1min
1

1 1
i i

n
i

V P
i

R −≤Φ
=

−∑  share 

the same large portfolio approximation. In mathematical terms, these two portfolios have 
the same conditional expected loss. This means that the stochastic recovery rate and the 
recovery markdown approaches will only differ for “granular” portfolios. 
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We show below that the expected loss on an equity tranche is smaller when considering the 
(granular) stochastic recovery rate model than in the corresponding large portfolio 
approximation. This is a straightforward extension of a well-known result in the case of 
deterministic recovery rates. 

Property III.1: ( ) ( ) ( ) ( ){ }1

1

min
1 1

1 1
1 i i

n n
ii

LP cx i V P
i i

P V
L R L M V

ρ

ρ
−

−

≤Φ
= =

 Φ −
 = − Φ ≤ =
 − 

∑ ∑  , where cx≤  

stands for the convex order. 
 
The proof is detailed in appendix C.2. The intuition is rather simple, since the large portfolio 
approximation wipes off idiosyncratic risks and is thus less risky than the corresponding 
granular portfolio. As a consequence of the convex order between LPL  and L , 

( ) ( )LPE L K E L K+ +   − ≤ −     for all detachment points K . This provides a lower bound for 

the default leg of senior tranches. Since [ ] [ ] ( )
1

1
n

LP i i
i

E L E L R P
=

= = −∑ , using call-put parity, 

we also have the following inequalities regarding equity tranches: 
( ) ( )min , min ,LPE L K E L K≤      

17. 

This provides a quite easy to compute upper bound for the default leg of equity tranches. 
 
III.2 Conditional variances of losses under stochastic recovery rate and markdown models. 
 
We recall that the portfolio losses associated with the stochastic recovery rate model and 
the simpler markdown specification have the same conditional expectation. It is interesting 
to go one step further and analyse the conditional variance of the portfolio losses in the two 
approaches: this gives some intuition about the differences in risk. 
 
Since the individual losses are conditionally independent upon the factor V  in the two 
specifications, the conditional variance is the sum of conditional variances on individual 
losses. We will thereafter focus on the conditional variance of the individual loss associated 
with a given name (say i ).  
 

Property III.2: ( ) ( ){ } ( ) ( ){ }1 1min1 1 1 ,
i i i i

i
i V P V P

Var M V V Var R V V− −≤Φ ≤Φ

   ≤ − ∀ ∈      
 . 

 
See appendix C.3 for the proof. 
 
As a consequence, the conditional variance of the portfolio loss in the stochastic recovery 
rate model is smaller than the conditional variance of the portfolio loss with a deterministic 
recovery markdown18. Though this is not a formal proof, we may think that the prices of 
senior tranches in the stochastic recovery framework will be smaller than their counterparts 

                                                 
17 Actually, we do not need call-put parity since min( , )x x K→−  is convex.  
18 This obviously assumes that the markdown is done appropriately, i.e. expected losses are the same 
in the two models. 
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priced under a recovery markdown (the converse applying to equity tranches). This will be 
investigated rigorously in subsection III.5. 
 
Finally, higher cumulants of the conditional loss distribution, in the stochastic recovery rate 
model can be easily computed: the individual losses are (conditionally) independent and 
their (conditional) distribution is up to some scaling factor (the loss given default) a Bernoulli 
distribution. This will be helpful in further computations. 
 
III.3 Pricing of CDO tranches based on expansion techniques. 
 
In this subsection, we deal with numerical issues related to the pricing of CDO tranches in 
the proposed stochastic recovery framework. We describe a numerical procedure which 
leads to accurate and fast implementations. It is based on expansions of the conditional loss 
distributions around some base conditional distribution. These ideas are well-known in 
statistics and have already been exploited for financial applications such as option pricing or 
credit risk assessment19.  
 
In our framework, conditioning on the value of the systemic factor V  (and then integrating 
over it) reduces the problem to the case where all losses given default are deterministic 
(equal to ( )iM V ) and the default indicators independent. In this context, the most 
commonly used algorithm is the one described by Andersen et al. [2003]. It works quite well 

when all losses given default are equal, say 60%
125

 for a CDX or iTraxx tranche, which was 

until 2007, the standard assumption. In the general case where losses given default differ 
from one name to another, one must first approximate the losses given default by multiples 
of a loss unit. This corresponds to our framework since the losses given default ( )iM V  
depend upon the marginal default probabilities and are thus name specific. 
 
The complexity of the recursion algorithm is inversely proportional to the size of the loss unit. 
To illustrate this phenomenon, let us examine the elementary case of a two names basket, 
whose losses given default are displayed in Table 1. 
  

 1M  2M  Loss unit 
Case 1 60% 60% 60% 
Case 2 60% 59% 1% 

Table 1: Highest loss units in two simple cases. 
 
We notice that a small change in the recovery assumption of the second name divides the 
optimal loss unit20 by a factor 60 and therefore multiplies the overall computation time by 
                                                 
19 This subsection does not aim at providing a full account of the relevant literature. It intends to 
show that existing expansion techniques can be well suited for the pricing of CDO tranches in our 
stochastic recovery framework. 
20 Prampolini and Dinnis [2009] suggest some bucketing approach to deal with the curse of 
dimensionality. Assessing rigorously the discretization errors related to the choice of the loss unit is 
not a standard issue. For simplicity, we did not tolerate any approximation in the losses given default 
when computing the optimal loss unit in Table 1. Other numerical schemes do not rely on such 
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this same factor. This simple example makes clear why using this algorithm for the stochastic 
recovery model will result in computation times much longer than for its markdown 
counterpart for instance.  
 
The above issue can be dealt with approximations of the conditional on V  loss distributions 
by perturbed distributions. These numerical methods originated from the simple assessment 
that the (conditional) loss distribution is known in the case of a homogeneous portfolio, with 
identical recovery rates, default probabilities and independent default times: it is simply a 
binomial distribution. Moreover, on one hand, this distribution can be well approximated by 
a normal distribution when the number of portfolio constituents increases, using the central 
limit theorem (see Varadhan [2001]). On the other hand, when n  increases and the 
expected loss is kept constant, then a good approximation of the binomial distribution is the 
Poisson distribution, according to the law of rare events (see Taylor and Karlin [1984]).  
 
That is why it is not surprising that these approximations appeared in the literature as 
proxies for conditional loss distributions even in the case of non-homogeneous portfolios: 
for instance, Shelton [2004] used the Gaussian distribution to price CDO and CDO squared. El 
Karoui and Jiao [2007] and El Karoui et al. [2007] considered the Gaussian and the Poisson 
distributions as first order approximations to price CDOs, while O'Kane [2007] used the 
binomial distribution for the same purpose. 
 
However, the three distributions above match at most the first two (conditional) moments 
of the (conditional) loss distributions, whereas all of the conditional moments can be 
computed quite easily using the conditional independence assumption. One way to benefit 
from that and match higher conditional moments is actually to multiply the concerned 
distribution by a linear combination of associated orthogonal polynomials 21 . This 
corresponds to the well-known Type A Gram-Charlier series in the case of the Gaussian 
distribution. Once we have approximated the conditional distribution of the portfolio loss, 
an integration over the distribution of V is required to get for instance, the expected losses 
on CDO tranches. The latter integration is usually done using Gauss-Hermite quadrature for 
example. We now detail how this can be put into execution with respect to the Gaussian 
distribution. Expansions around the Poisson and the binomial distributions are detailed in 
appendices C.4 and C.5. 
 
In the case of the Gaussian distribution, the associated polynomials are the Hermite 

polynomials. We will further consider 
L E L V

L
L Vσ

−   =
  

 , the rescaled loss and we aim at 

providing approximations of the conditional distribution of L . The conditional density 
function of the rescaled loss is approximated by: 

                                                                                                                                                         
approximation of the loss unit. The Fourier transform inversion method of Gregory and Laurent 
[2003] or the saddle point approximation scheme described in Martin et al. [2001] are among them. 
21 Note that matching higher moments is sometimes achieved at the expense of the positivity of the 
measure in these constructions. Also, increasing the number of matched moments does not 
necessarily lead to more accurate approximations. We refer to Kolassa [2006] for an extensive 
discussion of such techniques. 
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 ( ) ( ) ( )
3

1 ( )
!

GCn
k

k
k

G V
f x x H x

k
ϕ

=

 
= × + 

 
∑  (1) 

where ϕ  is the standard Gaussian density function, kH  is the k -th Hermite polynomial (see 

Szegö [1975]), GCn  is the number of matched moments and ( ) ( )k kG V E H L V =    allows 

us to match the (conditional on V ) moments of the rescaled loss. Such techniques have 
been used (in an unconditional context) by Corrado and Su [1996] to estimate the risk-
neutral distribution of the S&P 500 index and by Tanaka et al. [2005] to price interest rate 
derivatives. 
 
The problem of correcting the Gaussian and Poisson approximations for the loss distribution 
has been studied by Jiao [2006], El Karoui et al. [2008] and El Karoui and Jiao [2009]. Their 
approach is different from the above. Indeed, their correcting terms are not obtained by 
matching higher moments but rather by evaluating the error in limit theorem problems 
using Stein's method and the zero bias transformation. These techniques allow them, in 
particular, to obtain error bounds on option prices, bounds which are not available in the 
case of the above approximations. However, it should be noted that their Gaussian 
(respectively Poisson) approximation with first order correction coincide with the 
approximation of Equation (1) (resp. (2)) with 3GCn =  (respectively 2Pn = ). However, both 
approximations differ when adding one more correcting term22 and it could be argued that 
implementing the above moment matching procedures at any order is simpler for a 
practitioner than implementing those described in Jiao [2006] at any order. 
 
III.4 Comparative analysis of expansion techniques. 
 
We now illustrate by numerical examples the performances of the algorithms described 
above. We consider two sets of 5Y tranche quotes: the first one concerns the DJITX S9 MST 
index (see Table 7, appendix A.5 for details); the second one has for underlying asset the 
CDX NA IG9 index and is displayed in Table 2. These quotes are calibrated using the 
stochastic recovery model specified in subsection II.1 with an arbitrary choice of min 0R = . 
 

Attachment 
Point 

Detachment 
Point Upfront Mid Running Spread Mid 

0.0000000 % 2.6025410 % 74.00 % (73.50 ; 74.50) % 500 (500 ; 500) 
2.6025410 % 6.7009016 % 38.25 % (37.75 ; 38.75) % 500 (500 ; 500) 
6.7009016 % 9.7746721 %   821.5 (814 ; 829) 
9.7746721 % 14.8976230 %   470 (465 ; 475) 

14.8976230 % 30.2664754 %     120 (115 ; 125) 

Table 2: 5Y CDX NA IG9 tranche quotes for an index reference spread of 223 bps on January 2009, 
5th. Note that the first two equity tranches are quoted in upfront payments and not in running 

spreads. 

The numerical algorithm used to compute tranche premiums during the calibration is the 
one described in Andersen et al. [2003] with a (conditional) loss unit equal to the 
(conditional) maximum loss divided by 710 . Let us note that this choice is particularly naive 

                                                 
22 It was noted by El Karoui et al. [2007] in the case of the Gaussian distribution. 
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and results in an extremely slow calibration procedure. However the resulting correlations 
were kept as benchmarks after being cross-checked using other numerical methods. 
 
In Tables 3 and 4 are displayed the upfront payments and running spreads obtained when 
pricing the quoted tranches with other numerical methods. Between brackets are displayed 
the number of matched moments. Thereby, Gauss (2) corresponds to the Gaussian 
approximation of Shelton [2004]; Gauss (3) and Poisson (2) correspond to the 
approximations studied in Jiao [2006], El Karoui and Jiao [2007] and El Karoui et al. [2007]; 
while Bernoulli (1) corresponds to the simplest case in O' Kane [2007]. 
 

Attachment  
Point 

Detachment 
Point Gauss (2) Gauss (3) Gauss (4) 

0.0 % 3.0 % 68.48 % (2.5E-4) 68.50 % (1.3E-5) 68.50 % (2.2E-6) 
3.0 % 6.0 % 1,245.66 (5.3E-4) 1,245.02 (2.0E-5) 1,245.00 (1.2E-6) 
6.0 % 9.0 % 620.01 (8.4E-6) 619.96 (6.1E-5) 619.96 (6.5E-5) 
9.0 % 12.0 % 360.51 (1.8E-5) 360.53 (7.1E-5) 360.53 (7.1E-5) 

12.0 % 22.0 % 109.48 (1.8E-4) 109.50 (2.3E-5) 109.50 (2.1E-5) 
        

Attachment  
Point 

Detachment 
Point Poisson (1) Poisson (2) Poisson (4) 

0.0 % 3.0 % 68.41 % (1.3E-3) 68.52 % (3.5E-4) 68.50 % (1.4E-5) 
3.0 % 6.0 % 1,245.11 (9.1E-5) 1,244.54 (3.7E-4) 1,245.08 (6.7E-5) 
6.0 % 9.0 % 621.72 (2.8E-3) 619.85 (2.4E-4) 620.02 (3.7E-5) 
9.0 % 12.0 % 360.75 (6.9E-4) 360.29 (5.8E-4) 360.37 (3.7E-4) 

12.0 % 22.0 % 109.61 (1.0E-3) 109.55 (4.8E-4) 109.51 (1.0E-4) 
        

Attachment  
Point 

Detachment 
Point Bernoulli (1) Bernoulli (2) Bernoulli (4) 

0.0 % 3.0 % 68.21 % (4.2E-3) 68.50 % (3.2E-5) 68.50 % (1.6E-5) 
3.0 % 6.0 % 1,244.15 (6.8E-4) 1,245.15 (1.2E-4) 1,245.07 (5.9E-5) 
6.0 % 9.0 % 620.83 (1.3E-3) 620.03 (4.7E-5) 620.01 (1.2E-5) 
9.0 % 12.0 % 361.30 (2.2E-3) 360.38 (3.2E-4) 360.37 (3.5E-4) 

12.0 % 22.0 % 110.14 (5.8E-3) 109.51 (5.7E-5) 109.51 (1.3E-4) 

Table 3: DJITX S9 MST upfront payments and running spreads computed with different numerical 
methods. The relative errors are displayed between brackets. 

 
First of all, we notice that, in our case, matching higher moments tends to improve the 
accuracy of the approximation for all three distributions. However, we would like to 
emphasize the fact that, to the best of our knowledge, no theoretical result is available in 
the literature to support this observation in greater generality. Second, we note that 
matching four moments gives rise to quite precise results, since the error in term of upfront 
payment or running spread is always less than 1% of the bid offer spread. Finally, if we had 
to make a choice between the three types of expansions based on this example, then Gauss 
(4) would probably be our pick. 
 

Attachment 
Point 

Detachment 
Point Gauss (2) Gauss (3) Gauss (4) 

0.0000000 % 2.6025410 % 73.98 % (2.4E-4) 74.00 % (8.2E-6) 74.00 % (1.3E-6) 
2.6025410 % 6.7009016 % 38.26 % (3.6E-4) 38.25 % (1.1E-5) 38.25 % (2.5E-6) 
6.7009016 % 9.7746721 % 821.57 (8.4E-5) 821.51 (1.8E-5) 821.51 (1.5E-5) 
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9.7746721 % 14.8976230 % 469.97 (6.5E-5) 469.99 (1.6E-5) 469.99 (1.5E-5) 
14.8976230 % 30.2664754 % 119.98 (1.4E-4) 120.00 (9.2E-7) 120.00 (5.8E-8) 
        

Attachment 
Point 

Detachment 
Point Poisson (1) Poisson (2) Poisson (4) 

0.0000000 % 2.6025410 % 73.91 % (1.2E-3) 74.03 % (4.1E-4) 74.00 % (3.4E-5) 
2.6025410 % 6.7009016 % 38.24 % (1.8E-4) 38.24 % (2.8E-4) 38.25 % (9.2E-6) 
6.7009016 % 9.7746721 % 822.82 (1.6E-3) 821.37 (1.6E-4) 821.69 (2.3E-4) 
9.7746721 % 14.8976230 % 470.13 (2.8E-4) 469.85 (3.1E-4) 469.94 (1.2E-4) 

14.8976230 % 30.2664754 % 120.08 (6.4E-4) 120.96 (3.1E-4) 120.00 (3.0E-5) 
        

Attachment 
Point 

Detachment 
Point Bernoulli (1) Bernoulli (2) Bernoulli (4) 

0.0000000 % 2.6025410 % 73.64 % (4.9E-3) 73.99 % (8.4E-5) 74.00 % (1.5E-5) 
2.6025410 % 6.7009016 % 38.15 % (2.6E-3) 38.25 % (5.9E-5) 38.25 % (4.7E-7) 
6.7009016 % 9.7746721 % 822.83 (1.6E-3) 821.68 (2.2E-4) 821.64 (1.7E-4) 
9.7746721 % 14.8976230 % 471.23 (2.6E-3) 469.93 (1.4E-4) 469.93 (1.4E-4) 

14.8976230 % 30.2664754 % 120.70 (5.8E-3) 119.95 (4.0E-4) 119.98 (1.5E-4) 

Table 4: CDX NA IG9 upfront payments and running spreads computed with different numerical 
methods. Between brackets are displayed the relative errors. 

 
III.5 Recovery markdown and stochastic recovery model. 
 
We intend here to compare the computation of tranche spreads under the stochastic 
recovery model (with default probabilities iP ) and a granular Gaussian copula model with 
default probabilities iP , fixed recovery rates equal to min

iR . More precisely, we want to 

compare 
( ){ }1

1
( )1

i i

n

i V P
i

M V −≤Φ
=
∑  and ( ) ( ){ }1min

1
1 1

i i

n
i

V P
i

R −≤Φ
=

−∑ . As stated above, these two portfolio 

losses are associated with the same conditional expectation given V : 

( ){ } ( ) ( ){ } ( ) ( )
1 1

1

min min
1 1 1

( )1 1 1 1
1i i i i

n n n
ii i

i V P V P
i i i

P V
E M V V E R V R

ρ

ρ
− −

−

≤Φ ≤Φ
= = =

 Φ −     = − = − Φ     −     
∑ ∑ ∑ . 

 
As before, we compare first the individual losses associated with the stochastic recovery 
model and with the recovery markdown. Let us first notice that the concept of convex order 
readily extends to conditional convex order. Given three random variables , ,X Y V , we will 

say that V
cxX Y≤  if ( ) ( )E f X V E f Y V  ≤       for all convex functions f  such that the 

expectations are well-defined23. Clearly, due to the law of iterated expectations, we have: 
V
cx cxX Y X Y≤ ⇒ ≤ . 

 
We can then claim that: 

( ) ( ){ } ( ) ( ){ }1 1min1 1 1
i i i i

V i
i cxV P V P

M V R− −≤Φ ≤Φ
≤ − .  

The proof is quite simple and is detailed below.  
 

                                                 
23 Let us notice that V does not need to be scalar, though we do not need such an extension here. 
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From property II.1, ( ) min1 i
iM V R≤ − . Thus, switching from ( )iM V  to min1 iR−  is simply a 

conditional markdown. As for the default indicators, we can write them as 
( )( ){ }11

i iV P V−≤Φ
 and 

( )( ){ }11
i iV P V−≤Φ

, where ( ) ( )1

1
i

i

P V
P V

ρ
ρ

− Φ −
= Φ  − 

 and ( ) ( )1

1
i

i

P V
P V

ρ

ρ

− Φ −
 = Φ
 − 

 denote 

the conditional default probabilities. Since i iP P≤ , ( ) ( )i iP V P V≤ . Going along the same 
lines as in the proof of Lemma I.1, we can state that the left-hand term of the above 
inequality is (conditionally on V ) less dangerous24 than the right hand term. Since the 
conditional expectations are both equal to ( )min1 ( )i

iR P V− , the conditional convex order 

follows25. 
 
We now compare the risks associated with a recovery markdown and the above stochastic 
recovery rate model, as far as CDO tranches are concerned. Most of the tools used here can 
be found in Müller and Scarsini [2001] and the references therein. 
 
Given two n - dimensional random vectors ,X Y , we say that X  is smaller than Y  with 
respect to the componentwise convex order (and is denoted ccxX Y≤ ) if 

( ) ( )E f X E f Y≤        for all componentwise convex functions26 f  such that the previous 

expectations are well-defined. As for the conditional convex order, this extends readily to 
the conditional on V  case. The same generalisation also holds for the directionally convex 
order. Let us notice that V V

ccx dcxX Y X Y≤ ⇒ ≤ , using the same notational style as for the 
conditional convex order. 
 
Theorem 4.3 of Müller and Scarsini [2001] states that if ( )1, , nX X X=   and ( )1, , nY Y Y=   
are random vectors with independent components and if i cx iX Y≤  for 1, ,i n=  , then 

ccxX Y≤ . This readily extends to the conditional on V  case, which corresponds to our 
framework27. We can thus state: 

( ){ } ( ){ } ( ) ( ){ } ( ) ( ){ }1 1 1 1
1 1 1 1

1
1 min min( )1 , , ( )1 1 1 , , 1 1

n n n n

V n
n ccxV P V P V P V P

M V M V R R− − − −≤Φ ≤Φ ≤Φ ≤Φ

   ≤ − −   
   

  . 

Thus, going into the same lines as in Property I.2, the portfolio losses can be compared 
through the conditional convex order and eventually through the convex order: 

                                                 
24 See the proof of Lemma 1.1 where the notion of “less dangerous” is detailed. 
25 The conditional convex order implies that: 

( ) ( ){ } ( ) ( ){ }1 1min1 1 1 ,
i i i i

i
i V P V P

Var M V V Var R V V− −≤Φ ≤Φ
   ≤ − ∀ ∈      

 , 

which was already stated and proven in subsection III.2 through a direct computation. 
26 A real-valued function f  defined on n

  is said to be componentwise convex if it is convex in each 
argument when the other are held fixed. 
27 Conditionally on V , the individual losses

( ){ }1( )1
i i

i V P
M V −≤Φ

, 1, ,i n=   are independent. The same 

conditional independence result holds for the set of individual losses ( ) ( ){ }1min1 1
i i

i
V P

R −≤Φ
− , 1, ,i n=  . 
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( ){ } ( ) ( ){ }1 1min
1 1

( )1 1 1
i i i i

n n
i

i cxV P V P
i i

M V R− −≤Φ ≤Φ
= =

≤ −∑ ∑ . 

As a consequence the expected losses on senior tranches are larger when applying a 
recovery markdown than when using the stochastic recovery rate model; the converse 
applies to equity tranches28.  
 
Let us now proceed through a numerical study to assess the discrepancies between the 
recovery markdown and the stochastic recovery model. The numerical tests that we 
performed validate the idea that a recovery markdown is associated with smaller expected 
losses on equity tranches than in the case of a granular stochastic recovery rate model. In 
the case studied in section I, we computed expected tranche losses at a given maturity in 
both the stochastic recovery model (with min 0%iR = ) and its markdown counterpart for 
different correlation assumptions. The results, displayed in Table 5, are hopefully in 
accordance with the theoretical analysis. 
 

Correlation Model [0 , 3] % [0 , 6] % [0 , 9] % [0 , 12] % [0 , 22] % [0,100]% 

10% 
M.D. 2.513% 3.880% 4.471% 4.703% 4.833% 4.838% 
S.R. 2.597% 3.965% 4.519% 4.725% 4.835% 4.838% 

30% 
M.D. 1.983% 3.061% 3.697% 4.091% 4.642% 4.838% 
S.R. 2.041% 3.110% 3.733% 4.116% 4.651% 4.838% 

50% M.D. 1.563% 2.439% 3.023% 3.440% 4.215% 4.838% 
S.R. 1.606% 2.474% 3.050% 3.461% 4.226% 4.838% 

70% M.D. 1.204% 1.907% 2.414% 2.806% 3.655% 4.838% 
S.R. 1.235% 1.932% 2.434% 2.822% 3.666% 4.838% 

90% M.D 0.891% 1.438% 1.853% 2.190% 3.001% 4.838% 
S.R. 0.910% 1.453% 1.866% 2.202% 3.005% 4.838% 

Table 5: DJITX S9 MST expected tranche losses expiring on 06/20/11 for different correlation 
scenarios in the stochastic recovery model (S.R.) and in its markdown counterpart (M.D.). 

We recall that in the 100% correlation case, the two models lead to the same expected 
tranche losses. Let us also notice that the discrepancies between the two approaches are 
small. This is not surprising since the large portfolio approximations are the same in the two 
cases and the granularity of the DJITX is not too large. 
 
IV) Dependence of CDO tranche premiums with respect to correlation. 
 

                                                 
28 Let us notice that the previous proof only applies when expected conditional losses are equal, 
which was not the case for instance in the recovery markdown case studied in section I. However, we 
stress that the above comparison result between a markdown and the corresponding stochastic 
recovery rate model is not specific to the Gaussian copula case. To follow up the Clayton copula case 
and using the same notations as above, we have ( ) { } ( ) { }min1 1 1

i i i i

V i
i cxV P V PM V R≤ ≤≤ −  since 

( ) min1 i
iM V R≤ − . Due to conditional independence upon V , we also have: 

{ } { }( ) ( ) { } ( ) { }( )1 1 1 1

1
1 min min( )1 , , ( )1 1 1 , , 1 1

n n n n

V n
n ccxV P V P V P V PM V M V R R≤ ≤ ≤ ≤

≤ − −  .  

Thus, portfolio losses when applying a recovery markdown and when using the stochastic recovery 
rate model are ordered the same way as in the Gaussian copula case. 
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The analysis is more complicated here since, as mentioned above, the correlation parameter 
is involved both in default dependence and in the distribution of losses given default. 
 
IV.1 Study of comonotonic default dates. 
 
When 100%ρ = , default dates 1, , nτ τ  are comonotonic. This assumption leads to a lower 
bound for the expected loss on equity tranches. 
 
We recall that the loss given default on name i  is provided by: 

( ) ( )

( )

( )

1

min 1

1
1

1

i

i
i

i

P V

M V R
P V

ρ

ρ

ρ
ρ

−

−

 Φ −
 Φ
 − = −
 Φ −

Φ  − 

 which depends upon the correlation parameter ρ 29. 

 
Property IV.1: the portfolio loss associated with a correlation parameter 100%ρ =  is 

provided by: ( ) ( ){ }1min
1

1 1
i

n
i

V P
i

R −≤Φ
=

−∑ . 

 
The proof of the previous property is detailed in appendix D.1. In other words, the limit case 

100%ρ =  collapses to a one factor Gaussian copula case, with perfect correlation, a 
deterministic recovery markdown to min

iR  and marginal default probabilities equal to iP .  
 
Property IV.2: The 100% correlation case provides an upper bound for the expected loss on 
senior tranches and a lower bound for the expected loss on equity tranches. 
 
The proof of previous property is postponed in appendix D.2. The perfect correlation case 
provides an easy to compute upper bound for the default leg of senior tranches and a lower 
bound for the expected loss on equity tranches. 
 
IV.2 Study of independent default dates. 
 
When 0%ρ = , default dates 1, , nτ τ  are independent. Since ρ  also drives the recovery 

rate, we readily have that ( ) 1i iM V R= − . In this limit case, the stochastic recovery rate 
becomes non stochastic and is equal to iR . The conditional default probabilities do not 
depend anymore upon V  and are equal to iP . As a consequence, the stochastic recovery 
rate model is formally equivalent to a flat Gaussian copula model, with correlation 
parameter equal to zero, marginal default probabilities and constant recovery rates 
respectively equal to iP  and ,  1, ,iR i n=  . The portfolio loss associated with 0%ρ =  
(independent default dates) is simply provided by: 

( ) ( ){ }1

1
1 1

i i

n

i V P
i

R −≤Φ
=

−∑ . 

                                                 
29 For notational simplicity the dependence of the loss given default upon ρ  is not stated explicitly. 
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One can guess that 0ρ >  leads to smaller values of the default leg of an equity tranche than 
in the case of independent default dates. We will show this in several steps. Technicalities 
are postponed to appendix D. 
 
First, we compare the loss associated with name i  in the case of a constant recovery rate iR  
and default probability iP  and in the case of a stochastic recovery rate with minimum 
recovery rate min

iR  and corresponding parameter iP . 
 
Lemma IV.1: The loss associated with name { }1, ,i n∈  is smaller, with respect to the 
convex order, in the independence case than in the model with positive correlation: 

( ) ( ){ } ( ) ( ){ }1 11 1 1
i i i i

i cx iV P V P
R M V− −≤Φ ≤Φ

− ≤ . 

We then need to study the dependence structure between the individual losses. This is 
addressed in the following lemma. 
 

Lemma IV.2: ( ) ( ){ } ( ) ( ){ }1 1
1 1

1 1 , , 1
n n

nV P V P
M V M V− −≤Φ ≤Φ

  
 

  is weakly associated in sequence. 

 
We recall that a random vector ( )1, , nX X  is weakly associated in sequence if for all x∈ , 

1 1i n≤ ≤ −  and non-decreasing function f , we have: { } ( )( )( 1)1 , 0
i iX xCov f X +> ≥ , where 

( )( 1) 1, ,i i nX X X+ +=  . This notion of positive dependence will be useful to show our main 
result.  
 

Property IV.3: ( ) ( ){ } ( ) ( ){ }1 1

1 1
1 1 1

i i i i

n n

i cx iV P V P
i i

R M V− −≤Φ ≤Φ
= =

− ≤∑ ∑ . 

We recall that the right-hand term of the inequality corresponds to the portfolio loss in the 
independence case, while the left-hand term is the portfolio loss in the stochastic recovery 
model for a correlation parameter ρ . Thus, Property IV.3 is a formal statement that 0ρ >  
leads to smaller values of the default leg of an equity tranche than in the case of 
independent default dates. 
 
IV.3 Empirical study of monotonicity with respect to ρ . 
 
We have already shown that 0%ρ =  and 100%ρ =  are associated with bounds on the 
expected loss of base or senior tranches. We also know that, for large portfolios, the 
stochastic recovery model behaves as a standard Gaussian copula with a recovery markdown. 
In the latter case, we can state some monotonicity properties with respect to the correlation 
parameter. We may think of a similar behaviour in the case of the stochastic recovery model. 
To support our intuition, we considered the numerical example of section I and computed, 
for different correlation assumptions, expected tranche losses expiring on June 2011, 20th. 
The results, shown in Table 6, confirm what we expected: these quantities are decreasing 
with correlation. 
 

Rho [0 , 3] % [0 , 6] % [0 , 9] % [0 , 12] % [0 , 22] % [0 , 100] % 
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20 % 2.298 % 3.494 % 4.112 % 4.440 % 4.781 % 4.838 % 
30 % 2.041 % 3.110 % 3.733 % 4.116 % 4.651 % 4.838 % 
40 % 1.813 % 2.776 % 3.381 % 3.787 % 4.460 % 4.838 % 
50 % 1.606 % 2.474 % 3.050 % 3.461 % 4.226 % 4.838 % 
60 % 1.414 % 2.194 % 2.736 % 3.140 % 3.960 % 4.838 % 
70 % 1.235 % 1.932 % 2.434 % 2.822 % 3.666 % 4.838 % 

Table 6: Expected tranche losses on the DJITX S9 MST loss expiring on June 2011, 20th. 

 
V) Conclusion. 
 
This paper has provided a number of properties and results regarding the recovery rate 
assumptions and the pricing of CDO tranches in a factor copula framework. First, we could 
show that a recovery markdown leads to increase of the expected loss on senior tranches 
whatever the attachment point. This holds for most known credit models, among which the 
flat Gaussian copula. We then suggest introducing stochastic recovery rates in such a way 
that the conditional on the factor expected loss is the same as in the recovery markdown 
case. We considered numerical issues in the pricing of tranches. Due to differences across 
names regarding the conditional (on the factor) losses given default, the standard recursion 
approach becomes problematic. We suggest approximating the conditional on the factor 
loss distributions, through expansions around some base distribution. Some comparisons 
can be driven between the losses associated with a recovery markdown and with a 
stochastic recovery rate. It can be shown that expected losses on senior tranches are larger 
when applying a recovery markdown than when using the proposed stochastic recovery rate 
model. The converse applies to equity tranches. Finally, we considered the dependence of 
equity tranches with respect to the correlation parameter. We could show that a correlation 
parameter of 0% (independent default dates) provides an upper bound for the default leg of 
equity tranches. Conversely, a correlation parameter of 100% (comonotonic default dates) 
leads to a lower bound. 
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Appendix A: Proofs and examples of section I. 
 
A.1 Proof of Lemma I.1. 
 
We denote by iF  the distribution function associated with ( ) ( ){ }11 1

i i
i V P

R −≤Φ
−  and by iF  the 

distribution function associated with ( ) ( ){ }11 1
i i

i V P
R −≤Φ

− . These are quite simple since we deal with 

binary random variables and are plotted in Figure 1. 
 

http://www.defaultrisk.com/
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Figure 1. individual loss distributions before and after a recovery markdown. 

 
This shows that iF  is less dangerous than iF . We recall that iF  is said to be less dangerous than iF  
(written i D iF F≤ ) if there is 0p  such that ( ) ( )i iF p F p≤  for all 0p p< , ( ) ( )i iF p F p≥  for all 0p p≥  

and if ( ) * ( )pdF p pdF p≤∫ ∫ . Here, 0 1 ip R= − . From Müller and Stoyan [2002], this implies that 

i icx iF F≤  where icx≤  denotes the increasing convex order. We remind that iF  is less than iF  in 

increasing convex order (written i icx iF F≤ ) if ( ) ( ) ( ) ( )i iu p dF p u p dF p≤∫ ∫  for all increasing convex 

functions u  such that the expectations exist. Since the corresponding means are equal, we conclude 
that i cx iF F≤ .  
 
A.2 Proof of Property I.1. 
 
The correlation matrix Σ  is clearly positive definite, thus non singular, and entrywise non negative. 
Let us check that the off-diagonal terms of 1−Σ  are nonpositive. Inverting Σ  is easy and it can be 

checked that all off-diagonal terms are equal to ( ) 12( 1) ( 2) 1n nρ ρ ρ
−

× − − − − . From standard 

analysis, we readily show that this is negative for 0 1ρ< <  (and 2n ≥ ). Thus, the one factor 
Gaussian copula is conditionally increasing. 
 
A.3 Conditionally increasing Gaussian copulas.  
 
We previously saw that the Gaussian copula with “flat correlation” was conditionally increasing. Let 
us remark, that a Gaussian vector associated with a correlation matrix with non negative pairwise 
correlations may not be conditionally increasing (see counter-example below). We thereafter enlarge 
the studied framework to one factor and some multifactor Gaussian copulas.  
 
Among other requirements, we will use the concept of MTP2 (Multivariate Total Positivity of Order 2), 
introduced by Karlin and Rinott [1980] as an extension of TP2 (see Karlin [1968]), which is also related 
to the notion of monotone likelihood ratio. We say that a multivariate density function : df →   

p

1

( ) ( ),i iF p F p

1 iP−

iF

iF

1 iP−

1 iR−1 iR−
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is MTP2 if ( ) ( ) ( ) ( )f x f y f x y f x y≤ ∧ ∨  for all , dx y∈ 30. Let us notice that f  is MTP2, if and only if 

the log-density is supermodular: In the smooth case, we will only need to check that 
( )2 ln

0
i j

f x
x x

∂
≥

∂ ∂
 

for all i j≠ . If ( )1, , nV V  is random vector with a MTP2 density, we say that ( )1, , nV V  is MTP2. If 

( )1, , nV V  is MTP2, then ( )1, , nV V  is conditionally increasing (Müller and Scarsini [2001], Theorem 
3.3). In the case of Gaussian vectors, with invertible covariance matrices, the converse is true: if 
( )1, , nV V  is conditionally increasing, then ( )1, , nV V  is MTP2 (Müller and Scarsini [2001], Theorem 
3.6). As stated in the core text, an equivalent statement is that the inverse of the covariance matrix is 
a M - matrix (and necessarily pairwise correlations are non negative). Let us notice that in the 
general case, if a random vector is MTP2, it is conditionally increasing and the implication is strict. 
 
A.3.1 One factor Gaussian case. We do not assume here flat correlations. The Gaussian vector 

( )1, , nV V  can then be written 1i i i iV V Vρ ρ= + − , where 1, , , nV V V  are independent standard 
Gaussian random variables and 0 1iρ< < , 1, ,i n=  . 

The conditional density of iV  given V  is such that ( )
( )

( )
( )

2

1 exp
2 12 1

i
i

ii

x v
f x v

ρ

ρπ ρ

 − = − −−  
 

. It can 

easily be checked that the corresponding latent variable model is latent TP2 as defined in Holland and 

Rosenbaum [1986]: ' , 'x x u u∀ > ∀ >  
( ) ( )
( ) ( )

' '
1

' '
i i

i i

f x v f x v
f x v f x v

≥ . Using theorem 5 in the quoted paper, the 

distribution of ( )1, , nV V  is (conditionally) MTP2. Thus, the one factor Gaussian copula (with non flat 
correlations) is conditionally increasing. 
 
A.3.2 Multifactor Gaussian case. The multifactor case is more intricate: it might be reasonable to 
state that if all factor loadings are positive, then the corresponding Gaussian vector is conditionally 
increasing. Unfortunately, this may not be the case. Let us consider the following counter-example 
with three names: 

2 2
1 1

2 2
2 2

2 2
3 3

0.1 0.9 1 0.1 0.9

0.7 0.3 1 0.7 0.3

0.9 0.1 1 0.9 0.1

V V W V

V V W V

V V W V

 = × + × + − − ×
 = × + × + − − ×


= × + × + − − ×

 

where 1 2 3, , , ,V W V V V  are independent standard Gaussian variables. The covariance matrix of 

( )1 2 3, ,V V V  , Σ  (respectively its inverse 1−Σ ) are given by: 
 

1

1 .34 .18 1.14 .44 .09
.34 1 .66 .44 1.95 1.20
.18 .66 1 .09 1.20 1.78

−

−   
   Σ = Σ = − −   
   −   

 

 
As a consequence, 1−Σ  is not a M -matrix (some off-diagonal entries are positive) and ( )1 2 3, ,V V V  is 
not conditionally increasing. Therefore, in factor models with positive factor loadings, the pairwise 

                                                 
30 If ( )1, , dx x x=  , ( )1, , dy y y=   , then x y∧  and x y∨  are defined by:  

( ) ( )( )1 1min , , ,min ,d dx y x y x y∧ =  , ( ) ( )( )1 1max , , ,max ,d dx y x y x y∨ =  . 
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correlations are positive, but the copula is not always conditionally increasing, thus we cannot 
predict the effect of a recovery markdown. On theoretical and probabilistic grounds, in the case of 
Gaussian vectors, when all pairwise correlations are non-negative, the Gaussian vector is positively 
associated (see Pitt [1983], Joag-dev et al. [1983]) and the converse is obviously true. On the other 
hand, from Müller and Scarsini [2000] or Müller [2001], we know that a Gaussian vector is positive 
supermodular dependent (PSMD) if and only if all pairwise correlations are non-negative. As a 
consequence, in the case of multivariate Gaussian vectors, positive association and PSMD are 
equivalent and characterized by non-negativity of pairwise correlations. Let us notice that in the 
general case, if a random vector is positively associated, it is positive supermodular dependent and 
the implication is strict. In the Gaussian case MTP2 or CI imply positive association or PSMD and the 
implication is strict. 
  
A.3.3 Multifactor Gaussian case with inter and intrasector correlations. We consider 
thereafter a model with two layers that can deal with intra and intersector correlation (see Gregory 
and Laurent [2004]).  
Within each sector a one factor model applies, with a factor specific to the considered sector. The 
latent variable associated with name i  can be written ( ) 1i i k i i iV W Vρ ρ= + −  where ( )k i  refers to 
the sector associated with name i . On top of that, the latent sector factors are related together 
through another one factor model, the latter factor being thus common to all names: 

( ) ( ) ( ) ( )1k i k i k i k iW V Wβ β= + − .  

 
The resulting correlation matrix is closely related to the class of intra-inter-class correlation matrices 
as defined by Eaton [1993]. Using linear algebra techniques, Kurata [2004] has shown that the 
inverses of such matrices are actually M - matrices. Thus, in their framework, ( )1, , nV V  is 
conditionally increasing. 
 
However, when correlation parameters are name or sector dependent, we need to adapt the proofs. 
We will thereafter rely on a probabilistic approach, namely Theorem 7 of Holland and Rosenbaum 
[1986], which is derived from Proposition 3.4 of Karlin and Rinott [1980], in order to study the 
dependence properties of ( )1, , nV V : 

(i) ( )1, , nV V  is conditionally independent on the sector factors ( )k iW  and thus the latent 
conditional independence property is fulfilled. 

(ii) The conditional densities ( )i if x w  of the iV ’s with respect to the vector of the sector 

factors are MTP2 as functions of ( ),ix w : let us first notice that ( )i if x w  only involves ix  

and ( )k iw . Then, it is well-known (Karlin and Rinott [1980]) that if  is MTP2 if if  is TP2 for 

every pair of variables, with other variables held fixed. As for the pair ( )( ),i k ix w , we only 

need to duplicate the proof of latent TP2 already written above in the one factor 
Gaussian case. As for the other pairs, the result is also straightforward, since the involved 
ratio is equal to one. 

(iii) Using the previous analysis of the one factor Gaussian case, the random vector whose 
components are the sector factors ( )k iW , is MTP2. 

 
This shows that ( )1, , nV V  is MTP2 (and thus conditionally increasing). 
 
A.4 Proof of Property I.2.  
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Let us first note that ( )1, , nV V and ( )1, , nV V− − share the same joint distribution and thus the same 

conditionally increasing copula. Since individual losses ( ) ( ){ }11 1
i i

i V P
R −≤Φ

−  , ( ) ( ){ }11 1
i i

i V P
R −≤Φ

− are non 

decreasing functions of iV− , the random vectors ( ) ( ){ } ( ) ( ){ }1 1
1 1

11 1 , , 1 1
n n

nV P V P
R R− −≤Φ ≤Φ

 − − 
 

  and 

( ) ( ){ } ( ) ( ){ }1 1
1 1

11 1 , , 1 1
n n

nV P V P
R R− −≤Φ ≤Φ

 − − 
 

  share the same conditionally increasing (one factor 

Gaussian) copula. Moreover, since for all 1, ,i n=  , ( ) ( ){ } ( ) ( ){ }1 11 1 1 1
i i i i

i cx iV P V P
R R− −≤Φ ≤Φ

− ≤ − , we 

conclude that: 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1 1 1 1
1 1 1 1

1 11 1 , , 1 1 1 1 , , 1 1
n n n n

n dcx nV P V P V P V P
R R R R− − − −≤Φ ≤Φ ≤Φ ≤Φ

   − − ≤ − −   
   

  . 

Then, the portfolio losses can be compared through the convex order: 
( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1 1 1 1

1 1 1 1
1 11 1 1 1 1 1 1 1

n n n n
n cx nV P V P V P V P

R R R R− − − −≤Φ ≤Φ ≤Φ ≤Φ
− + + − ≤ − + + −  , 

since for any convex function :g →  , ( ) ( )1 1, , n nf x x g x x= + +   is directionally convex. This 
leads to the stated result on the expected loss on CDO tranches given the convexity (resp. concavity) 
of senior (resp. equity) tranche payoffs with respect to the portfolio loss. 
 
A.5 Empirical investigation of a recovery markdown. 
 
To make the theoretical results of the previous subsection more tangible, we examine here 
the practical case of the DJITX S9 MST index on January 2009, 5th. The corresponding 5Y 
tranche quotes are displayed in Table 7. 
 

Table 7: 5Y DJITX S9 MST tranche quotes for an index reference spread of 180 bps on January 2009, 
5th. The equity tranche is quoted in an upfront payment while the others are quoted in running 

spreads. 

 
To estimate the impact of a recovery markdown, we first computed expected tranche losses 
at a given maturity for two correlation levels – the spreads of the portfolio constituents 
being adjusted to the reference quoted spread31. The results are shown in Tables 8 and 9. As 
predicted by Property I.2, the expected losses on equity tranches are increasing with the 
recovery rate. 
 

                                                 
31 Let us note that all individual spreads have been matched to CDS quotes. However, there is some 
discrepancy between the Index spread and the average CDS spread of the names within the index. 
This basis effect is reported for example in Beinstein [2009]. To cope with this, we used some 
multiplicative adjustment on individual credit spreads. This guarantees consistency of the individual 
credit spreads with the index quote. In the modelling field, Eckner [2007] or Herbertsson [2008] deal 
with similar issues.  

Attachment 
Point 

Detachment 
Point Upfront Mid Mid Running Spread 

0.0 % 3.0 % 68.50 % (68.00 ; 69.00) % 500 (500 ; 500) 
3.0 % 6.0 %   1,245 (1,230 ; 1,260) 
6.0 % 9.0 %   620 (610 ; 630) 
9.0 % 12.0 %   360.5 (353 ; 368) 

12.0 % 22.0 %     110 (106 ; 113) 
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Recovery [0 , 3] % [0 , 6] % [0 , 9] % [0 , 12] % [0 , 22] % [0 , 100] % 
0 % 1.983 % 3.061 % 3.697 % 4.091 % 4.642 % 4.838 % 
5 % 2.009 % 3.093 % 3.729 % 4.119 % 4.658 % 4.838 % 

10 % 2.029 % 3.124 % 3.761 % 4.149 % 4.674 % 4.838 % 
15 % 2.051 % 3.159 % 3.797 % 4.181 % 4.691 % 4.838 % 
20 % 2.077 % 3.195 % 3.835 % 4.215 % 4.707 % 4.838 % 
25 % 2.109 % 3.237 % 3.876 % 4.252 % 4.724 % 4.838 % 
30 % 2.135 % 3.278 % 3.918 % 4.289 % 4.740 % 4.838 % 
35 % 2.168 % 3.324 % 3.964 % 4.330 % 4.757 % 4.838 % 

Table 8: DJITX S9 MST expected tranche losses expiring on the 20th of June 2011, computed for 
different assumptions of recovery rate and a correlation of 30 %.  

 
Recovery [0 , 3] % [0 , 6] % [0 , 9] % [0 , 12] % [0 , 22] % [0 , 100] % 

0 % 1.377 % 2.165 % 2.712 % 3.121 % 3.948 % 4.838 % 
5 % 1.405 % 2.203 % 2.756 % 3.167 % 3.993 % 4.838 % 

10 % 1.431 % 2.242 % 2.802 % 3.216 % 4.040 % 4.838 % 
15 % 1.460 % 2.286 % 2.852 % 3.268 % 4.089 % 4.838 % 
20 % 1.492 % 2.332 % 2.906 % 3.325 % 4.141 % 4.838 % 
25 % 1.530 % 2.384 % 2.964 % 3.386 % 4.196 % 4.838 % 
30 % 1.566 % 2.439 % 3.027 % 3.451 % 4.253 % 4.838 % 
35 % 1.608 % 2.500 % 3.096 % 3.523 % 4.314 % 4.838 % 

Table 9: DJITX S9 MST expected tranche losses expiring on the 20th of June 2011, computed for 
different assumptions of recovery rate and a correlation of 60 %. 

Another way of quantifying the impact of a recovery markdown is to consider the base 
correlation skews resulting from the calibrations to the tranche quotes of Table 7 for 
different recovery assumptions. The expected pattern is clear using Property I.2 since equity 
tranche prices are decreasing with correlation: a decrease of the recovery rate will give rise 
to a decrease of the base correlations. The results of Table 10 confirm this assessment. We 
also note that the base correlation skews tend to flatten as the recovery decreases. The 
intuition behind this is rather straightforward since it becomes much easier to reach large 
losses under a low recovery rate assumption and one does not need to use high correlation 
levels to cope with these fat tail effects. 
 
This flattening of base correlations is a desirable feature. In a well specified model, implied 
parameters should not depend upon the priced tranche. On more practical grounds, this 
eases the computation of tranchelets and bespoke tranches by numerical interpolation or 
other “mapping” techniques and solves pathologies such as negative spread deltas. 
 

Recovery [0 , 3] % [0 , 6] % [0 , 9] % [0 , 12] % [0 , 22] % 
0 % 28.69 % 36.50 % 42.51 % 47.97 % 68.67 % 
5 % 29.85 % 37.67 % 43.78 % 49.37 % 70.63 % 

10 % 30.84 % 38.86 % 45.15 % 50.92 % 72.78 % 
15 % 31.94 % 40.26 % 46.72 % 52.67 % 75.16 % 
20 % 33.31 % 41.78 % 48.49 % 54.64 % 77.83 % 
25 % 35.02 % 43.59 % 50.49 % 56.88 % 80.82 % 
30 % 36.59 % 45.55 % 52.77 % 59.42 % 84.19 % 
35 % 38.67 % 47.90 % 55.43 % 62.40 % 88.03 % 

Table 10: 5Y DJITX S9 MST base correlation skews for different recovery rates. 
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A.6 Recovery markdown with Archimedean copulas. 
 
We rely on a result of Müller and Scarsini [2005]. They characterize the dependence structure of an 
Archimedean copula through some simple to check properties of its generator. Among other positive 
dependence concepts such as conditional increase in sequence and MTP2, they consider the case of 
conditional increase. We recall that a copula C  is called Archimedean with generator ψ  if it has the 
form: 

( ) ( )1
1

1
, ,

n

n i
i

C u u uψ ψ −

=

 
=  

 
∑ , 

where [ ]: 0,1ψ + →  is a d -alternating function with ( )0 1ψ =  and lim ( ) 0
u

uψ
→∞

= . ψ  is said to be d

-alternating if ( ) ( )1 0k kψ− ≥  for { }1, ,k d∈  . In Theorem 2.8, Müller and Scarsini [2005] show that 

C  is conditionally increasing if and only if ( ) ( )1 ( 1)1 .n nψ− −−  is log-convex. In the Clayton copula case, 

we have ( ) ( ) 1/1u u θψ −= + . The positive dependence case is associated with 0θ > . Given that, we 
can easily check that the above assumption is fulfilled. 
  
On the other hand, we recall that the comparison between individual losses still holds since it only 
involves marginal distributions of individual losses and not the dependence structure. The same 
reasoning as for the one factor Gaussian copula case thus applies: the expected loss on a senior 
tranche increases after a recovery markdown while the converse applies to equity tranches when 
one considers a Clayton copula with positive dependence. 
 
A.7 Recovery markdown in the latent factor framework.  
 
The aim here is to show that the results stated for the Gaussian copula readily extends to a much 
wider class of latent factor models that encompasses most of credit models. Let us first introduce a 
rather general notion of factor models. 
 
Definition: Let us consider a set of default times ( )1, , nτ τ  and a given time horizon t . We say that 
the default indicators { }1

i tτ ≤ , 1, ,i n=   admit the monotone unidimensional representation if there 

exists a random variable V  such that: 
(i) The default indicators are conditionally independent given V . 
(ii) ( )i t Vτ >  is non decreasing in V  for all { }1, ,i n∈  . 

 
This corresponds to models studied in Holland and Rosenbaum [1986] and Holland [1981]. They are 
also related to item response theory models with dichotomous responses in psychometrics. 
 
Let us notice that by considering V−  instead of V , we can replace “non decreasing” by “non 
increasing” in (ii).  
 
From Holland [1981], Theorem 3, in the previous framework, default indicators exhibit a strong form 
of multivariate positive dependence, named MTP2. Holland and Rosenbaum [1986] even show a 
stronger form of dependence, named CMTP2. Based on earlier results by Karlin and Rinott [1980], 
Müller and Scarsini [2001], Theorem 3.3 show that MTP2 is a stronger form of positive dependence 
that conditional increase. As a consequence, whenever the default indicators admit the monotone 
unidimensional representation for all time horizons t , the result already stated in the Gaussian 
copula case applies: a recovery markdown leads to an increase of the risk of the credit portfolio (with 
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respect to the convex order) and subsequently an increase of the expected loss on senior tranches 
and a decrease of the expected loss on equity tranches. 
 
Let us now relate this with the analysis already done in the Archimedean copula framework. We 
recall that a function ψ  is said to be completely monotone if it is d -alternating for any d ∈ . From 
Kimberling [1974], the generator ψ  defines an Archimedean copula in any dimension if and only if it 
is a completely monotone function, or equivalently, a Laplace transform of a non-negative random 
variable. On practical grounds, this is a weak statement, since it means that the dependence 
structure can be extended to an arbitrary number of creditors. In that framework, Marshall and Olkin 
[1988] have provided a well-known sampling procedure that makes clear the underlying univariate 
latent structure: let 1, , ,nU U V  be independent random variables, 1, , nU U  being uniform on 

( )0,1 , and V  being a positive random variable with Laplace transform ψ . Then the joint distribution 

of the random variables 
ln i

i
UV

V
ψ

− =  
 

, 1, ,i n=   is the Archimedean copula with generator ψ . 

This also corresponds to the well-known framework of frailty models. Given marginal distribution 
function of default times, 1, , nF F , we can construct default times as ( )1

i i iF Vτ −= , 1, ,i n=  , 
which do admit an Archimedean copula with generator ψ . Clearly, default times are independent 

given V  and ( ) ( )( )i i it V V F t Vτ > = >  . Since ψ  is decreasing, we get 

( ) ( )( )( )11 expi it V V F tτ ψ −> = − −  which is increasing in V . Thus, all frailty models are associated 

with the monotone unidimensional representation for all time horizons, and the corresponding 
default indicators are associated with conditional increasing copulas. As discussed above, most well 
known Archimedean models are frailty models and thus admit the monotone unidimensional 
representation. For a discussion of sampling Archimedean copulas in a larger framework, we report 
to McNeil and Neslehova [2008]. 
 
Similarly, it is straightforward to check that additive factor copulas as defined in Cousin and Laurent 
[2008a] lead to default indicators belonging to the family of unidimensional monotone latent 
variable models. We refer to Cousin and Laurent [2008b] and the references therein for an extensive 
review of such models in a credit context. From the conditional default probability stated in Cousin 
and Laurent [2008b], it is also straightforward to check that the generic one-factor model Lévy model 
of Albrecher et al. [2007] is associated with the monotone unidimensional representation for all time 
horizons. As for the univariate case of the random factor loading model of Andersen and Sidenius 
[2005], using the same notations as theirs and defining the factor as ( )iV a Z Z= , we readily see that 
the default indicators once again exhibit the monotone unidimensional representation for all time 
horizons. This is also the case of the multivariate Poisson model and the affine intensity model 
described in the above review paper. The latter examples also show that the confrontation between 
copula models and other approaches is somehow sophistry, since these factor models are associated 
with the same kind of numerical implementation and dependence properties. 
 
Appendix B: Behaviour of loss given default. 
 
We state here some useful properties of the stochastic recovery rate in the Gaussian copula 
framework. The same also apply to frailty models, such as the Clayton copula, which was discussed in 
the core text. In the latter case, the proofs are straightforward and do need not to be detailed. 
 
Property II.1 (bounds on loss given default):  

1) ( ) min0 1 i
iM V R≤ ≤ − , for all V ∈ .  
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2) Let us assume that 0ρ > . Then, ( )lim 0V iM V→∞ =  and ( ) minlim 1 i
V iM V R→−∞ = − . 

 
Proof of Property II.1: Let us first show statement 1. Since ( )0 iM V≤  and i iP P≤ , 

( ) ( )1 1

1 1
i iP V P Vρ ρ

ρ ρ

− −Φ − Φ −
≤

− −
 for all V  since 1−Φ  is increasing. Since Φ  is also increasing, 

( ) ( )1 1

0
1 1
i iP V P Vρ ρ

ρ ρ

− −   Φ − Φ −
 < Φ ≤ Φ   − −  

, which yields: 

( ) min1 i
iM V R≤ − . 

Let us now check that the bounds are strict. ( ) minlim 1 i
V iM V R→−∞ = −  is obvious. ( )lim 0V iM V→∞ =  

can be proven using l’Hôpital’s rule. 
 
Corollary II.1 (bounds on recovery rates): let us denote by ( ) ( )1i ir V M V= −  the recovery rate. Then, 

( )min 1i
iR r V≤ ≤  and the bounds are strict. 

 
Property II.2 (Monotonicity of loss given default wrt V ): Let us assume that, 0 1iP< < , 

min0 1i
iR R≤ ≤ ≤  and 0ρ > . Then, ( )iV M V→ is decreasing. 

 
Proof of Property II.2: 
 

 ( ) ( )

( )

( )
( )

( ) ( ) ( )

( )

1 1 1 1

min min1 1

1 1 1
1 1

1 1

i i i i

i i
i

i i

P V P P P V

M V R R
P V P V

ρ ρ
ρ ρ ρ

ρ ρ
ρ ρ

− − − −

− −

   Φ − Φ −Φ Φ −
 Φ Φ +    − − −   = − = −
   Φ − Φ −

Φ Φ      − −   

. 

Let us denote by 
( ) ( )1 1

0
1

i iP P
a

ρ

− −Φ −Φ
= >

−
 and by 

( )1

1
iP V

x
ρ

ρ

−Φ −
=

−
. Then, we need to check that 

( )
( )

x a
x

x
Φ −

→
Φ

 is increasing. Thus, we need to check that ( ) ( ) ( ) ( )' ' 0x a x x a xΦ − Φ −Φ − Φ >  for all 

x . For simplicity, we scale Φ  to 
2

( )
x

ux e du−

−∞

Φ = ∫ . Since 
2

( )
x a

ux a e du
−

−

−∞

Φ − = ∫ , setting v u a= + , we 

get, ( ) ( )2
x

v ax a e dv− −

−∞

Φ − = ∫ . We have to check that ( )( )2 2 2 2( ) 0
x

x a u u a xe e e e du− − − − − −

−∞

− >∫ . The integrand 

can be written as ( )2 2 2( ) 2 2 0x a u ax aue e e− + + − > . This completes the proof. 

 
Negative “correlation” between default indicators and losses given default. We will show that any 
default indicator 

( ){ }11
i iV P−≤Φ

is negatively associated with any loss given default ( )jM V . Two random 

variables ,X Y are said to be negatively associated if ( ) ( )( ), 0Cov f X g Y ≤  for all non decreasing 
functions ,f g  such that the above covariance exists. By conditioning on V  and rearranging terms, it 
can be readily checked that: 

( ){ } ( )( ) ( ) ( ) ( )( )( )11 , (1) (0) , 0
i i

j i jV P
Cov f g M V Cov f f P V g M V−≤Φ

   = − ≤    
. 
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The latter inequality comes from the fact that ( ) ( )(1) (0) if f P V−  and ( )( )jg M V  are counter 

monotonic and can be proven using a result due to Hoeffding [1940] which states that for non 
negative random variables ,X Y , with joint distribution function ,X YF  and marginal distribution 
functions ,X YF F , we have: 

( ) ( ) ( ) ( )( ),
0 0

, ,X Y X YCov X Y F u v F u F v dudv
∞ ∞

= −∫ ∫ . 

The reader is referred to Dhaene and Goovaerts [2005] for details of the proof. For counter 

monotonic variables, we have ( ) ( ), , ( ) ( ) 1X Y X YF u v F u F v += + − , which corresponds to the lower 

Hoeffding-Fréchet bound and ( )( ) ( ) 1 ( ) ( )X Y X YF u F v F u F v++ − ≤  (see Embrechts et al. [2002] for 
more details), from which we deduce the stated inequality. As a consequence, default indicators and 
losses given default also exhibit negative dependence with respect to the supermodular order (see 
Christofides and Vaggelatou [2004]). 
 
Appendix C: Proofs of section III. 
 
C.1 Dynamics of portfolio loss: time to recovery and spot recovery.  
 
Since CDO tranche pricing only involve a series of single horizon pricing problems, we do not need to 
be concerned with the extension of the model to several times horizon. Let us however discuss a few 
points associated with the trajectories of the portfolio loss if one were to adopt a copula of default 
times approach (say because one wishes to implement tranche pricing as a Monte Carlo on default 

times). The portfolio loss ( ) ( ){ }1

1
1

i i

n

i V P
i

L M V −≤Φ
=

=∑  jumps at default times iτ , { }1, ,i n∈   by a 

magnitude of ( )iM V  which depends upon the default date due to the time dependency in the loss 

given default ( )iM V  (it involves marginal default probabilities ( )i iP F t=  up to the current date). 
After name i  (say) has defaulted and before the next default occurs, the portfolio loss is not 
constant as one could have expected, due to the previous time dependence effect. We may also 
notice that the perfect dependence of recovery rates with respect to the underlying factor is not 
innocuous. At the first default, one knows the magnitude of the jump in the loss process and 
therefore the value of V  (we recall that ( )iM V  is monotonic in V ). Thus, subsequently, recovery 
rates are perfectly known. All this points to the fact that this model has been optimized for single 
period use and that a naive extension of this stochastic recovery model in a default time copula 
framework has not been intended. The previous approach is known as the recovery to maturity 
model. 
 
To circumvent the issues associated with the dynamics of the portfolio loss, Bennani and Maetz 
[2009], Li [2009] have considered a spot recovery approach. In the latter framework, the portfolio 
loss jumps by a magnitude of ( ),i im Vτ  at default time iτ  and remains constant between two default 

times. Using the same notations as in the core text and since ( )( )1
i i iF Vτ −= Φ , we write (with a slight 

abuse of notation), the individual loss on name i  at time t  as ( ) ( ){ }1 ( )
, 1

i i
i i V F t

m V V −≤Φ
 to be compared 

with the above ( ) ( ){ }11
i i

i V P
M V −≤Φ

 (the dependence in t  being implicit for notational simplicity). 

Consistency with the value of credit default swap implies: ( ) ( ){ } ( ) ( )1 ( )
, 1 1

i i
i i i iV F t

E m V V R F t−≤Φ
  = −  

. 

This is sometimes stated equivalently as ( ) ( ) ( )1, ( ) 1i i i i iE m V V V F t R− ≤ Φ = −  . 
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Let us denote by ( ) ( ),i i i ig V E m V V V =   . From the law of iterated expectations, 

( ) ( ){ } ( ) ( ){ }1 1( ) ( )
1 1 1

i i i i
i i iV F t V F t

E g V E R− −≤Φ ≤Φ
   = −      

. Assuming a smooth marginal distribution of iτ  and 

differentiating with respect to t  leads to: ( ) ( ), 1i i i i iE m V V V g V R  = = −  . Let us now define 

1
i

i
V V

Z
ρ

ρ
−

=
−

 , thus: ( ) ( ), , 1i i i i i im V V m V V Zρ ρ= − − . Let us note that ( ),i iV Z  is a Gaussian 

vector with independent components. As a consequence: 

( ) ( ), 1 , 1 1i i i i i i i iE m V V Z V v E m v v Z Rρ ρ ρ ρ   − − = = − − = −    . 

This constrains the range of consistent specifications of spot recovery rates. The easiest way to cope 
with the above equation is to assume, as in Bennani and Maetz [2009], that the spot recovery rate 
only depends upon iZ . However, as a consequence, for a given name, spot recovery rate and default 
time are independent. This may look as an undesirable feature on economic grounds. 
 
C.2 Proof of property III.1. 
 
Let us denote by ( ) ( ){ }11

i i
i i V P

Z M V −≤Φ
= , the loss associated with name i . Then: 

( ) ( ) ( ) ( )11

min1
1 1

ii i
i i

P VP V
E Z V M V R

ρρ
ρ ρ

−−    Φ −Φ −
   = Φ = − Φ      − −   

. 

Then, ( ) ( )1

min
1 1

1
1

n n
ii

LP i
i i

P V
L R E Z V

ρ

ρ

−

= =

 Φ −
   = − Φ =   − 

∑ ∑ .  

We recall a result from Dhaene et al. [2002]. Let ( )1, , nZ Z Z=   be a random vector and V a random 
variable. Then:  

1 1n cx nE Z V E Z V Z Z   + ≤ + +     , 

where cx≤  is the convex order. This readily shows the stated property. 
 
C.3 Proof of Property III.2. 

For simplicity, we denote the conditional default probabilities by ( ) ( )1

1
i

i

P V
P V

ρ
ρ

− Φ −
= Φ  − 

 and 

( ) ( )1

1
i

i

P V
P V

ρ

ρ

− Φ −
 = Φ
 − 

.  

We readily have:  

( ) ( ){ } ( ) ( ) ( )( )

( ) ( ){ } ( ) ( )
( ) ( )( )

1

1

2

min min

2
2

min

1 1 1 1

1 1 1

i i

i i

i i
i iV P

ii
i iV P

i

Var R V R P V P V

P V
Var M V V R P V

P V

−

−

≤Φ

≤Φ

  − = − −   


  = − −   

, 

for { }1, ,i n∈  . As a consequence, in order to compare the conditional variances, we just need to 

compare 
( )

( )
1 i

i

P V
P V
−

 and 
( )

( )
1 i

i

P V
P V
−

. This is straightforward since ( )iP V  is increasing in iP . Thus, 
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( )
( )

1 i

i

P V
P V
−

 is decreasing in iP . On the other hand, i i iP wP P= ≥ . Thus, 
( )

( )
( )

( )
1 1

,i i

i i

P V P V
V

P V P V
− −

≤ ∀ ∈  

which shows the stated property. 
 
C.4 Expansions around the Poisson distribution. 
 
Orthogonal polynomials associated to the Poisson probability mass function defined, for a fixed 

0λ >  and j∈ , by: { }( ) ( )exp
!

j

p j
jλ
λ λ= − , are known as the Charlier polynomials and are defined 

by (see Szegö [1975]): ( ) ( ) ( )
0

!
k

i
k

i

k x
x C x i

i i
λ λ −

=

  
→ = −  

  
∑ . An expansion can be derived for the 

(pseudo-) distribution of a (rescaled) loss defined by 
( ) ( )LL S V

M V
= + : 

 { }( ) ( ) { }( ) ( ) ( ) ( )( ) ( )
2

1
!

P
kn

V
k kV

k

V
j p j P V C j

k
λ

λ

λ
µ

=

 
 = +
 
 

∑  (2) 

where ( )V E L Vλ  =    is the mean of the rescaled loss, ( ) ( )( ) ( )V
k kP V E C L Vλ =    allows us to fit the 

thk  conditional moment of the rescaled loss and Pn  ( 1≥ ) is the number of matched moments. In the 
above expansion, we voluntarily did not specify the values of the rescaling factors ( )M V  and ( )S V  
as Pn  conditional moments of the loss are matched whatever their values32.  
C.5 Expansions around the binomial distribution. 
 
In the case of a binomial distribution, whose mass probability function is defined, for fixed ( )0,1p∈  
and 1n > , by: 

{ }( ) ( ), 1 n jj
p n

n
b j p p

j
− 

= − 
 

, 

                                                 
32 For the numerical results, which are displayed subsequently, we did the following choices. First, 

the scaling factor is taken equal to the average loss given default: ( ) ( )
1

1 n

i
i

M V M V
n =

= ∑ , so that 

( )L S V−  takes integer values when all ( )iM V  are the same. Second, the shifting factor ( )S V  is 
chosen in order to prepare the rescaled loss distribution for a Poisson approximation: 

( ) ( ) ( )2 1
E L V Var L V

S V
M V M V

       = − + 
  

, where .    denotes the floor function. Indeed, with this 

specification, L  satisfies: 1Var L V E L V   − ≤     whereas for a true Poisson distribution, we 

would have equality of mean and variance. Finally, a last trick consists in approximating, with the 

above expansion, the « mirror » of the portfolio loss ( )
1

n

i
i

M V L
=

 
− 

 
∑  instead of the loss itself, when 

( )
1

1
2

n

i
i

E L V M V
=

  >  ∑ , to minimize the probability of the approximated loss to be greater than its 

theoretical maximum value. 
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for 0, ,j n=  , the relevant polynomials are the Krawtchouk polynomials defined by: 

( ) ( ) ( ) ( ),

0
1

k
i k ip n

k
i

x n x
x K x p p

i k i
−

=

−  
→ = − −  −  

∑  (see Szegö [1975]), where n  is the number of portfolio 

constituents. We rescale the portfolio loss by the average loss given default ( ) ( )
1

1 n

i
i

M V M V
n =

= ∑  

and approximate the distribution of the rescaled loss 
( )
LL

M V
=  by: 

{ }( ) ( ) { }( ) ( )
( ) { }( )

( )( ) ( ),
,

2 ,

1
Bn

p V nk
kp V n

k p V n

B V
j b j K j

b k
ν

=

 
 = +
 
 

∑ , 

where ( )p V E L V =    is the mean of the rescaled loss, ( ) ( )( ) ( ),p V n
k kB V E K L V =    allows us to fit 

the thk  conditional moment of the rescaled loss and Bn  ( 1≥ ) is the number of matched moments. 
  
Appendix D: Proofs of section IV. 
 
D.1 Proof of Property IV.1.  
 
Clearly, ( )iM V  is not defined for 100%ρ = . We may think of considering ( )

1
lim iM V
ρ→

. Formally, this 

leads to ( ) ( ){ }

( ){ }

1

1

min

1
1

1
i

i

V Pi

V P

R
−

−

<Φ

<Φ

− . Keeping in mind that ( ) ( )1 1
i iP P− −Φ ≤ Φ , we have ( ) min1

lim 1 i
iM V R

ρ→
= −

(the recovery rate is then equal to min
iR ) for ( )1

iV P−< Φ , ( )
1

lim 0iM V
ρ→

=  for ( ) ( )1 1
i iP V P− −Φ ≤ < Φ  

(the recovery rate is then equal to one). Dealing rigorously with the indeterminacy for ( )1
iV P−≥ Φ  is 

cumbersome, but this is not useful either as discussed now. We recall that the portfolio loss is 

provided by ( ) ( ){ }1

1
1

i i

n

i V P
i

L M V −≤Φ
=

=∑ . We will now consider the limits ( ) ( ){ }1
1

lim 1
i i

i V P
M V

ρ
−≤Φ→

. 

( ) ( ){ }11
i i

i V P
M V −≤Φ

 can be written as: ( ) ( ){ }

( )
( )1

1

min 1

1
1

1
1

i iV P ii

i

P V
R

P V

ρ

ρρ
ρ

−
−

≤Φ

−

 Φ −
 − ×Φ
   −Φ −  Φ  − 

. 

It can easily be checked that 
( ){ }

( )
1

11

1
lim 0

1

i iV P

iP Vρ ρ
ρ

−≤Φ

−→
=

 Φ −
Φ  − 

 on ( ){ }1
iV P−> Φ  and 

( ){ }

( )
1

11

1
lim 1

1

i iV P

iP Vρ ρ
ρ

−≤Φ

−→
=

 Φ −
Φ  − 

 on ( ){ }1
iV P−< Φ . As a consequence 

( ){ }

( )
1

1

1

1

i iV P

iP Vρ
ρ

−≤Φ

− Φ −
Φ  − 

 converges 

almost surely to 
( ){ }11

iV P−≤Φ
 as 100%ρ → . Since meanwhile 

( )1

1
iP Vρ

ρ

− Φ −
 Φ
 − 

 converges to 

( ){ }11
iV P−<Φ

 as 1ρ → , we conclude that the loss associated with name i  converges almost surely to 

( ) ( ){ }1min1 1
i

i
V P

R −≤Φ
− .  
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Since all individual losses are bounded by zero and one, we conclude that the expected tranche 
losses and the corresponding up-front or running premiums converge accordingly using Lebesgue’s 
theorem. 
 
D.2 Proof of Property IV.2. 
 
 First, let us show that:  

( ){ } ( ) ( ){ }1 1min( )1 1 1
i i i

i
i cxV P V P

M V R− −≤Φ ≤Φ
≤ − . 

In subsection III.5, it was proven that ( ) ( ){ } ( ) ( ){ }1 1min1 1 1
i i i i

V i
i cxV P V P

M V R− −≤Φ ≤Φ
≤ − , which implies the 

unconditional convex order: ( ) ( ){ } ( ) ( ){ }1 1min1 1 1
i i i i

i
i cxV P V P

M V R− −≤Φ ≤Φ
≤ − . Since convex ordering only 

involves the marginal distributions of left and right hand terms and since iV  and V  share the same 
distribution, we deduce the stated inequality between individual losses.  
 
Let us now consider some one dimensional distribution functions 1, , nF F  and * *

1 , , nF F  such that 
*

i cx iF F≤ , 1 i n≤ ≤ . Ky Fan – Lorentz theorem states that: 

( ) ( )( ) ( ) ( )( )1 1 * 1 * 1
1 1, , , ,n dcx nF U F U F U F U− − − −≤  , 

where U  is uniformly distributed on ( )0,1 . 
 
In the following, for 1 i n≤ ≤ , iF  denotes the marginal distribution function of 

( ){ }1( )1
i i

i V P
M V −≤Φ

 and 

*
iF  is the marginal distribution function of ( ) ( ){ }1min1 1

i

i
V P

R −≤Φ
− . Lorentz theorem (see Tchen [1980]) 

states that: ( ) ( )( ) ( ) ( )( )1 1
1 1 1, , , ,n n sm nM V I M V I F U F U− −≤  . Using the transitivity of the 

directionally convex order, we get: 

( ) ( )( ) ( ) ( ){ } ( ) ( ){ }1 1
1

1
1 1 min min, , 1 1 , , 1 1

n

n
n n dcx V P V P

M V I M V I R R− −≤Φ ≤Φ
 ≤ − − 
 

  . 

We conclude that: 
( ) ( ) ( ) ( ){ } ( ) ( ){ }1 1

1

1
1 1 min min1 1 1 1

n

n
n n cx V P V P

M V I M V I R R− −≤Φ ≤Φ
+ + ≤ − + + −   

Thus, the loss associated with 100%ρ =  is always greater with respect to the convex order than the 
actual loss in the stochastic recovery model. As a consequence,

( ){ } ( ) ( ){ }1 1min
1 1

1 1( ) 1 1 1
i i i

n n
i

i V P V P
i i

E M V K E R K
n n− −

+ +

≤Φ ≤Φ
= =

      
× − ≤ − −      

         
∑ ∑  for all 0 1K≤ ≤ . 

 
D.3 Proof of Lemma IV.1. 
 
Let us denote by iF  the distribution function associated with ( ) ( ){ }11 1

i i
i V P

R −≤Φ
−  and by iF  the 

distribution function associated with ( ) ( ){ }11
i i

i V P
M V −≤Φ

. We will show that i D iF F≤ . First: 

( ) ( ){ } ( ){ } ( ) ( )1 1 min1 1 ( )1 1 1
i i i i

i
i i i i iV P V P

E R E M V R P R P− −≤Φ ≤Φ
   − = = − = −      

. 
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We can also notice that the distribution function of the binary random variable ( ) ( ){ }11 1
i i

i V P
R −≤Φ

−  is 

piecewise constant as studied above in the perfect correlation case for the random variable 
( ) ( ){ }1min1 1

V P
R −≤Φ

− . 

 
( ) ( ){ }11

i i
i V P

M V −≤Φ
 has a probability mass at zero: 

( ) ( ){ } ( ){ }1 11 0 1 0 1
i i i i

i iV P V P
M V P− −≤Φ ≤Φ
   = = = = −   
   

  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 2. Comparison of individual name loss distributions in the case of fixed recovery rate and no 
correlation and of stochastic recovery rate 

 
Figure 2 plots iF  and iF  . We readily see that *

i D i D iF F F≤ ≤ , which shows the lemma. 
 
D.4 Proof of Lemma IV.2  
 
We need first to state and prove the following: If ,X Y  are two square integrable random variables 
independent upon some random vector V 33, then: 

( ) ( ), ,Cov X Y Cov E X V E Y V   =     . 

 
Indeed, ( ) [ ] [ ] [ ],Cov X Y E XY E X E Y E E XY V E E X V E E Y V          = − × = − ×           , using the 

law of iterated expectations. E XY V E X V E Y V     = ×      , due to the conditional independence 
of ,X Y  upon V , which shows the previous equality. 

                                                 
33 The conditional independence can be defined in slightly different ways. Here, we say that ,X Y  are 

conditionally independent upon V  if ( ) ( ) ( ) ( )E h X g Y V E h X V E g Y V     = ×       for all measurable 
functions ,h g  such that the expectations are well-defined. 

p
min1 iR−

1

( ) ( ) ( ){ }( )1
*

min1 1
i

i
i V P

F p Q R p−≤Φ
= − ≤

1 iP−

iF
*

iF

1 iP−

1 iR−

( ) ( )( )i i iF p Q M V I p= ≤

( ) ( ) ( ){ }( )11 1
i i

i i V P
F p Q R p−≤Φ

= − ≤

iF
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We now proceed to the proof of Lemma IV.2. Here ( ) ( ){ } ( )11

1 ,
i i

i i iV V P
X M V l V V

ρ ρ −+ − ≤Φ
= = . Since 

( ) ( )( )( 1) 1, , , ,i i nX l V V l V V+ +=  , { }1
iX t>  and ( )( 1)if X +  are conditionally independent upon V . As a 

consequence of the previous lemma, 

{ } ( )( ) { } ( )( )( 1) ( 1)1 , 1 ,
i ii iX t X tCov f X Cov E V E f X V+ +> >

   =    . 

Since ( )iM V  and 
( ){ }11

1
i iV V Pρ ρ −+ − ≤Φ

 are non negative and non increasing in V , ( ), il V V  is also non 

increasing in V  for any given value of iV . The same applies to { } ( ){ },
1 1

i iX t l V V t> >
= . Thus 

{ } ( ){ } ( ),1 1
i iX t Vl v z tE V v dz> >

 = =  ∫  , where 
iV  is the distribution of iV , is a non increasing function 

of v . The same line of reasoning applies to ( )( 1)iE f X V v+
 =  . As a consequence, 

{ } ( )( )( 1)1 , 0
i iX tCov E V E f X V+>

    ≥   , which shows the stated result. 

 
D.5 Proof of Property IV.3.  
 
We first show that: 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1 1 1 1
1 1 1 1

1 11 1 , , 1 1 1 , , 1
n n n n

n wcs nV P V P V P V P
R R M V M V− − − −≤Φ ≤Φ ≤Φ ≤Φ

   − − ≤   
   

  , 

where wcs≤  stands for the weakly conditional increase in sequence order.  
 
Since the right hand term is made of independent components, the above inequality holds if 

( ) ( ){ } ( ) ( ){ }1 1
1 1

1 1 , , 1
n n

nV P V P
M V M V− −≤Φ ≤Φ
  
 

  is weakly associated in sequence, which is actually the case, 

using the previous lemma.  
 
We can now use Theorem 3.1 in Rüschendorf [2004]. We recall that this theorem states that given 
two random vectors, ( )1, , nX X X=   and ( )1, , nY Y Y=  , if i cx iX Y≤  for 1 i n≤ ≤  and wcsX Y≤ , 
then dcxX Y≤ . As a consequence, 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1 1 1 1
1 1 1 1

1 11 1 , , 1 1 1 , , 1
n n n n

n dcx nV P V P V P V P
R R M V M V− − − −≤Φ ≤Φ ≤Φ ≤Φ

   − − ≤   
   

  . 

We conclude that: 
( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1 1 1 1

1 1 1 1
1 11 1 1 1 1 1

n n n n
n cx nV P V P V P V P

R R M V M V− − − −≤Φ ≤Φ ≤Φ ≤Φ
− + + − ≤ + +  , 

since for any convex function :g →  , ( ) ( )1 1, , n nf x x g x x= + +   is directionally convex. 


