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Abstract 

 
We consider some pricing and risk management issues related to defaultable 
bonds, in the context of sovereign debt default and restructuring. Standard 
recovery schemes such as fractional recovery of market value, of Treasury and of 
face value are investigated: we discuss their consistency with market practice both 
from a pricing and a risk management perspective. We also pay attention to the 
tradable basic instruments such as defaultable discount bonds or IOs/POs that are 
the building blocks of traded level coupon bonds. Model-free pricing formulas are 
provided. Whatever the recovery framework, bond pricing formulas involve 
similar ingredients, such as par rates and defaultable level annuities. We also show 
that the fractional recovery of par, our preferred approach from an economical 
point of view, involves two discount curves, one for principal payments and one 
for coupon payments, a departure from the simplest bootstrapping and pricing 
engines. 
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Introduction 
 
Let us consider that we are given a set of traded defaultable level coupon bonds issued by a 
given sovereign. Our interest is to provide a consistent pricing framework: the model to be 
used is calibrated to market prices2 and leads to arbitrage free prices of new bonds of the same 
issuer. These new bonds may involve different payment schedules, different maturities and/or 
strips of existing bonds. We are concerned with the relative prices provided by different 
pricing engines as the coupon rate varies. The purpose of this paper is to assess the 
consequences of recovery mechanisms on bond pricing, especially given that there is not 
always a clear best choice in the case of sovereign debt default and restructuring3. 
 
Four approaches will be considered. While, obviously, scheduled bond cash-flows are paid 
until default, what differs between the approaches is the cash-flow description in case of 
default.  
 

- The first approach (“street approach”) focuses upon the scheduled (or contractual) 
bond cash-flows and does not deal explicitly with default dates or recovery 
mechanisms. Though it is quite simple, it has a certain number of drawbacks, such as 
the possibility of inconsistent prices. 

- In the second approach, at default time, the bond holder receives a fraction of the pre-
default market value. This approach is known as “fractional recovery of market value”. 
Even though, such an approach has been criticized for being unrealistic, it keeps some 
flavour due to its simplicity in discounting computations. 

- The third approach is known in the academic literature as “fractional recovery of 
Treasury” though we will often use the terminology “fractional recovery of cash-flows” 
which is more in line with our analysis. Up to default time, the scheduled cash-flows 
are being paid while at default time, a proportional haircut is applied on all post-
default payments, coupon or principal payments 4. A potential example of such a 
restructuring mechanism would be a forced conversion of outstanding debt 
denominated in euro to debt denominated in a new and less valuable currency. 

- The fourth approach is the well-known “fractional recovery of face value5”. At default 
time, the claim is based on the nominal value of the bond6, irrespectively of the 
coupon and maturity of the defaulted bond. 

 
In order to conduct a cross-sectional analysis of defaultable bonds, a few preliminary basic 
assumptions are required. The considered default date and associated recovery mechanism 

                                                 
2  Dealing with relevant calibration market prices is intricate, especially in the context of debt 
restructuring. One has to deal with market liquidity which can be scarce in the context of debt 
restructuring. 
3 While we focus upon standard recovery mechanisms, one could extend the scope of analysis. For 
instance, the 2003 Uruguay bond swap was associated with a lengthening of bond maturities, the 
coupon rate of bonds being unchanged. 
4 In the fractional recovery of Treasury, the bondholders receive a fraction of the present value of the 
post-default cash-flows where the discount rates are derived from a Treasury curve. This is equivalent 
to fractional recovery of cash-flows provided that Treasury is default-free. Duffie et al. (1996) use the 
terminology “fractional recovery of a default-free version of the same security”. 
5 This approach is often referred to as fractional recovery of par as in Duffie [1998] or as fractional 
recovery of nominal. Guha [2003], Madan et al. [2006] use the “fractional recovery of face value” 
terminology. 
6 Plus potentially accrued interest. 
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have to be the same for all the considered bonds. When considering a CDS triggering event, 
assuming “Old R” would apply as is the case for Western European sovereigns, all bonds 
would have to be considered.  However, if a selective restructuring process is involved, such 
that only bonds within a given range of maturities are to be restructured, then we should 
consider those bonds separately7. 
 
Fortunately enough, it is worth noting that the main results in the paper do not depend upon 
an arbitrary choice of recovery parameter. Connections between basic building blocks such as 
defaultable discount bonds and traded level coupon bonds are essentially model-free.  
 
The key results of our paper are as follows: 
 

- While the pricing formulas under fractional recovery of market values and fractional 
recovery of cash flows are different, once the model is calibrated to market prices they 
are reconciled. This means that a newly introduced bond will have the same price and 
risk under both methods. These methods are also consistent with the street approach. 

- The situation is different under fractional recovery of face value. In this case a 
different discount curve has to be used for coupon and principal flows with principal 
flows more valuable than coupon flows. As a result, even after calibration, the prices 
of new bonds will be different from the ones computed under the two other methods: 
IOs will be cheaper and POs will be dearer. 

 
The paper is organized as follows: 
 

- Section 1 recalls the “street approach” to pricing and risk managing defaultable bonds. 
- Section 2 connects the street approach to the fractional recovery of market value 

scheme. 
- Section 3 discusses the applicability of the fractional recovery of Treasury method. It 

is shown that after calibration to quoted bond prices, it provides similar results to those 
obtained in the former approaches 

- Eventually, Section 4 deals with the fractional recovery of par (or face value) 
approach. 

 
1) “Street methods”. 
 
Further assumptions are made to avoid unnecessary notational burden. We recall that F  will 
denote the face value, C  the coupon paid at dates ntt n == ,,11  . We restrict the set of 

scheduled coupon payment dates to integers. 
F
Cc =  will be the coupon rate. ntT n ==  will 

denote the maturity date of the bond. Today’s date will be denoted as 0t  or t  and for 
simplicity, we may have 00 =t 8.  
 

                                                 
7 Andritzky [2006] provides a comprehensive review of issues in sovereign bond restructuring. Duffie 
et al. [2003] illustrate the specificities of sovereign distress focusing on Russian debt, different default 
treatments leading to possibly different discount factors. 
8 The pricing methodologies studied below can readily be extended to account for a larger set of 
payment dates (either discrete or continuous tenors) and amortization schemes or step-up coupons at 
the price of notational burden. 
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Though quite standard, the above cash-flow description of a bond is incomplete, since we 
have only specified the payments in the no-default case. To conduct a rigorous pricing and 
risk analysis of bonds, we should also have a view about payments at default time. This is a 
bit problematic since this cannot be stated unambiguously. Either for that practical reason, 
either because the possibility of default was neglected, market practices have conducted 
analyzes based only upon contractual cash-flows. 
 
For instance, if P  denotes today’s price of a traded bond, the corresponding yield to maturity 

y  is computed through: 
( ) ( )∑

= +
+

+
=

n

i
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11 , we can write: 

 
( ) ( )nyAyFCFP ,−+= , 

or ( ) ( )nyAyc
F
P ,1 −+= . These equations only relate a given bond price P  and its yield to 

maturity y . However, if we were given another bond with different coupon C  and maturity 
T , we could think of applying the same discounting yield y , which sounds reasonable 
provided that coupon rates and maturity are not too different from the traded bond and the 
traded prices are reliable. Then, 
 

( ) ( ) ( )TyAyFCFTFCP ,,,0 −+= , 

or ( ) ( ) ( )TyAyc
F

TcP ,1,0 −+=  become actual pricing formulae where y  is derived from the 

reference quoted bond10. It is even possible to leave aside any connection to quoted bonds and 
state that the yield to maturity to be applied to bonds is given exogenously. This was for 
instance the approach proposed by the IIF, in the case of  the Greek bond swap, to value a 
stream of coupon payments (i.e. 0=F ), with %9=y  or %12=y  and, in the case of a level 
coupon, the price being given by: ( )TyAC ,× . 
 
This elementary pricing approach can be extended to account for a set of bonds. A standard 
bootstrapping procedure consists in looking for non negative discount factors ( )iB ,0* , 

,2,1=i such that the traded prices of bullet bonds TP (with corresponding coupons TC )  for 
maturities 

,2,1=T  fulfil :  
                                                 
9 The computation of yields to maturities for bonds departs from the computation of an internal rate of 
return used elsewhere in finance. When assessing the internal rate of return of an investment involving 
risky cash-flows, one would rather use the expected cash-flows, rather than the cash-flows in the most 
favourable case, in our case, the no-default case. Clearly, this approach was designed in a low default 
environment and is likely to be challenged when being used under the current market environment 
10 By construction, these pricing formulae are consistent with the price P  of the quoted bond (i.e. 
calibrated to the unique market price). In the following, for notational simplicity, we will omit the 
reference to, say coupon rate  c  or maturity T , but it should be made clear that 0P  is a function, thus 
the “pricing formula” terminology, not to be confused with market prices of traded bonds, that will be 
calibrating inputs. The same distinction will apply to the various recovery mechanisms studied below. 
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( ) ( )∑
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TT TBFiBCP
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,0*,0*  

This provides a simple pricing scheme for bonds, with non standard maturities or coupon rates. 
The price of a bond with face value F , coupon C  and maturity T  is given by: 

( ) ( )TBFiBCP
T

i
,0*,0*

1
1 ×+
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The par rate for maturity T  is defined as the coupon rate such Ty ,1  that: 
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,1 ,0*,0* . We can thus write: 
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,0*  being the value of an annuity with maturity T  

in that pricing context. This has the same flavour as the first pricing formula, 

( ) ( )TyAyc
F
P ,10 −+= . 

 

The formula ( ) ( )TBFiBCP
T

i
,0*,0*

1
1 ×+


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



×= ∑
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 is far from being innocuous. Let us 

consider two bonds, with same maturity T , same face value F  and different coupons, C  and 

*C . Then, their prices will differ by ( ) ( )







×− ∑

=

T

i
iBCC

1

* ,0* . The prices will only be equal if 

( ) 0,0*
1

=∑
=

T

i
iB  or equivalently ( ) 0,0* =iB , thus all bond prices should be equal to zero. 

When looking at Greek bonds on the 23rd of November, 2011, we can notice that two bonds, 
one with coupon rate equal to 3.7% maturing on 20/07/2015 and one with coupon rate equal 
to 6.1%, maturing almost at the same time, on 20/08/2015, have almost the same clean price 
of 29% of face value. This provides a clear indication of the difficulties in using without 
caution risky discount factors in bond pricing. This point has been stressed by Andritzky 
[2005], distressed bonds being traded on a price basis rather than a spread basis. 
 
Let us expand briefly about the above setting and calibration issues and consistency with 
market quotes. Given the simplified yearly time scale and assuming that maturities of traded 
bonds span that time scale, we can compute the discount factors by solving a triangular 
system of linear equations. For instance, if we assume that the one year bond is traded (with 
yearly coupon), we will have directly ( )1,0*B . We should then be able to compute ( )2,0*B  
from ( )1,0*B  and the price of the two year bond 

( ) ( ) ( ) ( ) ( )2,0*1,0*2,0*,0* 22

2

1
22 BCFBCBFiBCP

i
×++×=×+








×= ∑

=

. 

The above analysis can be used to assess what would the par rate Ty ,1 , i.e. the coupon rate of 
a new bond, with maturity T , issued at par, given a possibly distressed traded price TP , 
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associated with a level coupon TC : 
( )




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
 −

×+=
∑ =

F
PF

iBF
Cy T

T

i

T
T

1

,1
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1 . We can remark that, 

in the previous equation, the only quantity which is not directly observed from market quotes 

is the annuity ( )∑
=

T

i
iB

1
,0* . 

 
In our simplified setting, the set of payment dates for traded bonds coincides with the set of 
tenor dates involved in interest rate risk management 11 . The basic equation 

( ) ( )TBFiBCP
T

i
,0*,0*

1
1 ×+








×= ∑

=

 can be seen as a linear model involving latent factors 

( )iB ,0* . Only discount factors with maturities corresponding to payment dates are involved. 
A further step consist in splitting the discount factor ( )iB ,0*   as ( ) ( ) ( )iSiBiB ,0,0,0* ×= . 
We recall that ( )iB ,0  is the “default-free discount factor”12.  
 
2) Connection between the “street approach” and default modelling. 
 
As can be seen from above, we were able to discuss the pricing of defaultable bonds, not only 
without using a mere notion of probability, but furthermore without any consideration of the 
recovery mechanism in case of default.  
 
However, it is worth wondering whether there is some rationale behind the above approach: It 
is quite standard and well-studied in the default-free case. It is not that obvious that it can be 
extended to the defaultable case, whether we can leave aside the description of cash-flows in 
the case of default or whether we can associate the above discount factors to say, defaultable 
discount bond prices.  
 
To go further in the pricing and risk management analysis, we need a proper description of 
cash-flows of defaultable bonds. This obviously includes the description of contractual cash-
flows, coupons and principal in the case where no default or restructuring occurs before 
maturity, but also the recovery payment (or secondary claim) at default, if default occurs 
before maturity13. We will subsequently consider three recovery mechanisms, extensively 
studied in the academic literature, with well-known pro and cons, namely, fractional recovery 

                                                 
11 It is worth noting that the pricing scheme is incomplete since we would only know about the 
discount factors for tenor dates and we would be unable to price a new bond with payment dates not 
corresponding to the stated tenor dates. For this purpose, we need a second layer in order to map 
discount factors with discrete tenors to discount factors with continuous tenor dates: ( )iB ,0* , 

( )tBni ,0*,,1 →=  , 0≥t . Once this interpolation or smoothing procedure has been specified, 
the pricing scheme for bonds, with non standard maturity and/or coupon payment dates is complete. 
12 This is to be understood as the discount factor associated with a base curve, usually derived for swap 
quotes or from a benchmark Treasury curve. Provided that no negative basis effect occurs, ( ) 1,0 <iS . 
However, it may be that the base swap rate curve goes above the sovereign curve. Then, ( ) 1,0 >iS , 
and we cannot think of S to be a survival function. 
13 Not so long ago, it was a common assumption to neglect the possibility of default in the case of 
sovereign bonds. For instance, in Elton and Green [1998], the starting point is the statement “cash-
flows of non-callable treasury securities are fixed and certain, simplifying the pricing of these assets 
to a present value calculation”.  
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of market value, of Treasury and of face value. This is not intended to deal with all practical 
cases, but provides good benchmarks for further analyses. For simplicity, we will assume that 
the default date is the same economical and mathematical object, whatever the recovery 
mechanism and τ  will subsequently denote the default date of the bond.  
 
A second step involves identifying relevant building blocks, streams of coupons, defaultable 
discount bonds14, such that already traded bonds or tradable assets that could be obtained 
from stripping are linear combinations of the building blocks. We will subsequently deal with 
a frictionless market and thus with linear pricing rules. What is needed is a procedure that 
allows extracting the prices of the building blocks, consistently with prices of traded and 
liquid bonds. One may either think of a bootstrapping procedure as suggested above, when 
describing the “street approach”. Actually, the pricing formulas shown below, though they 
account for default, do not require any probabilistic modelling. 
 
Formal dynamical models of default will provide further structure regarding the pricing of the 
building blocks. The standard mathematical finance framework associated with reduced-form 
modelling involves a short-term default-free rate r , a default intensity λ 15 and a pricing 
probability measure Q 16. Some extra technical restrictions are involved in order to have a 
simple connection with standard discounting techniques17. It should be made clear that the 
main results of the paper do not rely upon such modelling assumptions. 
 
3) Fractional recovery of market value method 
 
Under the fractional recovery of market value approach, the bond holders receive, at default 
time, a fraction, equal to the recovery rate δ , of the pre-default market value of the bond. 
Subsequently, δ  will be a deterministic parameter 18 . Let us remark that the defaultable 
                                                 
14 Regarding discount bonds, depending upon the context, we may have to deal with continuous tenors 
or remain in a discrete tenor setting. 
15 In this framework, default date is a totally inaccessible stopping time. Moreover, the compensator of 
the default indicator function is assumed to be absolutely continuous with respect to the Lebesgue 
measure. One may refer to λ  as a pre-default intensity. The fractional recovery of market value 
approach is coupled here with the reduced-form approach (see Jarrow and Turnbull [1995], Jarrow et 
al. [1997]). When considering stochastic models of default, we will remain in the above setting 
throughout the paper. 
16 This risk-neutral measure is associated with the savings account numeraire. Existence of a default-
free short rate is postulated. 
17 See the articles by Duffie et al. [1996], Duffie and Singleton [1999] and Collin-Dufresne et al. 
[2004]. In this approach, the arrival of information, i.e. the market filtration is given and includes 
observation of default date. Similar results have been obtained in a slightly different setting by 
Blanchet-Scalliet and Jeanblanc [2004], Bielecki et al. [2004] and the book by Bielecki and Rutkowski 
[2010]. In this the latter approach, the market filtration results from a progressive enlargement of a 
background filtration with the observation of default arrival. The above approaches are rather abstract 
and general. One can think of using more restrictive but easier to grasp modelling, for instance Cox 
processes as in Lando [1998, 2004], Duffie and Singleton [2003]. Such a framework, thanks to the 
conditional independence of default time and state variables, guarantees that the basic technical 
assumptions of the general approaches are fulfilled. When dealing with fractional recovery of market 
value, there is an extra degree of mathematical involvement. The payment in case of default involves 
the pre-default price, resulting in a recursive valuation problem and the need to solve for an integral 
equation.  
18 See Merrick [2001], Madan et al. [2006], Pan and Singleton [2008], Das and Hanouna [2009] for a 
relaxation of this constraint in a pricing framework. 
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discount bond prices have a rather tricky pattern since their price is scaled down by δ  at 
default time. As was mentioned in the introduction, the fractional recovery of market value 
approach leads to easy to deal with computations, even though its economic significance and 
practical use have been questioned. Under the fractional recovery of market value approach, 
defaultable bonds can actually be seen as portfolios of defaultable discount bonds, which will 
be the basic tradable instruments.  
 
The usual outcome of the above stochastic model of default and recovery is the writing of 

risky discount factors as: ( ) ( )( )



















−×+−= ∫

i
Q dsssrEiB

0

1)()(exp,0* δλ . It is worth noting 

that these discount factors are the pre-default prices of defaultable discount bonds with the 
same fractional recovery of par mechanism as level coupon bonds. Let us also emphasize that 
the recovery rate does not depend upon maturity of the defaultable discount bond and that, 
regarding default and recovery, only the process ( ) ( )δλ −× 1s  is involved19.  We can define 
the (risk-neutral) survival probabilities, i.e. the probabilities of not having defaulted up to 

some time t , as ( ) ( ) 



 −=>= ∫

iQ dssEiQiS
0

)(exp λτ . The default-free discount factors are 

provided by ( ) 



 −= ∫

iQ dssrEiB
0

)(exp,0 . It is often assumed that default-free rates and 

default intensities are independent. In the new global financial context, this simplifying 
assumption may be challenged but it provides further simplification in the computation of 
discount factors and risk analysis. From that latter point of view, interest rate and default (or 
spread) risks become somehow “orthogonal”. Assuming the recovery rate to be constant, we 

can write ( ) ( ) ( ) δ−×= 1,0,0* iSiBiB , thus the spread term ( ) ( )
( ) ( ) δ−== 1

,0
,0*,0 iS
iB
iBiS  only 

involves quantities that are directly related to the default date and the recovery rate. Under the 
independence assumption between default-free short rates and default-intensities, a shift in 
default intensities is consistent with a shift in “zero-coupon spreads” (with continuous 
compounding). Thus, there is some kind of consistency between market practices, such as 
DV01 computations to credit spreads and stochastic modelling approaches. 
 
Let us stress that the decomposition of defaultable discount bonds with positive recovery 

( ) ( ) ( ) δ−×= 1,0,0* iSiBiB  is model dependent and that defaultable discount bonds with zero 
recovery are artefacts, which may not be the case with other recovery mechanisms. 
 
Though the above computations could be useful, for instance in assessing recovery risk, the 
building of defaultable discount bonds and thus their pricing from level coupon bonds is 
model free. Let us go back to cash-flow analyses and the example depicted above. We are 
given a zero coupon defaultable bond scheduled to mature in one year, and a two year 
defaultable level coupon bond with coupon 2C . It can readily be seen that holding the 
                                                 
19 Since only the process ( ) ( )δλ −× 1s   is involved, one cannot disentangle recovery and the arrival of 
defaults. From that perspective, having a time dependent recovery rate is irrelevant. The assumption 
that all bonds, with same seniority deserve the same recovery seems almost obvious and in accordance 
with priority rules. However, sovereign default and restructuring is not governed by standard rules 
applicable to corporate entities ruled by, say, New York or English law. Regarding the Private Sector 
Involvement in Greek debt restructuring, different treatments according to bond maturity had been 
considered. Then the assumption of a common recovery rate applicable to all bonds has to be relaxed.  
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previous level coupon bond and being short  2C  units of one year defaultable bond (with face 
value being equal to 1) synthesizes a  two year defaultable discount bond (with face value 

2CF + ) and the same fractional recovery of  market value mechanism at default as the two 
constituent traded bonds. In the depicted static replication procedure, only defaultable bonds 
are involved and there is no need for default-free bonds to be traded. Thus, the discount 
factors ( )iB ,0*  do correspond to prices of defaultable discount bonds and their prices can be 
computed from traded level coupon bonds in an algebraic and thus essentially model-free way. 
 
4) Fractional recovery of Treasury method. 
 
The recovery mechanism corresponds to a proportional haircut applied to all cash-flows after 
default. The cash-flows are scaled by δ , which is the recovery rate. We can then depict the 
effective cash-flows on a given defaultable bond as: iiii FF ≤> + ττ δ 11 , where CFi =  for 

1,,1 −= ni 
 and CFFT += . The fractional recovery of treasury mechanism has been 

considered by Jarrow and Turnbull [1995] or Jarrow et al. [1997] among others. 
 
Regarding sovereign default, that recovery mechanism can be associated with a forced 
conversion of bonds issued, say in euros, to a new domestic currency, δ  being thus the 
exchange rate at the time of the forced exchange. 
 
Let us remark that at this elementary stage of cash-flow analysis and regarding recovery 
mechanism, one important, if not the most important assumption is the constancy of the 
recovery rate, at default time, across defaulted bonds, i.e. the recovery rate does not depend 
upon the maturity or the coupon rate.  
 
Remaining at cash-flow analysis, the recovery rate needs to be actually known before the 
scheduled payment date following default, for the cash-flows to be sensibly defined. Thus, 
recovery rate neither needs to be known at pricing time nor to be given a specific probability 
distribution.  
 
The cash-flows of coupon bonds can be seen as linear combinations of elementary cash-flows 
of the form ii ≤> + ττ δ11  paid at dates ni ,,1= .  
Conversely, let us go back once again to the two year level coupon bond example. It can be 
seen that the two year defaultable discount bond, paying 22 11 ≤> + ττ δ  can be synthesized 
exactly the same way as in the fractional recovery of market value. Thus, in the fractional 
recovery of cash-flows, the discount factors ( )iB ,0*  also correspond to prices of defaultable 
discount bonds and their prices can be computed from traded level coupon bonds in an 
algebraic and thus essentially model-free way. As in the recovery of market value approach, 
the replication only involves defaultable bonds and no default-free bonds need to be involved. 
However, it must be understood that, even though we use the same terminology “defaultable 
discount bond”, we do not speak of the same assets in the recovery of market value and in the 
recovery of cash-flow cases: the cash-flows of discount bonds and associate price processes 
do not coincide. 

We have been able to give the basic equation ( ) ( )TBFiBCP
T

i
,0*,0*

1
1 ×+








×= ∑

=

 some 

economic content and to relate the defaultable discount factors to the prices of some well-
defined defaultable discount bonds. 
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To go further into pricing and risk analysis comparisons, we can make for a while the 
assumption that the recovery parameter is known from inception. Since we wrote the cash-
flows of the defaultable bond as ( ) iii FF >−+ τδδ 11 , ni ,,1= , they can be split into two 
streams, one which is default free, while the other one involves defaultable cash-flows 
( ) iFδ−1  with zero recovery. 
 
Let us deal first with the default-free component of the bond cash-flows. At this stage we 
assume that the default-free discount bonds for the relevant maturities ni ,,1=  are tradable 

assets, with prices ( )iB ,0 , ni ,,1= . ( ) ( )∑
=

=
n

i
RF iBTA

1
,0  will denote the value of a default-

free annuity of maturity nT = . The default-free bond par rate, denoted by Tr  is such that 
( ) ( )TBTAr RFT ,01 += .Today’s price of the stream of default-free cash-flows iFδ , ni ,,1=  

is given by: ( ) ( )







+× ∑

=

TFBiCB
n

i
,0,0

1
δ . This can also be written as: 

( ) ( )( )TAFrCF RFT−+×δ . 
 
Let us now consider the stream of defaultable cash-flows. The building blocks and tradable 
assets to be considered are defaultable discount bonds with zero-recovery; their cash-flows 
are i>τ1  paid at ni ,,1= . Let us denote by ( )iB ,0  the corresponding prices and by 

( ) ( )∑
=

=
n

i
iBTA

1
,0 , the value of a defaultable annuity with zero recovery of maturity nT = . 

We will also consider the par rate of a defaultable bond with zero-recovery, Tr , being such 
that ( ) ( )TBTArT ,01 += . Today’s price of the stream of default-free cash-flows ( ) iiF >− τδ 11 , 

ni ,,1=  is then given by: ( ) ( )







+×− ∑

=

TBFiBC
n

i
,0,0)1(

1
δ  and can also be written as: 

( ) ( )( )TAFrCF T−+×− )1( δ . Thus, the bond price is provided by: 
 

( ) ( ) ( )( ) ( )TAFrCTAFrCFP TRFT −−+−+= δδ 12 , 
 

or ( ) ( ) ( )( ) ( )TArcTArc
F
P

TRFT −−+−+= δδ 112 . The bond price is a weighted average of a 

Treasury and a defaultable bond with zero recovery.  
 
The par rate Ty ,2  is defined by: ( ) ( ) ( )( ) ( )TAFryTFAryFF TTRFTT −−+−+= ,2,2 1 δδ . Thus: 

( )( ) ( ) ( )( ) 01 ,2,2 =−−+− TTTTRF yrTAyrTA δδ . 
By combining the equations providing 2P  and the par rate Ty ,2 , we obtain the simple pricing 
expression: 

( ) ( ) ( ) ( )( )TATAFyCFP RFT δδ −+×−+= 1,22 , 
or equivalently:  

( ) ( ) ( ) ( )( )TATAyc
F
P

RFT δδ −+×−+= 11 ,2
2 , 
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 to be compared with ( ) ( )







×−+= ∑

=

T

i
T iByc

F
P

1
,1

1 ,0*1 . The pricing formula providing 2P  

allows assessing a change in the coupon C  on the bond price. A scaling factor of 

( ) ( ) ( )TATARF δδ −+ 1  is involved to be compared with ( )∑
=

T

i
iB

1
,0*  in the market practice 

approach. Let us remark that ( ) ( ) ( ) ( ) ( ) ( )∑
=

−+=−+
n

i
RF iBiBTATA

1
,01,01 δδδδ  

 
Calibration only involves the defaultable discount factors ( )iB ,0* . Since calibrated discount 
factors are such that: 

( ) ( ) ( ) ( )iBiBiB ,01,0,0* δδ −+= ,  ni ,,1= , 
prices of zero recovery defaultable discount bonds, ( )iB ,0  do depend upon δ .  
 
It is worth writing the pricing formula, associated with recovery of cash-flows, as: 

( ) ( ) ( ) ( )( ) ( ) ( )( )







−×+−××+×+×= ∑∑

==

nBnBFiBiBCnBFiBCP
n

i

n

i
,0,0,0,0,0,0

11
2 δ . 

Here, we have split the bond price in two parts. ( ) ( )nBFiBC
n

i
,0,0

1
×+×∑

=

 is the bond price 

under zero-recovery while ( ) ( )( ) ( ) ( )( )







−×+−×× ∑

=

nBnBFiBiBC
n

i
,0,0,0,0

1
δ  is the value of 

the recovery. 
 
Let us have a closer look at the pricing and discounting formulas under fractional recovery of 
market value and of cash-flows. To ease the computations, we will assume that default-free 
rates and default intensities are independent. Under the fractional recovery of market value 
and of cash-flows, respectively, we can write: 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )









−+×+−+×=

×+×=

∑

∑

=

−

=

−

nSnBFiSiBCP

nSnBFiSiBCP
n

i

n

i

δδδδ

δδ

1,01,0

,0,0

1
2

1

1

1
1

. 

Let us think that these are used for the sake of calibration to a set of traded defaultable bullet 
bonds. We can think of the default-free discount bonds being computed elsewhere and from 
these, a standing recovery rate and market prices of defaultable bond prices, the survival 
probabilities ( )iS  are derived. Clearly, we will not get the same survival probabilities in the 
two approaches. Also, once the survival probabilities are calibrated, a shift in default intensity 
does not have the same impact on prices, depending upon the chosen recovery mechanism. 
 
It is worth stressing that the building blocks involved in defaultable bonds with fractional 
recovery of cash-flows are defaultable discount bonds with the same recovery mechanism. 
Zero-recovery defaultable discount bonds can be split out of the latter only under stringent 
assumptions: availability of truly default-free discount bonds and knowledge of recovery 
parameter at pricing date. 
 
Fortunately enough, we found two mechanisms, recovery of market value and of cash-flows 
leading to discounting contractual bond cash-flows with a set of risky discount factors as 
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commonly done under market practice. The building blocks of bullet bonds are defaultable 
discount bonds in the two cases, even though the dynamics of such defaultable discount bonds 

are not the same. Also, bond formulas ( ) ( )







×−+= ∑

=

T

i
T iByc

F
P

1
,1

1 ,0*1  and 

( ) ( ) ( ) ( )( )TATAyc
F
P

RFT δδ −+×−+= 11 ,2
2  do not involve the same defaultable level annuities. 

However, after calibration to a set of traded bonds, these two models are formally equivalent. 
The lead to the same prices  and rate sensitivities of newly issued bonds.   
 
5) Fractional recovery of face value. 
 
In the fractional recovery of face value approach, the bond holder receives F×δ  at default 
time τ , i.e. a fraction of the face value20. Let us remind that, in the fractional recovery of 
cash-flows approach, the bond holder receives at default time τ 21, a fraction δ  of the present 
value of the bond, where the discounting is based on default-free rates. This is the road 
followed by Merrick [2001], Andritzky [2005] or Vrugt [2011] in the context of sovereign 
bond pricing. 
 
Let us first provide some qualitative insights and hints aimed at comparing the two recovery 
mechanisms with respect to pricing and risk management. In both approaches, we can depict 
the stream of cash-flows as the sum of two components: 
 

- The first one corresponds to pre-default cash-flows, which are simply the scheduled 
cash-flows times an indicator of survival of the issuer at scheduled default time: iiF >τ1 , 
where CFi =  for 1,,1 −= ni 

 and CFFT += . We have already analysed the 
valuation of this stream of cash-flows, associated with a defaultable bond with zero-
recovery. The replication of this component and the required building blocks are the 
zero-recovery defaultable discount bonds. The corresponding value is 

( ) ( )nBFiBC
n

i
,0,0

1
+








× ∑

=

. 

- While the pricing formulas under the “fractional recovery of cash-flows” share the 
same pre-default component, the default payment, i.e. the recovery components 
obviously differ22. In the fractional recovery of par, we have to consider a payment of 
the recovery rate at default time τ , provided that defaults occurs before maturity date 
T 23. Unless in special and unrealistic cases, the building block associated with the 

                                                 
20 For simplicity, we will not account for the promised running coupon. The subsequent stripping 
procedure between coupon and principal payments obviously still holds without that assumption. 
21 For simplicity and ease of comparison, we will assume for a while that the default date is the same 
under the two approaches and that only the recovery mechanism differs. 
22 Of course, this holds unless the recovery rate is equal to zero. 
23 For such a cash-flow to be properly defined, we only need for the recovery rate to be well defined as 
default date. In the fractional recovery of par framework, we need the existence of a proper secondary 
market of bonds at default time, which is not granted for loans, but makes sense for sovereign bonds. 
Then, the recovery rate is, by construction, the unique market price (per unit of nominal) of all 
distressed bonds. The building block associated to this cash-flow is quite similar to the default leg of a 
credit default swap. For practical purpose, given that relevant default times may differ on the credit 
default swap and the bond markets and given the magnitude of basis effects between the two markets, 
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default payment under fractional recovery of par cannot be readily replicated by using 
defaultable and default-free discount bonds. Thus, we think of the payment at default 
time, conditionally on default occurring before T  being a new tradable asset24.  

 
Let us pinpoint some differences between the fractional recovery of cash-flows and the 
fractional recovery of face value approaches. 
 
At default date τ , with fractional recovery of par, the bond holder receives F×δ  plus 
possibly some recovery on the running coupon. With fractional recovery of cash-flows, the 
bond holder receives δ  times a level coupon bond with coupon C , face value F  and 
payment dates corresponding to the remaining scheduled payment dates. Given the definition 
of recovery of cash-flows, there is no further default risk on the level coupon bond. Its value 

can then be computed as ( ) ( )







+×× ∑

>

nFBiBC
ni

,, ττδ . This shows that the sensitivity of the 

bond with fractional recovery of par, with respect to a shift in default-free rates (DV01), is 
smaller than the sensitivity of bond with fractional recovery of cash-flows. Indeed, with 
fractional recovery of par, the bond holder receives a given amount of cash at default date, 
while the bond holder is left with a bond position with fractional recovery of cash-flows.  
 
When 1=δ , there is no difference between the cash-flows of a default-free bond and of a 
defaultable bond under a fractional recovery of cash-flows. This is no longer the case with the 
recovery of face value mechanism: default becomes formally equivalent to a prepayment. If 
the coupon rate is above the default-free par rate, this will result in a loss for the bond holder. 
The converse is true. Thus, for bonds with small coupons (compared with default-free rates), 
default will be good news, provided that the recovery rate is high enough. With fractional 
recovery of face value, we may have the price of a defaultable bond above the price of a 
default-free bond with same scheduled cash-flows. 
 
Another difference between recovery of face value and recovery of cash-flows is the schedule 
of payments. With recovery of cash-flows, the set of payment dates can be seen as the set of 
scheduled payments; in case of default, there is a haircut applicable at the scheduled payment 
dates. This leads to an essentially discrete tenor discounting. On the other hand, recovery of 
face value can lead to a cash payment at any date prior to default. Of course, we can restrict 
the set of default dates to bond payment dates, so that only the same discrete set of tenor dates, 
as in the recovery of cash-flows case, needs to be considered. This is somehow artificial and 
recovery of face value involves a continuous tenor modelling. 
 
Even though payments up to default are the same in the two approaches, the pre-default 

pricing formula ( ) ( )nBFiBC
n

i
,0,0

1
+








× ∑

=

 is misleading from a risk management and a 

model risk perspective. We show below that in a number of cases, zero-recovery defaultable 
discount bonds can actually be synthesized from defaultable coupon bonds under the recovery 

                                                                                                                                                         
reliance upon the CDS market for pricing and risk management on the bond market should be done 
with great caution, especially in the case of sovereign issuers. 
24 One could think of stripping a given defaultable bond into two assets: a stream of cash-flows equal 
to committed bond payments until default date, at which the bond contract is cancelled (zero recovery) 
and another stream of cash-flows, where some investors receive the recovered part of the bond at 
default time. 
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of face mechanism. On the other hand, one would not be able to split a zero-recovery 
defaultable discount bond in the recovery of cash-flows framework: Even in the hypothetical 
case where default-free discount bonds were to be traded, one would need to know the 
recovery rate from inception in order to disentangle the zero-recovery part. 
 
To ease the computations and the analysis, let us turn to the case of a constant recovery δ  and 
default date independent of default-free rates under the pricing measure Q . The value of all 

payments prior to default date is given by: ( ) ( ) ( ) ( )nSnFBiSiBC
n

i
,0,0

1
+×∑

=

, where S  stands 

for the survival function of τ . 
 

As for the default payment, we need to compute ( )[ ] ( ) ( )∫×−=× ≤

n

n
Q tdStBFFBE

0

,01,0 δτδ τ , 

neglecting the price impact of the recovery on the running coupon. On the other hand, the 
value of the default payment with fractional recovery of cash-flows can be written as:  

( ) ( )( ) ( ) ( )( )







−+−×× ∑

=

nSnFBiSiBC
n

i
1,01,0

1
δ . 

Up to a scaling factor δ , the difference between the two pricing formulas can be written as: 

( ) ( )( ) ( ) ( )( ) ( ) ( )







+−××+








−×× ∫∑

=

nn

i
tdStBnSnBFiSiBC

01
,01,01,0 . 

This corresponds to the present value (with discounting at default-free rates) of an amortizing 
bond with outstanding nominal at time t  equal to ( )( )tSF −× 1  for nt <≤0 , maturity date n  

and coupon rate 
F
C . Since ( ) 10 =S , the initial outstanding nominal equals zero25. The par rate 

of the above amortization structure is the coupon rate such that the present value is equal to 
the nominal, i.e. 0. Let us remark that this par rate is a default-free rate26. If the coupon rate is 
equal to the par bond rate, then recoveries of cash-flows and of face value lead to the same 

price. If the coupon rate 
F
C  is higher than the previous par rate, then the price of the bond will 

be lower when considering the recovery of face value mechanism rather than recovery of 
cash-flows (using the same recovery rate). 
 
The above formula also allows to assess the differences between fractional recovery of cash-
flows and fractional recovery of face value, regarding the risk exposures to the default-free 
discount factors ( )tB ,0  and the spread terms ( )tS . 
 
Unlike in the previous recovery mechanisms, coupons and principal payments deserve 
different treatments. 
 
In the fractional recovery of face value approach there is no claim on coupons after default27. 
Thus, the recovery rate will not be involved in the valuation of the stream of coupons. Stated 
otherwise, the value of the stream of coupons can be done with a zero recovery assumption. 
                                                 
25 We have negative amortization up to maturity date. 
26 If the default-free rates do not depend upon maturity, then the par rate equals the unique default-free 
rate. 
27 Apart from the running coupon. 
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The replication of the stream of coupons thus only involves zero-recovery defaultable 
discount bonds. 
 
Regarding the valuation of principal payments, in the fractional recovery of face value 
approach, the bond holder receives a fraction δ  of the face value at default date, 
corresponding to principal acceleration while, when considering fractional recovery of cash-
flows, the bond holder receives a fraction δ  of the face value at maturity date. Thus the value 
of the principal payment is smaller in the case of fractional recovery of cash-flows (assuming 
non-negative default-free rates) than in the case of fractional recovery of face value.  
 
Unsurprisingly, since in case of fractional recovery of face value, the bondholders have 
different claims on principal and coupons, this will result in different discounting treatments. 
Even though, in our approach, the pricing rules remains linear whatever the recovery 
mechanism, the discount factors to be applied to the contractual coupon and principal 
payments will differ leading to two different discounting curves. Such a feature draws a clear 
line between the pricing methods under the two recovery mechanisms. 
 
Given these preliminary remarks, let us go back to a more formal approach and denote by 
( )TB ,0ˆ  today’s price of a contract paying the recovery rate δ  on the defaultable bonds, at 

default time τ , provided that τ  is smaller that nT = . Then, the price of the bond can be 
written as: 

( ) ( ) ( )( )nBnBFiBCP
n

i
,0ˆ,0,0

1
3 +×+×=∑

=

. 

As was stated qualitatively, different discount factors are involved for coupons, 
( ) ( )tBtBC ,0,0 = , and principal payments, ( ) ( ) ( )tBtBtB P ,0ˆ,0,0 += 28. The discount factors 

related to principal payments are always higher than the discount factors applicable to coupon 
payments 29 . The coupons are priced with a zero-recovery assumption. The absence of 
arbitrage opportunities imply that ( ) ( )tBtBC ,0,0 ≤  and ( ) ( )tBtB P ,0,0 ≤ .  
 
At first sight, the pricing formula: 

( ) ( )nBFiBCP P
n

i

C ,0,0
1

3 ×+×=∑
=

, 

with ( ) ( )iBiB PC ,0,0 ≤  looks inconsistent with the linearity of the pricing rule. Actually, it is 
not. Linearity is still valid when applied to actual cash-flows received by bond holders. It is 
only the use of contractual coupon and principal payments in the pricing formula that lead to 
this seemingly inconsistency. 
 
As was done for the two former recovery mechanisms, let us consider the calibration to traded 
level coupon bonds. Let us consider two one year maturity defaultable bonds, with face value 
F , one with coupon C  and the other with coupon CC ≠' , with respective prices P  and 'P . 
Being long the first bond and short the second one, creates an exposure to coupon payment 

only and ( )
CC
PPBC

−
−

=
'
'1,0 , i.e. the increase rate in bond prices of given maturity with coupon 

                                                 
28 This is related to the structure of default payments and should not be confused with tax effects 
which are, for instance, discussed in McCulloch [1975] or Elton and Green [1998]. 
29 ( ) 0,0ˆ >tB  is the price associated with a positive cash-flow. 
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rate. Using the same procedure with two year level coupon bonds allows to synthesize a two 
year IO and derive ( )2,0CB . Given the prices of IOs and the prices of level coupon bonds, we 
readily synthesize and prices POs30. Clearly, the calibration is more involved since two sets of 
level coupon bonds with different coupon rates are required. As for the two former recovery 
mechanisms, the bootstrap calibration procedure makes clear the constituents of defaultable 
level coupon bonds. 
Let us further investigate the pricing formula associated with the recovery of face value 

approach. The par rate Ty ,3  is the coupon rate such that ( ) ( )TBFiBFyF PC
T

i
T ,0,0

1
,3 ×+×=∑

=

. 

By combining the equation providing 3P  and the definition of the par rate Ty ,3 , we obtain: 

( ) ( )







×−+= ∑

=

T

i

C
T iBFyCFP

1
,33 ,0 , 

or equivalently: 

( ) ( )







×−+= ∑

=

T

i

C
T iByc

F
P

1
,3

3 ,01 , 

which is to be compared with the pricing formulas associated with the recovery of market 

value and the recovery of Treasury approaches: ( ) ( )







×−+= ∑

=

T

i
T iByc

F
P

1
,1

1 ,0*1  and: 

( ) ( ) ( ) ( )( )TATAyc
F
P

RFT δδ −+×−+= 11 ,2
2 . Let us recall that after calibration to level coupon 

bonds, ( ) ( ) ( ) ( )TATAiB RF

T

i
δδ −+=∑

=

1,0*
1

 for all T  and thus TT yy ,2,1 = . However, Ty ,3  is 

different from Ty ,1  and Ty ,2  unless a par bond is actually traded for this maturity, which 
would be the case at origination. 
 
Then, the par rate becomes a market observable for that maturity, denoted by Ty . In that case, 
calibration of models imply that TTTT yyyy === ,3,2,1 . We can then study the effect of a 

change of coupon rate on the prices for maturity T: ( ) ( )







×−+= ∑

=

T

i
T iByc

F
P

1

1 ,0*1 , 

( ) ( ) ( ) ( )( )TATAyc
F
P

RFT δδ −+×−+= 112  and ( ) ( )







×−+= ∑

=

T

i

C
T iByc

F
P

1

3 ,01 . These pricing 

formulas are quite simple and readily extend the well-known swap formulas. They only differ 
from one to another by the expression of the “risky level”, i.e. the price of defaultable annuity 

of maturity T. For instance, ( )∑
=

T

i

C iB
1

,0  is the price of a zero-recovery risky level annuity 

associated with the bond market31. 
 
 
 
 
                                                 
30 We do not deal here with practical issues such as fungibility, see Tuckman and Serrat [2011]. 
31 This will usually differ from the risky level involved in credit default swap pricing since, for 
instance, CDS and bond default dates may differ. 
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Conclusion 
 
It has been shown that the simplest discounting approaches to defaultable level coupon bonds 
could be made consistent with standard recovery mechanisms such as recovery of market 
value or recovery of cash-flows. More precisely, the defaultable discount factors can be seen 
as the prices of defaultable discount bonds with positive recovery32. Such defaultable discount 
bonds can be obtained by static replication from traded defaultable level bonds. It is worth 
noticing that no default-free bond is required in such analysis, which is good news given the 
difficulty of stating what should be a default-free discount curve. No assumption about 
recovery rates or about independence between default date and default-free rates is required 
for the discounting scheme to apply. Of course, it is possible to go along this way, at the price 
of model dependency.  
 
Unfortunately, the preferred recovery mechanism, recovery of face value, is inconsistent with 
the assumption of a unique discounting curve. One has to consider principal and coupon 
payments separately. This leads to different calibration approaches from level coupon bonds. 
The bond building blocks involve defaultable discount bonds with zero-recovery on one hand 
and a specific instrument associated with payment of recovery at default time. As for the 
recovery of cash-flows, no assumption about recovery rates, default dates, default-free rates is 
required for the pricing scheme to apply. 
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