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Abstract 

 
We consider some pricing and risk management issues related to defaultable 
bonds, in the context of sovereign debt default and restructuring. Standard 
recovery schemes such as fractional recovery of market value, of Treasury and of 
face value are investigated: we discuss their consistency with market practice both 
from a pricing and a risk management perspective. We also pay attention to the 
tradable basic instruments such as defaultable discount bonds or coupon and 
principal strips that are the building blocks of traded level coupon bonds. Model-
free pricing formulas are provided and the use of a hypothetical default-free yield 
curve is challenged. We show that the fractional recovery of par involves two 
discount curves, one for principal payments and one for coupon payments, a 
departure from standard bootstrapping and pricing engines. In a second step, this 
pricing framework can be specialized along the modelling lines routinely used in 
credit derivatives markets. In light of collective action clauses applicable to the 
issuance of new bonds in the eurozone and the pricing characteristics of strips, we 
investigate some practical issues on bond and credit derivatives markets: stripping 
of bonds in distressed periods, implied market recovery scheme and consistent 
recovery rates. 
 
JEL Classification: G01, G12, G33 
 
Keywords: Default, sovereign bond, coupon strip, principal strip, sovereign CDS, 
recovery of face value, collective action clause. 
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The default risk component in government bond prices is a clear matter of concern for 
academics and practitioners. This papers deals with a relative value / cross sectional approach. 
For a given issuer and a given point in time, we state the price restrictions among a set a 
bonds with different maturities and coupon rate. We figure out how recovery schemes, 
collective action clauses features, prices of coupon and/or principal strips affect the coupon 
and term structure of bonds prices and question standard discounting methodologies and 
market practice. 
 
Given new market regulations in the US and in Europe, bond pricing algorithms have become 
of first importance with respect to market-making or systematic bond trading. Sovereign bond 
prices act as an anchor in capital markets and properly dealing with increased and volatile 
default risk is topical. 
 
As can be seen from the 2005 BIS study or the discussion paper from the Bank of Japan 
(Kikuchin and Shintani [2012]) current methodologies involved in government yield curve 
estimation and constant maturity Treasury (CMT) rates disclosure are not concerned with the 
possibility of debt restructurings say. Moreover, constant maturity treasury rates are not 
market observables but outcomes of smoothing and interpolating that may not properly 
account for coupon and default risk effects in the first stage. 
 
A related issue is the overreliance of many econometric studies and trading strategies on 
hypothetical risk-free rates and questionable spread methodologies. Government bonds rates 
are often used as proxies for such risk-free rates, but this does not address the assessment of 
default risk in the base curve or the impact of such default risk on the significance of 
subsequently derived spreads.  
 
The literature on defaultable bonds usually involves specifying an unobserved default-free 
rate process and on top on that a probabilistic modelling of default arrivals and eventually a 
recovery mechanism (see Duffie and Singleton [1999]). As further discussed, we can skip the 
intermediate stage of default-free rate specification and jump directly to defaultable bond 
price. In that simple approach one deals directly with the building blocks of government 
bonds, could be principal strips (P-strips) or coupon strips (C-strips) when these are traded 
and the possible recovery mechanisms.  
 
Specifying the bond payments in case of default is of clear importance. Three important 
recovery schemes, known as fractional recovery of market value (RMV thereafter, Duffie et 
al. [1996], Duffie and Singleton [1999] and Collin-Dufresne et al. [2004]), recovery of 
treasury (RT, Jarrow and Turnbull [1995], Jarrow et al. [1997]) recovery of face value (RFV)2 
have been widely considered.  
 
Recovery of face value is in line with common bankruptcy procedures and market practice for 
distressed corporate, emerging markets bonds (Merrick [2001], Andritzky [2005] or Vrugt 
[2011]) or sovereign CDS. As shown by the Greek bond swap, this is an applicable scheme. 
In such a framework coupon and principal payments do not have the same rights. Typically, 
coupons have zero-recovery, while the recovery is concentrated on principal payment which 
is due at default date (principal acceleration).  
                                                 
2 This approach is often referred to as fractional recovery of par as in Duffie [1998] or as fractional 
recovery of nominal. Guha [2003], Madan et al. [2006] use the “fractional recovery of face value” 
terminology. At default time, the claim is based on the nominal value of the bond , irrespectively of 
the coupon and maturity of the defaulted bond. 
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Recovery of face value is inconsistent with the use of the same risky discount factors for 
coupon and principal payments and Z – spread methodologies (“street method”). This point is 
made clear in Berd, Mashal and Wang [2004a,b] or O’Kane and Sen [2005]). We go here one 
step beyond by relaxing the usual assumptions regarding constancy of recovery rates or the 
independence between default arrival and default-free rates. 
 
We can think of other mechanisms such an exit of the eurozone of a sovereign issuer. Since 
such change of currency involves the same haircut for coupon and principal payments, this 
leads to risky discount factors that depend only upon maturity3.  
 
A specificity of the debt structure of major sovereign issuers is the existence of a market for 
strips. In some markets, C-strips and P-strips are fungible, say as in the French government 
bond market, while in others such as the US Treasury market only C-strips are fungible. The 
model CAC in the eurozone deal with the voting rights of strips and provide interesting 
information regarding the rights attached to coupon and principal in case of bond restructuring. 
 
The paper is organized as follows: Section 1 recalls the “street approach” to pricing and risk 
managing defaultable bonds. Section 2 connects the street approach to the modelling of 
defaults and recovery. Section 3 specifically focuses on fractional recovery of market value 
scheme, while Section 4 discusses the applicability of the fractional recovery of Treasury 
method. Section 5 deals with the fractional recovery of par (or face value) approach. Section 6 
investigates in greater detail the extra modelling constraints routinely used in credit risk 
models under the recovery of face value approach. Section 7 briefly addresses alternative 
recovery schemes and their impact on the relative pricing of coupon and principal payments. 
Eventually, Section 8 addresses a number of practical and empirical features in connection 
with collective action clauses and the pricing of principal and coupon strips. The appendix 
briefly addresses some adaptation of standard mathematical finance tools to relate existence 
of defaultable discount factors and the absence of arbitrage opportunities. 
 
1) Street method for bond pricing 
 
Our starting point is a set of traded defaultable bullet bonds issued by a given sovereign. We 
look for a set of discount factors to be applied to contractual bond cash-flows, consistent with 
the prices of traded bonds. We are concerned with the relative prices provided by different 
pricing engines as coupon rate or bond maturity varies. The purpose of this paper is to assess 
the consequences of recovery mechanisms on bond pricing, especially given that there is not 
always a clear best choice in the case of sovereign debt default and restructuring4. 
 
Further assumptions are made to avoid unnecessary notational burden. We recall that F  will 
denote the face value, C  the coupon paid at dates ntt n  ,,11  . We restrict the set of 

                                                 
3 Similarly, a moratorium in which all coupon and principal payments would be delayed would lead to 
the same risky discount factors to be applied to coupon and principal payments. On the opposite, 
lengthening of maturities and/or coupon reduction emphasize differences between coupon and 
principal payments. 
4 While we focus upon standard recovery mechanisms, one could extend the scope of analysis. For 
instance, the 2003 Uruguay bond swap was associated with a lengthening of bond maturities, the 
coupon rate of bonds being unchanged. 
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scheduled coupon payment dates to integers. 
F

C
c   will be the coupon rate. ntT n   will 

denote the maturity date of the bond. For simplicity, since we are only concerned with cross-
sectional approaches, we do not refer to today’s date.5  
 
Let us emphasize that the above cash-flows are contractual. In case of default, there are to be 
reduced according to the recovery scheme.  
 
The most commonly applied approach postulates the existence of non negative risky discount 
factors  *B i , ,2,1i  such that the traded prices of bullet bonds *

TP (with corresponding 

coupons TC )  for maturities ,2,1T  fulfil :  

   *

1

* *
T

T T
i

P C B i F B T


        (1) 

The par rate for maturity T  is defined as the coupon rate such *
Ty  that: 

   *

1

* *
T

T
i

F y F B i F B T


    . We can thus write the price *P  of a hypothetical bond with 

maturity T  and coupon C : 

   * *

1

*
T

T
i

P F C y F B i


     
 
     (2) 

or  
*

*

1

1 *
T

T
i

P C
y B i

F F 

           
 ,  

1

*
T

i

B i

  being the value of a “risky” annuity (or PV01 

or risky level depending upon the pricing context) with maturity T .  
 
This extends the default-free pricing scheme to defaultable bonds. In the case of default-free 
bonds, various equivalent mathematical approaches, Farkas lemma, separating hyperplane 
theorem or Hahn-Banach theorem guarantee the existence of (positive) discount factors given 
an arbitrage-free set of bonds. 
 

The basic equations    *

1

* *
T

i

P C B i F B T


     
 
  can be seen as a linear model 

involving latent factors  *B i . Only discount factors with maturities corresponding to 

payment dates are involved. 
 
In the above exposition, the set of payment dates for traded bonds coincides with the set of 
tenor dates involved in interest rate risk management.  In such a case, the  *B i  are uniquely 

determined from traded prices at a given date6.  

                                                 
5 The pricing methodologies studied below can readily be extended to account for a larger set of 
payment dates (either discrete or continuous tenors) and amortization schemes or step-up coupons at 
the price of notational burden. 
6 Let us expand briefly about the above setting and calibration issues and consistency with market 
quotes. Given the simplified yearly time scale and assuming that maturities of traded bonds span that 
time scale, we can compute the discount factors by solving a triangular system of linear equations. For 
instance, if we assume that the one year bond is traded (with yearly coupon), we will have directly 
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This previous approach, based on an analogy with default-free bonds, is consistent with 
Bloomberg valuation tools (see Ward [2010, 2011] for BVAL or Lee [2007] regarding “fair 
value market curves”)7.  
 
To which extent such standard approach can be applied in the context of sovereign financial 
distress requires further investigation: For instance, the formula 

   *

1

* *
T

i

P C B i F B T


     
 
  is not innocuous. Let us consider two bonds, with same 

maturity T , same face value F  and different coupons, C  and 'C . Then, their prices will 

differ by    
1

' *
T

i

C C B i


 
  

 
 . The prices will only be equal if  

1

* 0
T

i

B i


  or equivalently 

 * 0B i  , thus all bond prices should be equal to zero. When looking at Greek bonds on the 

23rd of November, 2011, we can notice that two bonds, one with coupon rate equal to 3.7% 
maturing on 20/07/2015 and one with coupon rate equal to 6.1%, maturing almost at the same 
time, on 20/08/2015, have almost the same clean price of 29% of face value. This provides a 
clear indication of the difficulties in using without caution risky discount factors in bond 
pricing. This point has been stressed by Andritzky [2005], distressed bonds being traded on a 
price basis rather than a spread basis. 
 
2) Connection between the “street approach” and default modelling. 
 
As can be seen from above, the street approach does not either involve a mere notion of 
probability, nor any consideration of the recovery mechanism in case of default. However, it 
is worth wondering whether there is some rationale behind such approach. 
 
To go further in the pricing and risk management analysis, we need a proper description of 
cash-flows of defaultable bonds. This obviously includes the description of contractual cash-
flows, coupons and principal in the case where no default or restructuring occurs before 
                                                                                                                                                         

 * 1B . We should then be able to compute  * 2B  from  * 1B  and the price of the two years bond, 

         
2

*
2 2 2 2

1

* * 2 * 1 * 2
i

P C B i F B C B F C B


 
         

 
 . 

It is worth noting that the pricing scheme is “incomplete” since we would only know about the 
discount factors for tenor dates and we would be unable to price a new bond with payment dates not 
corresponding to the stated tenor dates. For this purpose, we need a second layer in order to map 

discount factors with discrete tenors to discount factors with continuous tenor dates:  *B i , 

 1, , *i n B t  , 0t . Once this interpolation or smoothing procedure has been specified, the 

pricing scheme for bonds, with non standard maturity and/or coupon payment dates is complete. 
7 Quite often, a “risk-free” set of discount factors  B i  is given. This is to be understood as the 

discount factor associated with a base curve, usually derived for swap quotes or from a benchmark 

Treasury curve. Then one can formally introduce a Z – spread through      *B i B i S i   and 

 ( ) exp ( )S i i z i   . We deal here with an extra layer of modelling. Provided that no negative basis 

effect occurs,   1S i  . However, it may be that the base swap rate curve goes above the studied 

sovereign curve. Then,   1S i  , and we cannot think of S to be a survival function. 
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maturity, but also the recovery payment (or secondary claim) at default, if default occurs 
before maturity8. We will subsequently consider three recovery mechanisms, extensively 
studied in the academic literature, with well-known pro and cons, namely, fractional recovery 
of market value, of Treasury and of face value. This is not intended to deal with all practical 
cases, but provides good benchmarks for further analyses. For simplicity, we will assume that 
the default date is the same economical and mathematical object, whatever the recovery 
mechanism and   will subsequently denote the default date of the bond(s).  
 
While the benchmark RMV, RT, RFV approaches deal with a single recovery parameter to be 
applied to all outstanding bonds and loans, market practice may be different. In one of its 
preliminary stages, the Greek PSI involved a subset of outstanding bonds within a given range 
of maturities (selective default). Sovereign CDS features such as “Old R”, “Mod R”, “Mod 
Mod R” account for such features. Different bonds issued by the same entity, even in the 
same currency, may not be ruled by the same law. In the eurozone, some bonds are issued 
under domestic law, others under English law, collective action clauses may apply or not. Pari 
passu treatment of bond holders and implicit seniority (such as bonds held by ECB) are other 
issues of importance. We do not deal here with strategic renegotiation. Our main focus is the 
relative pricing of bonds with different coupons and maturities and there is little literature on 
that topic, especially in the context of sovereign default. Andritzky [2006] provides a 
comprehensive review of issues in sovereign bond restructuring. Duffie et al. [2003] illustrate 
the specificities of sovereign distress focusing on Russian debt, different default treatments 
leading to possibly different discount factors. 
 
A second step involves identifying relevant building blocks, streams of coupons, defaultable 
discount bonds9, such that already traded bonds or tradable assets that could be obtained from 
stripping are linear combinations of the building blocks. We will subsequently deal with a 
frictionless market and thus with linear pricing rules. What is needed is a procedure that 
allows extracting the prices of the building blocks, consistently with prices of traded and 
liquid bonds. Pricing formulas are meant as expressions of defaultable bond prices as linear 
combinations of the prices of the building blocks. Such static decomposition does not require 
a probabilistic model of default but does depend upon the recovery scheme.  
 
Dynamic models of default provide further structure regarding the pricing of the building 
blocks. The standard mathematical finance framework associated with reduced-form 
modelling involves a short-term default-free rate r , a default intensity  i  and a pricing 
probability measure Q ii. Some extra technical restrictions are involved in order to have a 
simple connection with standard discounting techniquesiii. It should be made clear that the 
main results of the paper do not rely upon such modelling assumptionsiv. 
 
3) Fractional recovery of market value method 
 
Fractional recovery of market value method (as well as RT approach) is broadly in line with 
the Z – spread methodology provided that we are given a default-free reference curve. 

                                                 
8 Not so long ago, it was a common assumption to neglect the possibility of default in the case of 
sovereign bonds. For instance, in Elton and Green [1998], the starting point is the statement “cash-
flows of non-callable treasury securities are fixed and certain, simplifying the pricing of these assets 
to a present value calculation”.  
9 Regarding discount bonds, depending upon the context, we may have to deal with continuous tenors 
or remain in a discrete tenor setting. 
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Under the fractional recovery of market value approach, the bond holders receive, at default 
time, a fraction, equal to the recovery rate  , of the pre-default market value of the bond. 
This is thus a recursive approach (see Duffie, Schroder and C. Skiadas (1996)). In many cases 
  is assumed to be a deterministic10. Let us remark that the defaultable discount bond prices 
have a rather tricky pattern since their price is scaled down by   at default time. As was 
mentioned in the introduction, the fractional recovery of market value approach leads to easy 
to deal with computations, even though its economic significance and practical use have been 
questioned. Under the fractional recovery of market value approach, defaultable bonds can 
actually be seen as portfolios of defaultable discount bonds, which will be the basic tradable 
instruments.  
 
The usual outcome of the above stochastic model of default and recovery is the writing of 

risky discount factors as:     
0

* exp ( ) ( ) 1
i

QB i E r s s ds 
  

      
   

 .  

 
It is worth noting that these discount factors are the pre-default prices of defaultable discount 
bonds with the same fractional recovery of market value mechanism as level coupon bonds.  
 
The building of defaultable discount bonds and thus their pricing from level coupon bonds is 
straightforward. Let us go back to cash-flow analyses and the example depicted above. We 
are given a zero coupon defaultable bond scheduled to mature in one year, and a two years 
defaultable level coupon bond with coupon 2C . It can readily be seen that holding the 

previous level coupon bond and being short  2C  units of one year defaultable bond (with face 
value being equal to 1) synthesizes a  two year defaultable discount bond (with face value 

2CF  ) and the same fractional recovery of  market value mechanism at default as the two 
constituent traded bonds. In the depicted static replication procedure, only defaultable bonds 
are involved and there is no need for default-free bonds to be traded. Thus, the discount 
factors  *B i  do correspond to prices of defaultable discount bonds and their prices can be 

computed from traded level coupon bonds in an algebraic way. 
 
We could think of defining zero-recovery discount bonds with prices provided by 

 
0

exp ( ) ( )
i

QE r s s ds
  

   
   

 . However, such zero-recovery bonds as well as default free 

bonds with prices provided by 
0

exp ( )
i

QE r s ds
  

  
   

  are abstract claims that cannot be 

synthetized from traded defaultable bonds and are not required in a defaultable bond pricing 
context. 
   
4) Fractional recovery of Treasury method. 
 
This recovery mechanism corresponds to a proportional haircut applied to all cash-flows after 
default. The bond cash-flows are scaled by  , which is the recovery rate. We can then depict 

                                                 
10 See Merrick [2001], Madan et al. [2006], Pan and Singleton [2008], Das and Hanouna [2009] for a 
relaxation of this constraint in a pricing framework. 
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the effective cash-flows on a given defaultable bond as: iiii FF     11 , where CFi   for 

1,,1  ni   and CFFT  . The recovery rate needs to be actually known before the 
scheduled payment date following default, for the cash-flows to be sensibly defined. Thus, 
recovery rate neither needs to be known at pricing time nor to be given a specific probability 
distribution. This scaling of cash-flows can be applied to a subset of issued bonds if we want 
to cope with selective defaults.  
 
RT approach can be considered as a recovery on cash-flows: Up to default time, the scheduled 
cash-flows are being paid while at default time, a proportional haircut is applied on all post-
default payments, coupon or principal payments11.  
 
Regarding sovereign default, that recovery mechanism can be associated with a forced 
conversion of bonds issued, say in euros, to a new domestic currency,   being thus the 
exchange rate at the time of the forced exchange.  
 
The cash-flows of coupon bonds can be seen as linear combinations of elementary cash-flows 
of the form ii    11  paid at dates ni ,,1 .  

 
Conversely, let us go back once again to the two years level coupon bond example. It can be 
seen that the two year defaultable discount bond, paying 22 11      can be synthesized 

exactly the same way as in the fractional recovery of market value. Thus, in the fractional 
recovery of cash-flows, the discount factors  *B i  also correspond to prices of defaultable 

discount bonds and their prices can be computed from traded level coupon bonds in an 
algebraic way. As in the recovery of market value approach, the replication only involves 
defaultable bonds and no default-free bonds need to be involved. However, it must be 
understood that, even though we use the same terminology “defaultable discount bond”, we 
do not speak of the same assets in the recovery of market value and in the recovery of cash-
flow cases: the cash-flows of discount bonds and associate price processes do not coincide. 

We have been able to give the basic equation    *

1

* *
T

i

P C B i F B T


     
 
  some 

economic content and to relate the defaultable discount factors to the prices of some well-
defined defaultable discount bonds. 
 
The above fractional recovery of cash-flows is also known as fractional recovery of treasury 
and has been considered by Jarrow and Turnbull [1995] or Jarrow et al. [1997] among others: 
Instead of receiving   at scheduled payment date in case of default, we could think of 
receiving   times a discounting factor between scheduled payment date and default date. 
This defines an equivalent recovery scheme with a cash payment at default date. In the quoted 
papers, the applicable discount rate is a deemed risk-free Treasury rate. But it can be seen that 
any discounting scheme between scheduled payment dates and default date leads to a valid 
recovery mechanism. For instance, one could use some suitable post-default risky discount 
rates to account for the possibility of a second default.  
 

                                                 
11 In the fractional recovery of Treasury, the bondholders receive a fraction of the present value of the 
post-default cash-flows where the discount rates are derived from a Treasury curve. This is equivalent 
to fractional recovery of cash-flows provided that Treasury is default-free. Duffie et al. (1996) use the 
terminology “fractional recovery of a default-free version of the same security”. 
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The collective action clauses applicable to news bonds issued after January 2013 in the 
eurozone paves the way for such a mechanism12. It defines the voting rights attached to strips 
of government bonds. This corresponds to a recovery of cash-flows scheme where the 
discount rate between the scheduled maturity date and default date depends upon the coupon 
rate structure at default time. As a consequence, principal and coupon strips have the same 
voting rights, their defaulted value is likely to the same. This is a necessity when strips are 
fungible and may be seen as a desirable property (from issuer’s perspective) when there are 
not.  
 
With fungible P-strips and C-strips, level coupon bonds are linear combination of clearly 
identified defaultable discount bonds. If we look at the model CAC in the eurozone, the 
applicable discount rates between scheduled payment dates and default date are not known 
from inception and depend upon the scheduled payment date. However, the connection 

between bond and defaultable strips prices remains    *

1

* *
T

i

P C B i F B T


     
 
 . As for 

the recovery of market value case, we do not need to bother about default-free discount rates. 
 
One can think of writing the defaultable cash-flows iiii FF     11  as   iii FF   11 , 

ni ,,1 . If the recovery parameter is known for inception, which is more of a simplifying 

modelling assumption than financial reasoning, the payment iF can be seen as certain. The 

cash-flows of the defaultable bond as   iii FF   11 , ni ,,1 , can be split into two 

streams, one which is default free, while the other one involves defaultable cash-flows 
  iF1  with zero recovery. This decomposition and subsequent pricing formulas are quite 

artificial since they involve default-free and zero recovery defaultable bonds which are not 
traded. 
 
Fortunately enough, we found two mechanisms, recovery of market value and of cash-flows 
leading to discounting contractual bond cash-flows with a single set of risky discount factors 

as commonly done under market practice :    *

1

* *
T

i

P C B i F B T


     
 
 . The building 

blocks of bullet bonds are defaultable discount bonds (or strips) in the two cases.  
 
Relating recovery of Treasury to the exit of the eurozone of a core country is not incidental. It 
corresponds to a shift of the exchange rate in a fixed rate regime. If the numéraire corresponds 
to the strong currency (or foreign currency or central bank currency whenever central bank is 
independent from defaulted entity), bond holders will suffer a loss. However, if the numéraire 
is “government money”, the discount bond components are default-free. It is thus not 
surprising that the default-free pricing framework can be readily translated13.  
 
 
 

                                                 
12 We refer to the survey paper of Committeri and Spadafora [2013] and the references therein about 
the legal and economic context and the impact of such collective action clauses on bond pricing. 
13 Thinking in terms of “government money” may first look as a mathematical finance oddity. We may 
argue that it is not. Repudiation of debt say, can be associated with a strong tax relief for domestic 
investors. On the other hand, there are cases where no formal default occurs, but since exchange rate 
decreases, non domestic investors will suffer from losses. 
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5) Fractional recovery of face value. 
 
This approach is standard for corporate or emerging markets issuers. We show that in such a 
recovery scheme, absence of arbitrage across bonds leads to two distinct discount curves 
associated with non fungible basic building blocks. Therefore, P-strips and C-strips are quite 
unrelated financial objects, with the only constraint that a P-strip has a higher price than a C-
strip.  
 
In the fractional recovery of face value approach, the bond holder receives F  at default 
time  , i.e. a fraction of the face value14. This is the standard approach involved in emerging 
bond markets (Merrick [2001], Andritzky [2005] or Vrugt [2011]) or CDS pricing (Pan and 
Singleton [2008], Longstaff et al. [2011]). Claiming the principal payment at default date and 
not maturity date, known as principal acceleration can be profitable when dealing with long 
outstanding maturity bonds. On the other hand, there is no claim on the coupons, thus they are 
associated with a zero-recovery. It is clear that claims on coupon and principal payments are 
not the same, thus paving the way to different discount rates. 
 
Though dedicated to corporate bonds, the seminal paper of Duffie and Singleton [1999] 
provides quite useful results when considering sovereign bond pricing. As is apparent from 
pricing equations (25) and (26) comparing RMV (Recovery of Market Value) and RFV 
(recovery of face value), defaultable discount factors are being introduced, involving a unique 
curve in case of RMV and two distinct curves for RFV15. Equation (25) shows that the 
decomposition between default-free rates and default component is not required to derive a 
discounting formula relating bond cash-flows and prices. Thus, the stated formulas also apply 
to defaultable Treasuries and the hypothetical unobservable default-free short term rate 
fortunately cancels out of the valuation formula. The same line of reasoning is applicable in 
the recovery of face value mechanism.  
 
In the recovery of face value approach, a defaultable bond can be decomposed into a risky 
annuity with zero-recovery (the coupon stream) and a defaultable principal payment. The 
latter component is a distinct payoff that cannot be synthetized from defaultable discount 
bonds with predetermined payment date and zero-recovery. Provided that we deal with a set a 
coupon bonds, we can think of further stripping the risky annuity in defaultable discount 
bonds with zero recovery maturing at coupon payment dates. 
 
In the RFV framework, P-strips and C-strips are quite different assets. A P-strip can be seen a 
as a coupon strip (defaultable discount bond with zero-recovery) and on top of this a payment 
  at default time   provided that   is before maturity date T . Provided that 0  , a P-strip 
is more valuable than a coupon strip if we remain in a RFV framework. 
 
Given these preliminary remarks, let us go back to a more formal approach and denote by 

 B̂ T  today’s price of a contract paying the recovery rate   on the defaultable bonds, at 

default time  , provided that   is smaller that nT  . Then, the price of the bond can be 
written as: 

                                                 
14 For simplicity, we will not account for the promised running coupon. The subsequent stripping 
procedure between coupon and principal payments obviously still holds without that assumption. 
15 See also Duffie [1998], Finkelstein [1999], Guha [2003], Berd [2011]. 
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      
1

ˆ
n

C C

i

P C B i F B n B n


         (3) 

Where  CB i  is the price of a coupon strip maturing at date i . The price of the principal strip 

is given by        ˆP C CB n B n B n B n   . The discount factors related to principal 

payments are always higher than the discount factors applicable to coupon payments16. The 
coupons are priced with a zero-recovery assumption. The pricing formula: 

   
1

n
C P

i

P C B i F B n


        (4) 

is related to the structure of default payments and should not be confused with tax effects 
which are, for instance, discussed in McCulloch [1975] or Elton and Green [1998]. Since

   C PB i B i , it seems inconsistent with the linearity of the pricing rule. Actually, it is not. 

Linearity is still valid when applied to actual cash-flows received by bond holders. It is only 
the use of contractual coupon and principal payments in the pricing formula that lead to this 
seemingly inconsistency. 
 
As was done for the two former recovery mechanisms, let us consider the calibration to traded 
level coupon bonds. Let us consider two one year maturity defaultable bonds, with face value 
F , one with coupon C  and the other with coupon CC ' , with respective prices P  and 'P . 
Being long the first bond and short the second one, creates an exposure to coupon payment 

only and   '
1

'
C P P

B
C C





, i.e. the increase rate in bond prices of given maturity with coupon 

rate. Using the same procedure with two year level coupon bonds allows to synthesize a two 
year IO and derive  2CB . Given the prices of coupon strips and the prices of level coupon 

bonds, we readily synthesize and price a principal strip. Clearly, the calibration is more 
involved since two sets of level coupon bonds with different coupon rates are required. As for 
the two former recovery mechanisms, the bootstrap calibration procedure makes clear the 
constituents of defaultable level coupon bonds. 
 
Let us further investigate the pricing formula associated with the recovery of face value 

approach. The par rate Ty  is the coupon rate such that    
1

T
C P

T
i

F y F B i F B T


    . By 

combining the equation providing P  and the definition of the par rate Ty , we obtain: 

   
1

T
C

T
i

P F C y F B i


     
 
     (5) 

or equivalently: 

   
1

1
T

C
T

i

P
c y B i

F 

     
 
      (6) 

which is to be compared with the pricing formulas associated with the recovery of market 

value and the recovery of Treasury approaches:    
*

*

1

1 *
T

T
i

P
c y B i

F 

     
 
 . At origination, 

i.e. if a par bond is actually traded for this maturity, the par rate becomes a market observable 
for that maturity, denoted by Ty . In that case, calibration of models imply that *

T Ty y . We 

                                                 
16   0,0ˆ tB  is the price associated with a positive cash-flow. 
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can then study the effect of a change of coupon rate on the prices for maturity T: 

   
*

1

1 *
T

T
i

P
c y B i

F 

     
 
  and    

1

1
T

C
T

i

P
c y B i

F 

     
 
 . These pricing formulas are 

quite simple and readily extend the well-known swap formulas. They only differ from one to 
another by the expression of the “risky level”, i.e. the price of defaultable annuity of maturity 

T. For instance,  
1

T
C

i

B i

  is the price of a zero-recovery risky level annuity associated with 

the bond market17. 
 
6) One modelling step further: the standard credit world approach 
 
Emerging bond and credit default swap models often involve an extra layer of assumptions. 
Fortunately enough, it is worth noting that the main results of the paper do not depend upon 
these arbitrary and stringent assumptions.  
 
To avoid the computational burden of estimating two loosely related discount rate structures, 
the following procedure can be used. It relies on a number of extra assumptions: constancy of 
the recovery rate  , existence of a given default-free base term structure of rates, 
independence between default date and these default-free rates under the pricing measure Q . 
This is the privileged approach for the pricing of sovereign CDS, both in the academic, as 
illustrated by Pan and Singleton [2008], Longstaff, Pan, Pedersen and Singleton [2011] and 
practitioners’ worlds (see Finkelstein [1999], Berd, Mashal and Wang [2004a, 2004b]18. 
 
Let us denote by    S i Q i   the (risk-neutral) survival probabilities and  B i  the 

default-free discount factor for maturity t . Then,      CB i B i S i  . 

 
As for the default payment, we need to compute: 

       
0

ˆ 1
n

Q
nB n E FB F B t dS t             (7) 

neglecting the price impact of the recovery on the running coupon. As previously, the price of 
the principal strip is given by        ˆP C CB n B n B n B n    and the level coupon bond 

prices by    
1

n
C P

i

P C B i F B n


    .  

 
Given   and the default-free discount factors ( )S t , only a set of default probabilities needs 
to be calibrated, from which we derive a parametric expression for coupon and principal strips.  
 
We show below the outcome of such a procedure, given a calibration recovery rate of 40%. 
The data is based on Italian government prices as in February 2013. 
 
                                                 
17 This will usually differ from the risky level involved in credit default swap pricing since, for 
instance, CDS and bond default dates may differ. 
18 Bloomberg also uses such a recovery of face value framework for the valuation of structured notes 
(Stein [2012]). Given that credit quality of structured notes may be better than that of distressed 
sovereign bonds, this shows that there is not a unique treatment of default and recovery in the 
practitioner’s world. Thus, the need of deeper investigation. 
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Figure 1: Theoretical discount rates, Italian debt 

Upper curve: coupon discount rates, lower curve: principal discount rates, intermediate curve: recovery of 
treasury 

 
The upper curve is associated with the applicable discount rates for coupon payments, while 
the lower one deals with principal payments. The intermediate curve results from the recovery 
of Treasury assumption where coupon and principal payments are discounted at the same rate. 
This illustrative graph is intended to show the huge discrepancies between the different 
discount rates. Let us also remark that the intermediate discount curve also corresponds to a 
RFV scheme with a zero-recovery assumption. Moving away from the rather arbitrary 40%  
standard induces huge effects on discount rates.  
 
7) Other recovery schemes 
 
Given that sovereign default is often associated with forced restructuring, we may think of a 
number of alternative recovery schemes. Coupon reduction, possibly associated with a 
lengthening of bond maturity is a possibility. It can be seen that the stream of coupons and the 
principal payment deserve separate treatments and that we also end-up with two discounting 
curves. Splitting coupon bonds into C-Strips and P-Strips remains a valid approach. With a 
coupon reduction, we would have a non-zero recovery on the stream of coupons. Lengthening 
maturities is opposed to principal acceleration, as in fractional recovery of face value, but on 
the other hand, we not have a scheduled cut-off of principal payment. 
 
The structural models of François et al. [2011] or Jeanneret [2012] only involve a defaultable 
consol. This rules-out the practical issues of term and coupon structure modelling. In case of 
default, a coupon reduction is involved and one does not need to consider principal payments. 
For perpetual debt, fractional recovery of face and of Treasury approaches coincide.  
 
Clearly, there are a number of possibilities regarding sovereign debt restructuring. One could 
think of applying a random thinning procedure to allow for different recovery schemes. This 
would not change the main insights: in most cases, separate treatment of coupon and principal 
payments are required, leading to two discount curves. A single discount curve would only be 
got in special cases such as debt repudiation or change of currency. 
 
8) Empirical features 
 
The recovery scheme and debt restructuring of a major issuer is not a contractual feature. We 
are faced with two different approaches with their own theoretical merits. In both cases, P 
strips and C strips are the building blocks of defaultable bonds. 
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In the fractional recovery of cash-flows, P strips and C strips have the same rights and lead to 
the same value, while P strips have greater value in the recovery of face value mechanism. 
The relative pricing issue of P-strips and C-strips with same payment date has been addressed 
by Daves and Ehrhardt [1993], who argue that P-strips should actually be traded at higher 
prices than corresponding C-Strips. Jordan et al. [2000] find mixed evidence: P-Strips were 
usually more expensive that C-Strips, but occasionally the price hierarchy may go the other 
way round. Based on data collected between 2002 and 2008, Vonhoff [2000] gets some 
results that go in the same lines as previous studies. For 10 maturities, yields of P-Strips are 
approximately 10 bps above those of the C-Strips counterparts.  
 
Huij et al. [2010], Vonhoff [2010] focus on principal and coupon strips from 2002 to 2007 for 
French, German, Spanish and Italian Treasuries. Consistently with previous studies, they find 
that principal strips sell for higher prices than coupon strips between 85 and 98 percent of the 
time. The price differences tend to increase with maturity, consistently with the recovery of 
face value framework. However, as in earlier studies, the magnitude of discrepancies is small.  
 
In the US, P strips and C strips are not fungible are dealt as separate securities, even if the 
scheduled payment date is the same. This may be due partly to tax effects, not considered in 
the paper, but reflects a common view that there is something different between coupon and 
principal payments.  On the contrary, from French government debt P strips and C strips are 
fungible. In such a case, there is a unique ISIN number. One cannot trace back whether a 
principal or coupon payment has been stripped and there is a unique price by necessity. Even 
in the non fungible case, the price discrepancies between P strips and C strips remain small 
and are much more likely to be related to market frictions rather than different expectations 
regarding payoffs. 
 
Figure 2 below is a worst case example, based on US Treasury strips maturing on 15 February 
2031. Both principal and coupon strips are traded and the discrepancy between prices is 
magnified for that maturity. The graph shows the historical differences between yields over a 
five year period (from February 2008 to February 2013). This shows a cap between coupon 
and principal strips yields at around 10 bps. This is not insignificant, but still many orders of 
magnitude below what one would expect under the RFV scheme (see Italian bond case). 
 

 
Figure 2: Discrepancies between principal and coupon strips – US Treasuries 

 
In the Greek bond swap, nominal values, irrespective of coupon and maturity have also been 
used, consistently with the recovery of face value approach and the market pricing practices 
regarding distressed bonds. Table 1 below provides Greek bond prices shortly prior to the 
bond restructuring. It can be seen that all prices are quite close to 22%  . Actually, the 
final price in the CDS auction was 21.5% with little discrepancy between auctionners (Table 
2). 
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Table 1: Price structure of Greek government bonds shortly prior to bond restructuring 

 

 
Table 2: Hellenic Republic CDS auction, 19 March 2012  

 

 
Table 3: OAT features 

 
The analysis of the model CAC in the eurozone provides some further insights. The model 
CAC states the voting rights of the different debt holders and these are to be considered as the 
basis for claims in case of debt restructuring. The CAC suggest two distinct treatments for 
strips and level coupon bonds in case of default. As for level coupon bonds, the nominal value 
of the bond is taken into account, irrespective of the coupon rate.  
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Let us consider the two French government bonds, depicted in Table 3. They share the same 
schedule of payment dates, have the same voting rights and are thus likely to have the same 
market value, would a restructuring occur. This is consistent with the recovery of face value 
approach. 
 
One can also consider the stripped payments of these coupon bonds. As already mentioned, 
principal and coupon strips being fungible, have the same rights. This is consistent with the 
recovery of Treasury approach. More specifically, the voting rights of a strip with given 
maturity are computed by discounting the contractual payment between maturity and default 
date at a nominal rate based upon the coupon rate structure. Let us denote by  NB i  the 

nominal discount factor between payment date i  and default date. We denote by 2 8.5%C   

the high coupon rate and by 1 3.75%C  , the small coupon rate. Face values of the two 

coupon bonds are equal to 1 €. Thus, the voting rights of the stream of payments associated 

with the two level coupon bonds are    2
1

n

N N
i

C B i B n


   and    1
1

n

N N
i

C B i B n


  . For 

those to be equal, we must have  
1

0
n

N
i

B i


 , thus   0NB i   for all payment dates. This 

contradicts the discounting rule aimed at computing nominal values of strips. Since the 
nominal values of the two above bonds cannot be equal, they cannot be equal to par altogether. 
Actually, given the eurozone model CAC rules, none of them will be equal to par.  
 
As a consequence, the holders of the level coupon bond and of the streams of strips with the 
same scheduled payments will not have the same voting rights. If we think of level coupon 
bonds and strips are separate securities, this would not breach the equality principle of debt 
holders.  
 
Also, it would be unlikely on financial and legal point of view that level coupon bonds could 
be stripped or that they could be reconstituted from strips around a restructuring date. If 
market for strips and level coupon bonds are being segmented at critical times, then one 
cannot arbitrage between the former and the latter.  
 
This shows as usual some distance between pricing theory in frictionless markets and market 
data. Focusing on US Treasuries, Daves and Ehrhardt [1993] or Grinblatt and Longstaff 
[2000] report that the arbitrage restrictions between C-Strips, P-Strips and underlying bonds 
are met in the market, while Jordan et al. [2000] stress the difficulty of dealing with 
synchronous prices when assessing such arbitrage restrictions and report some small but 
significant discrepancies. Let us stress that such studies were conducted in normal times. 
 
Conclusion 
 
Simple and standard discounting approaches to defaultable level coupon bonds can be made 
consistent with standard recovery mechanisms such as recovery of market value or recovery 
of cash-flows (or equivalently in our framework, recovery of Treasury). More precisely, the 
defaultable discount factors can be seen as the prices of defaultable discount bonds with 
positive recovery19. Such defaultable discount bonds can be obtained by static replication 

                                                 
19 Defaultable discount bonds with zero recovery are not a straightforward outcome as is the case 
under the recovery of face value framework. 
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from traded defaultable level bonds. No default-free bond is required in such analysis, which 
is good news given the difficulty of stating what should be a default-free discount curve. No 
assumption about recovery rates or about independence between default date and default-free 
rates is required for the discounting scheme to apply.  
 
Unfortunately, the recovery of face value is inconsistent with the assumption of a unique 
discounting curve. One has to consider principal and coupon payments separately. As for the 
recovery of cash-flows, no assumption about recovery rates, default dates, default-free rates is 
required for the pricing scheme to apply. The bond building blocks involve defaultable 
discount bonds with zero-recovery on one hand and a specific instrument associated with 
payment of recovery at default time. This leads to different calibration approaches from level 
coupon bonds. When considering corporate bonds, Duffie and Singleton [1999] argue that 
discrepancies between approaches involving a unique and two discount curves are of small 
magnitude. Obviously, this has to be mitigated with the current level of yields, bond maturity, 
discrepancies between coupon rates of issued debt. As illustrated with some European 
government debts, the magnitude of coupon and principal discount rate might be quite large. 
Though the recovery of face value approach is standard for corporate, emerging markets 
bonds and sovereign CDS, it is inconsistent with the fungibility of principal and coupon strips, 
a common feature among major issuers.  
 
A lot of attention has been put on connections between sovereign CDS and bond markets. 
While the bond market mainly relies on the assumption of a single discounting curve, the 
CDS market goes the other way round. Moreover, the choice of the recovery parameter is not 
innocuous. Eventually, the new collective action clauses applicable to government bonds in 
the eurozone and the existence of strippable securities are altogether challenging regarding the 
pricing of sovereign CDS. 
 
Treasury markets are of first importance and have a pivotal role in the computation of 
corporate or emerging markets bond spreads. Properly dealing with Treasury yield curve is 
not straightforward due to the uncertainty about recovery schemes. It may also imply a 
comprehensive upgrade of pricing and risk management tools across many fixed-income 
instruments: the significance of Z – spreads or constant maturity treasury rates is questioned.  
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i In this framework, default date is a totally inaccessible stopping time. Moreover, the compensator of 
the default indicator function is assumed to be absolutely continuous with respect to the Lebesgue 
measure. One may refer to   as a pre-default intensity. The fractional recovery of market value 
approach is coupled here with the reduced-form approach (see Jarrow and Turnbull [1995], Jarrow et 
al. [1997]). When considering stochastic models of default, we will remain in the above setting 
throughout the paper. 
ii This risk-neutral measure is associated with the savings account numeraire. Existence of a default-
free short rate is postulated. 
iii See the articles by Duffie et al. [1996], Duffie and Singleton [1999] and Collin-Dufresne et al. 
[2004]. In this approach, the arrival of information, i.e. the market filtration is given and includes 
observation of default date. Similar results have been obtained in a slightly different setting by Elliott 
et al. [2000], Blanchet-Scalliet and Jeanblanc [2004], Bielecki et al. [2004] and the book by Bielecki 
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and Rutkowski [2010]. In this the latter approach, the market filtration results from a progressive 
enlargement of a background filtration with the observation of default arrival. The above approaches 
are rather abstract and general. We refer to Coculescu and Nikeghbali [2012] for a comprehensive 
approach to discounting and default. One can think of using more restrictive but easier to grasp 
modelling, for instance Cox processes as in Lando [1998, 2004], Duffie and Singleton [2003]. Such a 
framework, thanks to the conditional independence of default time and state variables, guarantees that 
the basic technical assumptions of the general approaches are fulfilled. When dealing with fractional 
recovery of market value, there is an extra degree of mathematical involvement. The payment in case 
of default involves the pre-default price, resulting in a recursive valuation problem and the need to 
solve for an integral equation.  
iv  The reduced form or intensity approach is mostly used when sovereign default is considered. 
Alternatively, Gray and al. [2007], François et al. [2011], Jeanneret [2012] use a structural approach. 
Consequently, sovereign defaults are predictable. As a consequence of smooth pasting condition or of 
the probabilistic results in Coculescu [2010], there is no jump in defaultable bond prices at default. In 
that structural framework, we can still consider a recovery rate, since there is a cut-off in debt 
payments after strategic renegotiation with lenders. We refer to Gibson and Sundaresan [1999] for an 
early contribution in that area. The bond price dynamics are obviously different at default time under 
reduced form and structural approaches. Our cross-sectional and model-free point of view 
encompasses the two mainstream approaches. 


