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Preliminary or obituary?

On human grounds, shrinkage rather than enlargement of
the job market
Thanksto the crisis, our knowledge of the flaws of the
various competing models has dramatically improved...
— Weknow that we don’t know and why
— No new paradigm has yet emerged (if ever)
— Paradoxically, academic research is making good progress
— ... but at its own pace

Model to be presented is low tech, unrealistic, nothing new
But deserves to be known (this is pure speculation)

Provides an academic view on practical i1ssues
— Does not intend to give the insights of atrader or arisk manager



CDO Business context

— Decline of the one factor Gaussian copula model for risk
management purposes

— Recent correlation crisis

— Unsatisfactory credit deltas for CDO tranches

Tree approach to hedging defaults
— From theoretical ideas
— To practical implementation of hedging strategies
— Robustness of the approach?

Mathematical framework

Empirical results



CDO Business context

* We are within afinancial turmoil
— Lotsof restructuring and risk management of trading books
— Collapse of highly leveraged products (CPDO)
— February and March 2008 crisison iTraxx and CDX markets

» Surge in credit spreads

» Extremely high correlations

» Trading of [60-100%] tranches

»Emergence of recovery rate risk
— What isreally adefault event ?

»How to cope with Fed or Treasury activism?
— Questions about the pricing of bespoke tranches
»Unreliability of projection techniques



CDO Business context

Morgan Stanley MORGAN STANLEY RESEARCH

March 10, 2008
Structured Credit Analytics

CDX Series 9
Corr. COX vs.

Mid 1 Week NMid 1 Month  Index Detach Comr.  1Week SkewZ Corr. Skew iTRAXX Value vs. Deita Neutral Retums
Inchex Tranche Bid Ask Change Change Level Deita Com.1 Skew Change Score Rel. Value Corr Skew iTraoo 1 Weeak 1 Month 1 Year
Syr Index 185.0 185.0 250 8.0
Byr* 0-3% &7.5% 68.5% 10.4% 13.0% 185bp 27 38% -7.4% 1.19 RICH (1.10) CHEAP B.6% 0.6% 50.0%.
Syr 3-T% 731 738 138 218 3.0 B54% 25% 27% 1.07 RICH 097 FAIR -21% 3.2% 9%
Byr T-10% 405 415 75 141 18 D% 0.5% (0.31) FAIR o21 FAIR -1.2% 1.4% -4.T%
Syr 10-16% 207 214 12 73 13 14% 21% 1.15 RICH 058 FAIR 0.6% 1.2% -1.8%
Syr 15-30% 126 130 13 62 1.0 21% 1.2% (0.0} FAIR 018 FAIR 0.4% -0.3% -1.3%
Syr 30-100% 78 80 10 45 o7 0.3% -0.6% -1.6%
Tyr Index 178.0 178.0 200 820
Tyr™ 0-3% 71.0% T20% 8.0% 11.3% 178bp 20 39% 4. 2% 1.38 RICH -5.0% 1.8% 4255
Tyr 3-T% 785 TS 130 198 32 82% 23% 1.6% 1.00 FAIR -2.6% 5.7% 18.2%
Tyr T-10% 452 450 9 108 25 T 8% Q1% (0.E8) FAIR -1.8% 5.4% -2.8%
Tyr 10-15% 255 285 il 73 18 12% 1.6% (0L09) FAIR 0.5% 3.0% -2.0%
Tyr 16-30% 139 144 14 65 1.1 21% 03% (QL73) FAIR 0.3% 0.1% -1.7%
Tyr 30-100% 81 83 12 48 o7 01% 0.9% -2.1%
1T Index 174.0 174.0 180 &57.0
10yr* 0-3% T4.0% T4.8% 7.9% 99% 1T4bp 1.5 39% -5.5% 133 RICH 1.31 RICH -5.2% 1.5% 31.6%
10y 3-T% 10 S20 110 204 34 5% 18% 3.3% 313 RICH 316 RICH -1.6% 7.5% 37.4%
10y T-10% 523 533 &7 o8 25 B4% % 0.4% (0.64) FAIR (D.64) FAIR 0.9% B.5% 1.8%
0y 10-15% 300 308 el 95 18 TE% 12% 1.1% (QLED) FAIR (0.60) FAIR 1.0% 26% 3.0%
10y 15-30% 180 165 14 63 12 9ee 23% 3% (1.99) CHEAP (2.01) CHEAP 0.5% 0.0% -1.6%
10y 30-100% ) 82 10 45 o7 0.2% -1.2% 29%
HY Index 7188 7188 236 831
HY= 0-10% S92.1% 92 6% 1.6% 25% Ti9bp o7 44%% -2.4% 1.05 RICH “1.1% -0.4% 10.2%
HY 10-15% 75.3% T5.8% 2.5% 5.1% 18 A49% 5% 1.2% (QL12) FAIR =1.4% -1.4% B.O%
HY 15-28% 1,290 1,206 a1 22 23 T2% 23% 1.4% 273 RICH -1.0% -1.5% 1.6%
HY 25-35% 580 895 48 145 15 2% 199 Q2% 021) FAIR -0.6% -1.6% 5.3%
HY 35-100% 202 208 2) 3= 0.5 0.5% 0.0% 2.1%
LCDX Index 440.0 4400 78 296
LCDx 0-5% B5.6% B7.5% 3.9% -02% 440bp 16 TE% B5.2% -3.5% 3.0%
LCD»? 58% 85.9%. 67 6% 4.3% 1.0% 27 -3.6% 36%
LCDX 812% 11400 11520 300 350 35 0.0% 3.0%
LCDX 12-15% T40.0 T4B.0 -T.0 107.0 24 0.9% -1.4%
LCDX 15-100% 206.0 2100 -135 200 06 0.7% -0.8%
"Correlation of tranche with 0% attachment and the same detachment point as the benchmark tranche, implied from market prices of benchmark tranches
?Points upfront plus 500 bp running
*Points upfront plus 0 bp running
Source: Morgan Stanley




CDO Business context

* Extremely high spreads for senior and super senior tranches

— Issues with the right-end of the loss distribution

— Pricesin March were not consistent with afixed recovery rate of
40%

» See Burtschell et al. [2008], updated version

» See anecdotal evidence from previous slide

— In mid-September 2008, no implied correlation could be found for
the [30-100%)] tranche on the CDX |G even with a 0% recovery

» Constraints related to the increase and concavity of
expected losses on base tranches may not be fulfilled

» Seemingly, inconsistencies between prices and
arbitrage opportunities



CDO Business context

®* Recoveryrates
— Market agreement of a fixed recovery rate of 40% isinadeguate

Exhibit 10 - Correlation between Recovery Rates and Annual Default Rates, 1983-2004
60%

2004 Recovery Rale = 0.52 - 6.9" Defaull Rate

\O R o621

0% T T T T T T T
0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 35% 4.0%
Annual Default Rate

— Currently amajor issuein the CDO market
» Krekel (2008), Amraoui and Hitier (2008)

— Useof state dependent stochastic recovery rateswill dramatically
changethe credit deltas

— Management of recovery raterisk?



CDO Business context

® Some basic issues are back:
— What isreally adefault event?

» Restructuring, take over

» Recent example of Wachovia

— and can we define recovery rates properly and consistently across
various products (CDS, CLNs, CDOs) and time horizons ?

» Recent example of Washington Mutual
» Application of ISDA Protocol to Lehman Brothers

e Jarrow et al. (2008): “distressed debt prices and recovery
rate estimation”
— Raise serious doubts about recovery rate estimation
— Question the notions of “economic” and “reported” default dates




CDO Business context

CDS hedge ratios are computed by bumping the marginal

Credlt CUrves 4. CDO tranche deltas
— In 1F Gaussian copulaframework 5.
. . . E &0 _F
Focus on credit spread risk o Eqy
— individual name effects g 40 e
g_ 30 - =
— Bottom-up approach S 20— r———
— Smooth effects s | | | |
— Pre-crisis... = e Credit ;F?rgad (bp) - &

* At first sight, poor theoretical properties
— Does not lead to areplication of CDO tranche payoffs
— Not a hedge against defaults...
— Unclear issues with respect to the management of correlation risks
— To bediscussed further (break-even correlation)



CDO Business context

® Decline of the one factor Gaussian copula model
* Credit deltasin “high correlation states’

— Close to comonotonic default dates (current market situation)
— Deltas are equal to zero or one depending on the level of spreads

»Individual effects are too pronounced
»Unrealistic i-gammas
»Morgan & Mortensen

t1




CDO Business context

* The decline of the one factor Gaussian copula model + base
correlation
— Thisisrather a practical than atheoretical issue

* Negative tranche deltas frequently occur
— Which israther unlikely for out of the money call spreads

— Though this could actually arise in an arbitrage-free
model

— Schloegl, Mortensen and Morgan (2008)
— Especially with steep base correlations curves

— In the base correlation approach, the deltas of base
tranches are computed under different correlations

— And with thin tranchel ets
— Often due to “numerical” and interpolation issues



CDO Business context

* No clear agreement about the computation of credit deltas in the
1F Gaussian copula model
— Sticky correlation, sticky delta?
— Computation with respect to credit default swap index, individual CDS?

— Volatility in the difference between CDS index spread and the average
spread of the names in the index

* Waeird effects when pricing and risk managing bespoke tranches
— Price dispersion due to “projection” techniques
— Negative deltas effects magnified
— Sengitivity to names out of the considered basket



CDO business context

®* Recent advances such as the notion of “break-even” correlation

shed new light on the Gaussian copula model

* Think of astructural model with correlated Brownian motions:

Default leg of aCDS s like abarrier option
Defaults are predictable: no need to account for default risk

Correlation between credit spreads equals “correlation” between default
events

Perfect replication of a CDO tranche can be achieved with the
underlying CDS

» To copewith credit spread risk

® One factor Gaussian copula model close to structural model

Hull, Predescu and White (2005), Cousin and Laurent (2008)



CDO business context

® Credit deltas in Gaussian copula models may be viewed as
approximations of replication deltas in the previous structural model

— Provided that flat correlation is equal to the correlation of credit spreads
® Drawbacks in the previous approach:
— Jumpsin asset values
» Associated with tail dependencein credit spreads
» And fat tailsin loss distributions

— Creates incompleteness
— Spreads and stocks may move in the same way

» Dueto state financial support
» Collapse of the standard structural model
» And debt-equity arbitrage...




Tree approach to hedging defaults

* Complete markets

— As many risks as hedging instruments
* Perfect replication of payoffs by dynamically trading a
small number of « underlying assets »

— Local volatility type framework

— Obvioudly, a stylized view on risk management: model risk

* That isfurther investigated in the presentation
— Dynamic trading of CDSto replicate CDO tranche payoff
— Based on Laurent, Cousin and Fermanian (2008)




Tree approach to hedging defaults

What are we trying to achieve?
Show that under some (stringent) assumptions the market for
CDO tranches is complete

» CDO tranches can be perfectly replicated by dynamically trading
CDS

» Exhibit the building of the unique risk-neutral measure
Display the analogue of the local volatility model of Dupire
or Derman & Kani for credit portfolio derivatives

» One to one correspondence between CDO tranche quotes and
model dynamics (continuous time Markov chain for losses)

Show the practical implementation of the model with market
data

» Deltas correspond to “sticky implied trege”



Tree approach to hedging defaults

* Main theoretical features of the complete market model

— No simultaneous defaults
— Unlike multivariate Poisson models

— Credit spreads are driven by defaults
— Jumpsin credit spreads at default times
» Contagion model (Jarrow & Yu)

— Enron failure wasinformative
— Not consistent with the “ conditional independence” assumption

» Credit spreads are deterministic between two defaults
— Bottom-up approach

» Aggregate loss intensity is derived from individual loss intensities
— Correlation dynamicsis also driven by defaults

» Defaults lead to an increase in dependence




Tree approach to hedging defaults

® Changes in the dependence structure between default times

— Inthe Gaussian copula world, change in the correlation parametersin
the copula

— The present value of the default leg of an equity tranche decreases when
correlation increases
* Dependence parameters and credit spreads may be highly
correlated

20 M = T T T T T T T T T T T

G 4 &4 & &4 & & & b & 4 4 & &4 & oS 4 &

o 2 At 0 & 0 & & &
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Figure 9. Credit spreads on the five years 1Traxx index (Series 7) in bps on the left axis.
Implied correlation on the equity tranche on the right axis




Tree approach to hedging defaults

* Without additional assumptions the model is intractable
— Homogeneous portfolio
» Only need of the CDS index
» No individual name effect, no i-Gamma

» Top-down approach
— Only need of the aggregate loss dynamics

* Parallel shiftsin credit spreads
— On March 10, 2008, the 5Y CDX IG index spread quoted at 194 bp pa
— starting from 30 bp pa on February 2007

5Y IG Index S 30/ |(yr (1) S 30 Syr(L) s ]0_]5% HY (L)
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Tree approach to hedging defaults

¢ \Without additiona

assumptions the mode! is
Intractable

— Markovian dynamics
» Pricing and hedging
CDO tranches within
abinomial tree

— Perfect calibration the
loss dynamics from CDO
tranche quotes

» Thanks to forward
Induction in the tree

»On theright, loss
Intensities wrt
number of defaults

B Market case

Gaussian copula

Figure 6. Loss intensities for the Gaussian copula and market case examples. Number of
defaults on the x— axis.



Tree approach to hedging defaults

We will start with two names only

Firstly in a static framework
— Look for aFirst to Default Swap
— Discuss historical and risk-neutral probabilities
Further extending the model to a dynamic framework
— Computation of prices and hedging strategies along the tree
— Pricing and hedging of tranchelets
Multiname case: homogeneous Markovian model
— Computation of risk-neutral tree for the loss
— Computation of dynamic deltas
Technical details can be found in the paper:
— “hedging default risks of CDOs in Markovian contagion models’



Tree approach to hedging defaults

¢ Some notations:

— T4, T, default times of counterparties 1 and 2,
— 7, available information at timet,

— P historical probability,
— a;,a, : (historical) default intensities:
5 Plre[tt+di|H, |=aldt, i=12

* Assumption of «local » independence between default events
— Probability of 1 and 2 defaulting altogether:
> Plre[tt+d,z,e[tt+dt|H,]=aldtxafdt in (dt)

— Local independence: simultaneous joint defaults can be neglected




Tree approach to hedging defaults

* Building up atree:
— Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)
— Under no simultaneous defaults assumption pp, ,=0
— Only three possible states: (D,ND), (ND,D), (ND,ND)
— ldentifying (historical) tree probabilities:

a;dt_ (D,ND)

P
a., dt (ND, D)
1—(a1 Zp)dt
(ND, ND)

Pop) = 0= Pono) = Poo)y T Pono) = Pp,) =% dt
Poo) = 0= Pino.o) = Pooy T Pino.o) = Pro) = @2 dt
Pinoo) =1~ Po,) ~ Pio

N




Tree approach to hedging defaults

Stylized cash flows of short term digital CDS on counterparty 1.
— a2 dt CDS 1 premium

/ 1- g dt  (D,ND)
;
a, dt —a dt (ND, D)

1- (al

—al °dt  (ND,ND)

Stylized cash flows of short term digital CDS on counterparty 2:
/ —a, Sdt  (D,ND)
adt 149t (ND,D)

1- (051

—ant (ND, ND)



Tree approach to hedging defaults

® (Cashflows of short term digital first to default swap with premium a?dt ;

/1 o dt  (D,ND)
o, dt  1- 4%t (ND,D)

1- (al 2 dt
—a2dt (ND,ND)

® (Cashflowsof holding CDS 1+ CDS2:
alpd 1- (alQ +a§)dt (D,ND)

0 — (o + a3 )dt (ND,D)

1- (alp dt
al +a2 dt (ND,ND)

* Peafect hedge of first to default swap by holding 1 CDS 1+ 1 CDS?2
— Deltawith respect to CDS 1 =1, deltawith respect to CDS2 =1



Tree approach to hedging defaults

* Absence of arbitrage opportunities imply:

— a®=a2+af

® Arbitrage free first to default swap premium

— Does not depend on historical probabilities ¢, ,a,
®* Threepossible states: (D,ND), (ND,D), (ND,ND)
®* Threetradable assets. CDS1, CDS2, risk-free asset

/fd/ 1+r (D,ND)
=)
1<% 14¢ (\D.D)
1th

1+r (ND,ND)

®* For simplicity, let usassume r =0




Tree approach to hedging defaults

o dt 1 (D,ND)

®* Three state contingent claims

P
— Example: claim contingent on state (D,ND) ~ ? 7l 0 (ND,D)
— Can be replicated by holding 5
Q . 1- (051 )dt
— 1 CDS1+ o dt risk-free asset 0 (ND, ND)
o, dt alet (D,ND) a’d 1- alet (D,ND)
P
aldt <~ % a a’dt (ND,D) + O o dit —a°dt (ND,D)
1- (o gy )t 1- (o Peg )t

a2dt (ND,ND) —a°dt (ND,ND)

— Replication price = adlt afdt_~1 (D,ND)

o dt

1— (o kot )dt
0 (ND,ND)

o, dt

0 (ND,D)




Tree approach to hedging defaults

* Similarly, the replication prices of the(ND, D) and (ND,ND) claims
afdt - 0 (D,ND) afdr~ 0 (D,ND)
ol dt /
o dt 2 1 (ND,D) 1—(a§+a§)dt %d (ND, D)
1th 1—(a1 azp)dt
0 (ND,ND) 1 (ND,ND)
/af’d!/a (D, ND)
o, dt
* Replication priceof: 7 : b (ND,D)
1th
C (ND,ND)

e Replication price = aletxa+a§dt><b+(l— (a1Q+a§)dt)C




Tree approach to hedging defaults

* Replication price obtained by computing the expected payoff
— Along arisk-neutral tree

Q
afdtxa+a§dtxb+(1—(af+a§)dt)c Z b (ND,D)

1- (al af)dt
C (ND,ND)

® Risk-neutral probabilities
— Used for computing replication prices
— Uniquely determined from short term CDS premiums
— No need of historical default probabilities




Tree approach to hedging defaults

®* Computation of deltas
— Deltawith respect to CDS 1: 0,
— Deltawith respect to CDS 2: 0,
— Deltawith respect to risk-free asset: p

» p aso equal to up-front premium

payoff CDS 1 payoff CDS 2
a= o+51><( thj+5 ( )
‘b= :)+51><( th) +5, x( afdt)
C=p+6,%(-a dt) +0,x (—agdt)

payoff CDS 1. payoif CDS 2

— Asfor thereplication price, deltas only depend upon CDS premiums



Tree approach to hedging defaults

AJdt—(D,D)
O ' -

Dynamic case: o2dtt~ (D:ND) <T—og; (D, ND)
- 0 (D,D)

= dt
1—(a aQ)dt (ND, D)

. S 20t
(ND, ND) : (D,ND)
(ND, D)

1—(7[1Q+7z§

. (ND, ND)
— Aydt CDS 2 premium after default of name 1

—  x2dt CDS 1 premium after default of name 2

— m°dt CDS 1 premium if no name defaults at period 1

— 7z7dt CDS 2 premium if no name defaults at period 1
®* Changein CDS premiums due to contagion effects

— Usudly, zl<al <kl and 7zl <al <Ay



Tree approach to hedging defaults

* Computation of prices and hedging strategies by backward
Induction
— use of the dynamic risk-neutral tree

— Start from period 2, compute price at period 1 for the three
possible nodes

— + hedge ratios in short term CDS 1,2 at period 1
— Compute price and hedge ratio in short term CDS 1,2 at time O

* Example: term structure of credit spreads
— computation of CDS 1 premium, maturity = 2

— pdt will denote the periodic premium
— Cash-flow along the nodes of the tree



Tree approach to hedging defaults

® Computations CDS on name 1, maturity = 2 19 0 (D,D)
2
o2t 1~ Pt (DND) =7 50— 0 (D.RD)
Qdt o 1- pldt (D,D)
0 a, — p,dt (ND,D){
=c<dt
1- (al ag)dt —pdt  (ND,D)

Q
—pdt (ND, ND) mdt g pdt (D,ND)
—pdt (ND,ND)
* Premium of CDS on name 1, maturity = 2, time = 0, pdt solvesfor:

0= (1_ pl)alQ +(_ p1+(1_ p1)K1Q - p1<1_ KlQ))aS

+ (_p1+(1_ pl)”lQ_ plﬂ.g_ pl(l—ﬂf—ﬂg))(l—af—ag)




Tree approach to hedging defaults

* Stylized example: default leg of a senior tranche
— Zero-recovery, maturity 2
— Aqggregate loss at time 2 can be equal to0 0,1,2
» Equity type tranche contingent on no defaults
» Mezzanine type tranche : one default
» Senior type tranche : two defaults
1 (D,D)

0 (D,ND)

1 (D,D)

A2dt

(D.ND) <o

o dt x x7dt + a7 dt x i dt

-

up-front premmm default leg

0 (D,ND)
0 (ND,D)
0 (ND,ND)

senior
> tranche
payoff




Tree approach to hedging defaults

* Stylized example: default leg of a mezzanine tranche

— Time pattern of default payments
P pay /AZQQ/O (D, D)

o 1 (D.ND) =1—o 0 (D,ND)

d q &

1 t+a2 t o KQ O (D,D) .

(1 (051 . )dt)( Q)dt o dt mezzghine

()

1
up-front premium defauilt leg 1— (al O(S)dt o 0 (ND,D) payoff
1

O (ND,ND) 1 (D,ND)

1 (ND,D)
0 (ND,ND) °

Q, . Q
1- (72'1 + 775

— Possibility of taking into account discounting effects
— Thetiming of premium payments
— Computation of dynamic deltas with respect to short or actual CDS on names 1,2




Tree approach to hedging defaults

* |ntheory, one could also derive dynamic hedging strategies
for standardized CDO tranches
— Numerical issues. large dimensional, non recombining trees
— Homogeneous Markovian assumption is very convenient

»CDS premiums at agiven timet only depend upon
the current number of defaults N(t)
— CDS premium at time 0 (no defaults) a2dt = o2dt = a° (t=0,N(0) = 0)
— CDS premium at time 1 (one default) A2dt = x2dt = a2 (t =1 N(t) =1)
— CDSpremium at time 1 (no defaults)  7z2dt = z9dt = 2 (t =1, N(t) = 0)




Tree approach to hedging defaults
(D,D)
* Treein the homogeneous case 0.0 /(;'Q/(D ND)
a, , ’

(D,D)
Y (ND, D)

1- 222(0,0)
“Q(]’O (D, ND)

(ND, ND) ,
%(ND,D)
— If we have N1 =1, one default at t=1 (ND,ND)

— The probability to haveN(2) =1, one default at t=2..
— Is 1-a?(1,1) and does not depend on the defaulted name at t=1
— N(t) iIsaMarkov process

— Dynamics of the number of defaults can be expressed through a binomial
tree




Tree approach to hedging defaults

* From name per nameto number of defaultstree /(llé/ (D,D)

N(0)=0

20.2(6,0)

1-20;°(0,0)

N(1) =1

N(1) =0

/Qy/
a.:(0,0)

211

1- 2a2(0,0)

T—a
~(1,0)

1- 2072 (1,

0)

(D,ND) =~ 1= a‘*(Ll)(D’ND)

(D,D)
Y (ND.D)
aQ (1,0)

(ND, ND) (D,ND)
%(ND D)
(ND, NI

N(2)=2 )
number
7 N(2)=1 Lof defaults
tree
N(2)=0




Tree approach to hedging defaults

® Easy extension to n names
— Predefault name intensity at timet for N(t) defaults: o (t,N(t))
— Number of defaults intensity : sum of surviving name intensities:

A(LN() =(n—=N(t)) e (t,N(t)) W N(3) =3
N(2) =2 EA=Dal(22) 5 _ 5

1AN-1)a° (1) N(2) -1 ~Da’(21) N(3)=1

(2.2)
(21)
na2(2,0)
7(2.0)

N(1) =1 (
"2 480) 2(1,0)

M=t 1-ne,’(0,0) e 1-na*(1,0) N(2)=0

N(3)=0
1-ne (2,

— 22(0,0),e¢2(10),a°(11),22(2,0),22(21).... can be easily calibrated

— on marginal distributions of N(t)by forward induction.




Mathematical Framework

n obligors

Default times: z,...,7,
— (Q,A P) Probability space

Default indicator processes: N (t) =1, ..i =1...

H.,=o(N(s),s<t),i=1...n; H, :i\z/lHi’t
— Natural filtration of default times
— Ordered default times: 7°,...,7"

— No simultaneous defaults; 7° <...<z",P-as.
af,....,af (P,H,)intensities
— t> N0 - [a”(9ds (P,H,) martingales

0

, N



Mathematical Framework

* |nstantaneousdigital CDS
— Traded at t { dN; () - & (t)dt

— Stylized cash-flow at t+dt: default oremium

payment payment
* Default free interest rate: r

* Payoffs of self-financed strategies:

Vo € +Z j 5, (s) €™ (dN, (s) - & (9)ds)

I_ A,—J
|n|t|al O holdings
investment in CDS i

— 5.()d

n

(+) H,— predictable processes




Mathematical Framework

-

* Absence of arbitrage opportunities: J o (t) > 0

* Asaconsequence: 31Q ~ P,

CDS
| premium

-

o (t) >0
—
(P-H,)

| intensity

— suchthat «,,...,a, arethe (Q,H,) intensities of default times

M : H, — measurable, Q —ntegrable payoff

Integral representation theorem of point processes (Brémaud)

n I

M:EQ[M]+Zj

—_—

i=1O|-|_

predictable

g

\

N, (5) - @, (5)ds

\

CDS
cash-flow

J

N

'

J



Mathematical Framework

* |ntegral representation theorem implies completeness of the
credit market

— Perfect replication of claims which depend only upon the
default history

»With CDS on underlying names and default-free asset

»CDO tranches
— Q: uniqgue martingale measure
— Replication price of M at timet: V, = E® [Me‘r”‘t) \Ht]
— Note that the holdings of CDS only depend upon default
history

» Credit spread risk is not taken into account




Mathematical Framework

* Need of additional assumptions to effectively compute
dynamic hedging strategies.

o (t)=a(t,N(t)), i=1...,n

N(t) = > N,(t), number of defaultsat timet

i=1

— CDS spreads only depend upon the current credit status
»Markov property

— CDS spreads only depend on the number of defaults
»Mean-field

— All names have the same short-term credit spread
»Homogeneity




Mathematical Framework

* N(t)= lel{figt} number of default process

® |sacontinuoustime Q- Markov chain

~A(t,0) A(t0 0 0 O 0 0
0 -At1 AtD O 0
— Pure death process . 5
— Generator of the Chain At)=| o 0
0 0

0 —-A(t,n=-1) A(t,n-1)
0 0 0 OO0 0 0

— A(t,N(t)) istheintensity of the pure jump process N(t)
»1s aso the aggregate |oss intensity
A(E,N()) =(n—N(t))x e (t,N(t))

number of individual
non-defaulted pre-default
names intensity




Mathematical Framework

Replication price for a CDO tranche V, =V, (t, N(t))

Only depends on the number of defaults
— And of theindividual characteristics of the tranche

» Seniority, maturity, features of premium payments
Thanks to the “homogeneity” between names:

— All hedge ratios with respect to individual CDS are equal
— Only hedge with the CDS index + risk-free asset

Replicating hedge ratio:

Voo (£, N (1) +1) Vo (. N(1))
VCDS I ndex (t’ N (t) + 1) _VCDS I ndex (t’ N (t))

5(t,N(t))=



Empirical results

e (Cadlibration of lossintensities

3% 6% 9% 12% 22%

— From marginal distributions of 18%  28%  36%  42%  58%
aggregate losses Table 8. Base correlations with respect to attachment points.
— Or onto CDO tranche quotes Nufmblel‘fOf names: 125
: D -free rate: 49
— Use of forward Kolmogorov eguations BEUIEHETER e A7k

_ 5Y credit spreads: 20 bps
» For the Markov chain Recovery rate: 40%

— Easy to solve for a pure death process
® [ ossintensitieswith respect to the -
number of defaults 5

— For smplicity, assumption of time 75 _
homogeneous intensities E——

— Increase in intensities. contagion
effects

— Compare flat and steep base correlation

grUCtureS Figure 6. Loss intensities for the Gaussian copula and market case examples. Number of
defaults on the x— axis.




Empirical results

® Dynamics of the credit default swap index in the Markov chain

Nb Defaults MiecKs
0 14 56 84
0 20 19 17 16
1 0 31 23 20
2 0 95 57 43
3 0 269 150 08
4 0 592 361 228
5 0 1022 723 490
6 0 1466 1193 905
7 0 1870 1680 1420
8 0 2043 2126 1945
9 0 2623 2534 2423
10 0 3035 2939 2859

Table 9. Dynamics of credit default swap index spread s,.(i,%) in basis points per annum.

— Thefirst default leads to a jump from 19 bpsto 31 bps
— The second default is associated with ajump from 31 bpsto 95 bps
— Explosive behavior associated with upward base correlation curve



Empirical results

® \What about the credit deltas?
In a homogeneous framework, deltas with respect to CDS are dll the

same

Perfect dynamic replication of a CDO tranche with a credit default swap
Index and the default-free asset

Credit delta with respect to the credit default swap index

= change in PV of the tranche/ change in PV of the CDS index

Nb Defaults

0

AN b W=

7

OutStanding Weeks

Nominal 0 14 56 84
3.00% 0.941 0617 0823 0910
2.52% 0 0279 0510 0690
2.04% 0 0.072 0166 0304
1.56% 0 0.016 0.034 0.072
1.08% 0 0.004 0.006 0.012
0.60% 0 0.002 0.002 0.002
0.12% 0 0.001 0.000  0.000
0.00% 0 0 0 0

Table 11. Delta of the default leg of the [0,3%] equity tranche with respect to the credit

default swap index (0, (7, k) ).



Empirical results

* Dynamics of credit deltas:

Nb Defaults OutSta_nding Weeks
Nominal 0 14 56 84
0 3.00% 0.541 0617 0823 0910
1 2.52% 0 0279 0510 0.690
2 2.04% 0 0.072 0166 0304
3 1.56% 0 0.016 0034 0.072
4 1.08% 0 0.004 0006 Q012
5 0.60% 0 0.002 0002 0.002
6 0.12% 0 0.001 0.000 0.000

7 0.00% 0 0 0 0
Table 11. Delta of the default leg of the [0,3%] equity tranche with respect to the credit

default swap index (0, (1, k) ).

— Deéeltas are between 0 and 1
— Gradually decrease with the number of defaults

» Concave payoff, negative gammas
— When the number of defaultsis > 6, the tranche is exhausted
— Credit deltas increase with time

» Cong stent with a decrease in time value




Empirical results

* Market and theoretical deltas at inception

— Market deltas computed under the Gaussian copula model

» Base correlation is unchanged when shifting spreads
» “Sticky strike” rule
» Standard way of computing CDS index hedges in trading desks

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA

* Smaller equity tranche deltas for in the Markov chain model

» How can we explain this?




Empirical results

* Smaller equity tranche deltas in the Markov chain model
— Default is associated with an increase in dependence

» Contagion effects

———————————————————————————————————————

Figure 8. Dynamics of the base correlation curve with respect to the number of defaults.
Detachment points on the x —axis. Base correlations on the y—axis.

— Increasing correlation leads to a decrease in the PV of the equity
tranche

» Sticky implied tree deltas
— Recent market shifts go in favour of the contagion model




Empirical results

®* Thecurrent crisisis associated with joint upward shiftsin credit
spreads

— Systemic risk
* And anincrease in base correlations

20 Fad = ¥ T T T g T T ! T T T

$ & ¢ & F 8 & d ¢ S S g s g8

o ; § £ 8 § & & 8
Pr P S P T

Figure 9. Credit spreads on the five years 1Traxx index (Series 7) in bps on the left axis.
Implied correlation on the equity tranche on the right axis

® Sticky implied tree deltas are well suited in regimes of fear
— Derman: “regimes of volatility” (1999)




Empirical results

* We have experienced three defaults on the CDX NA |G so
far

* Good material to look further for contagion effects
— Financials are subject to systemic and thus contagion risk

— However, the model does not account for feedback effectsto
central banks looking for stabilizing the financial system

— The model translates a base correlation skew into contagion
effects

— Does not provide more than market expectations in CDO tranches

— For example, large spreads in senior and super senior tranches are
asign of fear of a global market turndown



Empirical results

® Comparing with results provided by:
— Arnsdorf and Halperin “BS_P: Markovian Bivariate Soread-Loss Model
for Portfolio Credit Derivatives’ Working Paper, J°P Morgan (2007),

Figure 7
[03%] [356%] [6-9%] [3-12%] [1222%]
market delias 265 45 1.26 0.65 0.25
model deltas 219 4.81 1.64 0.79 .33

— Computed in March 2007 on the iTraxx tranches
— Two dimensional Markov chain, shift in credit spreads

[0-3%] [36%] [6-9%] [3-12%] [1222%]
market deltas 27 4.5 1.25 0b 0.25
model deltas 215 4 63 1.63 09 0.6

— Note that our results, related to default deltas, are quite similar

» Equity tranche deltas are smaller in contagion models than
Gaussian copula credit deltas



Empirical results

Cont and Kan: “Dynamic hedging of
portfolio credit derivatives’ (2008)
Spread deltas

— Gaussian copula model

— Local intensity corresponds to our
contagion model

— BSLP corresponds to Arnsdorf and
Halperin (2007)

— GPL: generalized Poisson loss model of
Brigo et al. (2006)

This shows some kind of robustness

Tranche | Gauss Local BSLP GPL
0-3 | 2448 2450 U479 2448
3-6 | hhd h4h B30 hM
6-0 | L7018 180 179
0-12 | 087 08 08 08
12-2 0% 03 02 0%
2-1001 008 008 009 008

Spread deltas computed for 5Y

Picture becomes more complicated when Europe iTraxx on 20 September 2006

considering other hedging criteria...




Empirical results

® Back-test study oniTraxx Series 8
equity tranche

® Comparison of realized spread
deltas on the equity tranche and
model (implied tree) deltas

® Good hedging performance
compared with the Gaussian
copula model
— Duringthecredit crisis

— Discrepancy with results of Cont
and Kan (2008)?

35.00

30.00

—=—Model delta [0-3]

Realised delta [0-3]

25.00

20.00

1500 —=

10.00

5.00

0.00
20-Sep-07

T
09-Nov-07

T T T
29-Dec-07 17-Feb-08 07-Apr-08

27-May-08

Source: S. Amraoui BNP Paribas




Empirical results

® Cont and Kan (2008) show rather poor
performance of “jump to default” deltas

— Eveninthe recent crisis period

. . |
®* However, unsurprisingly, the credit deltas S Seex e
(“jump to default™) seem to be rather e i A S

sensitive to the calibration of contagion

Cont, Minca and Savescu (2008)
parameters on quoted CDO tranches

* Right pictures represent aggregate loss m:
i nter]g. ti eS :; B Market case
. . . 5 B Gaussian copula B
— Huge contagion effects for the first six 0
defaultsin Cont et al. (2008) - Il
— Much smaller contagion effects for the ERRCE RETEEANARARA DS
. . “igure 6. Loss intensities for the Gaussian copula and market case examples. Number of
first defaultsin Laurent et al. (2007) e o -t e

Laurent, Cousin and Fermanian (2007)




Empirical results

* Frey and Backhaus: “Dynamic hedging of synthetic CDO tranches with
spread risk and default contagion” (2007)

Tranche [0,3] [3,6] [6,9] [9,12] [12,22]

Spread 26 % 84 bp 24 bp 14 bp 11 bp
Tranche Correlation 17.30% 322% 993 % 1581 % 27.46%

Gauss Cop. A 023 006  0.03 0.07

VOD: Value on default

VOD in the Markov model VOD in the Copula model
0, 3] 1.002
3, 6] 0.138 0.171
6, 9] 0.058 0.023
19, 12] 0.039 0.008
[12, 22] 0.107 0.010

Much smaller deltas in the contagion model than in Gaussian copula model




Empirical results

Actual and model-implied price changes in the equity franche

Laurent: “A note on the risk management of
CDQO” (2007)

— provides atheoretical framework for hedging
credit spread risk only while default risk is
diversified at the portfolio level

— no default contagion, correlation between
defaults are related to “ correlation” between
credit spreads

Feldhdtter: “An empirical investigation of an
Intensity-based model for pricing CDO tranches’
(2008)

— comparison of hedging performance of a
Duffie and Garleanu (2001) reduced-form
model and one factor Gaussian copula

— Useof information at time t+1 to compute hedge
ratios at timet

— Higher deltas for the equity tranche in the affine
model compared with the 1F Gaussian copula
(market deltas)

change in up—front fee
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Empirical results

* Consistent results with the affine model of Eckner (2007) based on
December 2005 CDX data

Tranches [0-3%)] [3-7%)] [7-10%] [10-15%] [15-30%]
market deltas 18.5 55 1.5 0.8 0.4
AJD deltas 21.7 6.0 1.1 0.4 0.1
contagion model deltas 17.9 6.3 2.5 1.3 0.8

— Market deltas, “intensity” model credit deltasin Eckner (2007) and
contagion model deltas

— Goes into the opposite direction when comparing with the contagion
model

* Note that Feldhitter (2008) and Eckner (2007) are pre-crisis

®* And are according to a“sticky deltarule’” (Derman) whichis
reflects irrational exuberance or greed
— And might be appropriate for the pre-crisis period



Conclusion

* Main theoretical features of the complete market model

— No simultaneous defaults
— Unlike multivariate Poisson models

— Credit spreads are driven by defaults
» Contagion model

— Jumpsin credit spreads at default times
» Credit spreads are deterministic between two defaults
— Bottom-up approach
» Aggregate loss intensity is derived from individual loss
Intensities
— Correlation dynamicsis also driven by defaults
» Defaults lead to an increase in dependence



Conclusion

* What did we learn from the previous approaches?

— Thanks to stringent assumptions:
— credit spreads driven by defaults
— homogeneity
— Markov property
— It ispossible to compute a dynamic hedging strategy
— Based on the CDS index
— That fully replicates the CDO tranche payoffs
— Model matches market quotes of liquid tranches
— Very ssmple implementation
— Credit deltas are easy to understand
— Improve the computation of default hedges
— Since it takes into account credit contagion
— Provide some meaningful resultsin the current credit crisis
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