On the Edge of Completeness

11-12 April 2000 RISK 2000 Conference

Jean-Paul LAURENT Professor, ISFA Actuarial School, University of Lyon, Scientific Advisor, BNP Paribas

> *Correspondence* laurent.jeanpaul@online.fr

On the Edge of Completeness: Purpose and main ideas

- Purpose:
 - <u>risk-analysis</u> of exotic credit derivatives:
 - ➤ credit contingent contracts, basket default swaps.
 - pricing and <u>hedging</u> exotic credit derivatives.
- Main ideas:
 - distinguish between credit spread volatility and default risk.
 - <u>dynamic</u> hedge of exotic default swaps with <u>standard</u> default swaps.
- Reference paper: "On the edge of completeness", with Angelo Arvanitis, RISK, October 1999.

- closing the gap between pricing and hedging
- disentangling default risk and credit spread risk

Trading credit risk:

Closing the gap between supply and demand

- From stone age to the new millennium:
 - Technical innovations in credit derivatives are driven by economic forces.
 - Transferring risk from commercial banks to institutional investors:
 - ≻Securitization.
 - >Default Swaps : portfolio and hedging issues.
 - ≻Credit Contingent Contracts, Basket Credit Derivatives.
 - The previous means tend to be more integrated.

- simplified scheme:
 - <u>No</u> residual risk remains within SPV.
 - All credit trades are <u>simultaneous</u>.

Trading Credit Risk: Closing the gap between supply and demand

- Financial intermediaries provide structuring and arrangement advice.
 - Credit risk seller can transfer loans to SPV or instead use default swaps
- good news : low capital at risk for investment banks
- Good times for modelling credit derivatives
 - No need of <u>hedging</u> models
 - credit pricing models are used to ease risk transfer
 - need to assess the risks of various tranches

Trading Credit Risk:

Closing the gap between supply and demand

- There is room for financial intermediation of credit risk
 - The transfers of credit risk between commercial banks and investors may not be <u>simultaneous</u>.
 - Since at one point in time, demand and offer of credit risk may not match.
 - ➢<u>Meanwhile</u>, credit risk remains within the balance sheet of the financial intermediary.
 - It is not further required to find customers with exact opposite interest at every new deal.
 - <u>Residual risks</u> remain within the balance sheet of the financial intermediary.

Credit risk management without hedging default risk

- Emphasis on:
 - portfolio effects: correlation between default events
 - posting collateral
 - computation of capital at risk, risk assessment
- Main issues:
 - capital at risk can be high
 - what is the competitive advantage of investment banks

Credit risk management with hedging default risk

• Trading against other dealers enhances ability to transfer credit risk by lowering capital at risk

New ways to transfer credit risk : <u>credit contingent contracts</u>

- Anatomy of a general credit contingent contract
 - A credit contingent contract is like a standard default swap but with variable nominal (or exposure)
 - However the periodic premium paid for the credit protection remains fixed.
 - The protection payment arises at default of one given single risky counterparty.
- Examples
 - ➤ cancellable swaps
 - ≻<u>quanto</u> default swaps
 - ➤credit protection of <u>vulnerable</u> swaps, OTC options (standalone basis)
 - ➤ credit protection of a portfolio of contracts (full protection, excess of loss insurance, partial collateralization)

New ways to transfer credit risk : <u>Basket default derivatives</u>

- Consider a basket of *M* risky bonds
 - <u>multiple</u> counterparties
- First to default swaps
 - protection against the first default
- *N* out of *M* default swaps (N < M)
 - protection against the first *N* defaults
- Hedging and valuation of basket default derivatives
 - involves the joint (<u>multivariate</u>) modelling of default arrivals of issuers in the basket of bonds.
 - Modelling accurately the <u>dependence</u> between default times is a critical issue.

Modelling credit derivatives: the state of the art

- Modelling credit derivatives : Where do we stand ?
- Financial industry approaches
 - Plain default swaps and risky bonds
 - credit risk management approaches

- "firm-value" models
- risk-intensity based models
- Looking desperately for a hedging based approach to pricing.

Modelling credit derivatives : Where do we stand ? Plain default swaps

- Static arbitrage of plain default swaps with short selling underlying bond
 - plain default swaps hedged using underlying risky bond
 - "bond strippers" : allow to compute prices of risky zerocoupon bonds
 - repo risk, squeeze risk, liquidity risk, recovery rate assumptions
- Computation of the P&L of a book of default swaps
 - Involves the computation of a P&L of a book of default swaps
 - The P&L is driven by changes in the credit spread curve and by the occurrence of default.

Modelling credit derivatives: Where do we stand ? Credit risk management

- Assessing the varieties of risks involved in credit derivatives
 - Specific risk or credit spread risk

➢ prior to default, the P&L of a book of credit derivatives is driven by changes in credit spreads.

Default risk

▶ in case of default, <u>if unhedged</u>,

➢ dramatic jumps in the P&L of a book of credit derivatives.

Modelling credit derivatives: Where do we stand ? The Noah's arch of credit risk models

- "firm-value" models :
 - Modelling of firm's assets
 - First time passage below a critical threshold
- risk-intensity based models
 - Default arrivals are no longer predictable
 - Model conditional local probabilities of default $\lambda(t) dt$
 - τ : default date, $\lambda(t)$ risk intensity or hazard rate

$$\lambda(t)dt = P[\tau \in [t, t + dt[|\tau > t]]$$

- Lack of a <u>hedging based approach</u> to pricing.
 - Misunderstanding of hedging against default risk and credit spread risk

A new approach to credit derivatives modelling based on an <u>hedging</u> point of view

- *Rolling over* the hedge:
 - Short term default swaps v.s. long-term default swaps
 - Credit spread transformation risk
- Credit contingent contracts, basket default swaps
 - Hedging default risk through <u>dynamics holdings</u> in standard default swaps
 - Hedging credit spread risk by choosing appropriate default swap maturities
 - Closing the gap between pricing and hedging
- Practical hedging issues
 - Uncertainty at default time
 - Managing net residual premiums

- Purpose:
 - Introduction to dynamic trading of default swaps
 - Illustrates how default and credit spread risk arise
- Arbitrage between long and short term default swap
 - sell one long-term default swap
 - buy a series of short-term default swaps
- Example:
 - default swaps on a FRN issued by BBB counterparty
 - 5 years default swap premium : 50bp, recovery rate = 60%

- Rolling over short-term default swap
 - at inception, one year default swap premium : 33bp
 - cash-flows after one year:

- Buy a one year default swap at the end of every yearly period, if no default:
 - Dynamic strategy,
 - <u>future</u> premiums depend on <u>future</u> credit quality
 - future premiums are <u>unknown</u>

• *Risk analysis* of rolling over short term against long term default swaps

- Exchanged cash-flows :
 - Dealer receives 5 years (fixed) credit spread,
 - Dealer pays 1 year (variable) credit spread.
- Full one to one protection at default time
 - the previous strategy has <u>eliminated</u> one source of risk, that is <u>default risk</u>

- negative exposure to an <u>increase</u> in <u>short-term</u> default swap premiums
 - if short-term premiums increase from 33bp to 70bp
 - reflecting a lower (short-term) credit quality
 - and no default occurs before the fifth year

- Loss due to negative carry
 - long position in long term credit spreads
 - short position in short term credit spreads

- Consider a portfolio of of <u>homogeneous</u> loans
 - same unit nominal, non amortising
 - τ_i : default time of counterparty *i*
 - same default time distribution (same hazard rate $\lambda(t)$):

$$P[\tau_i \in [t, t + dt[|\tau_i > t] = \lambda(t)dt]$$

- F_t : available information at time t
- Conditional independence between default events $\{\tau_i \in [t, t+dt]\}$

 $P[\tau_i, \tau_j \in [t, t + dt[|F_t]] = P[\tau_i \in [t, t + dt[|F_t]] \times P[\tau_j \in [t, t + dt[|F_t]]]$

- equal to zero or to $\lambda^2(t)(dt)^2$, i.e no simultaneous defaults.
- Remark that indicator default variables $1_{\{\tau_i \in [t,t+dt[\}\}\}$ are (conditionally) independent and equally distributed.

- Denote by N(t) the outstanding amount of the portfolio (i.e. the number of non defaulted loans) at time t.
- By law of large numbers, $\frac{1}{N(t)} \sum \mathbb{1}_{\{\tau_i \in [t,t+dt[\}} \to \lambda(t) dt Since N(t+dt) N(t) = -\sum \mathbb{1}_{\{\tau_i \in [t,t+dt[\}} we get, \frac{N(t+dt) N(t)}{N(t)} = -\lambda(t) dt$

- The outstanding nominal decays as $N(t) = N(0) \exp - \int_{0}^{\infty} \lambda(s) ds$

- Assume zero recovery; Total default loss *t* and *t*+*dt*: *N*(*t*)-*N*(*t*+*dt*)
- Cost of default per outstanding loan: $\frac{N(t) N(t + dt)}{N(t)} = \lambda(t)dt$

- Cost of default per outstanding loan = $\lambda(t)dt$ is known at time *t*.
- <u>Insurance</u> diversification approach holds
- *Fair premium* for a short term insurance contract on a single loan (i.e. a short term default swap) has to be equal to $\lambda(t)dt$.
- Relates hazard rate and short term default swap premiums.
- Expanding on rolling over the hedge
 - Let us be short in 5 years (say) default swaps written on all individual loans.
 - > $p_{5Y} dt$, periodic premium per loan.
 - Let us buy the short term default swaps on the outstanding loans.

Corresponding premium per loan: $\lambda(t)dt$.

- Cash-flows related to default events N(t)-N(t+dt) perfectly offset

- <u>Net</u> (premium) <u>cash-flows</u> between t and t+dt: $N(t)[p_{5Y} - \lambda(t)]dt$

- Where
$$N(t) = N(0) \exp{-\int_{0}^{0} \lambda(s) ds}$$

>Payoff similar to an *"index amortising swap"*.

- At inception, p_{5Y} must be such that the risk-neutral expectation of the discounted net premiums equals zero:
- Pricing equation for the long-term default swap premium p_{5Y} :

$$E\left[\int_{0}^{T}\left(\exp-\int_{0}^{t}r(s)ds\right)\times N(t)\left(p_{5Y}-\lambda(t)\right)dt\right]=0$$

Solution where r(t) is the short rate at time *t*.

- Premiums received when selling long-term default swaps: $N(t)p_{5Y}dt$
- Premiums paid on "hedging portfolio": $N(t)\lambda(t)dt$

- Convexity effects and the cost of the hedge – Net premiums paid $N(t)[p_{5Y} - \lambda(t)]dt$
- What happens if short term premiums $\lambda(t)$ become more <u>volatile</u>?
 - \triangleright Net premiums become <u>negative</u> when $\lambda(t)$ is <u>high</u>.
 - Meanwhile, the outstanding amount N(t) tends to be <u>small</u>, mitigating the losses.
 - Contrarily when $\lambda(t)$ is small, the dealer experiments positive cash-flows $p_{5Y} \lambda(t)$ on a larger amount N(t).
- The more <u>volatile</u> $\lambda(t)$, the <u>smaller</u> the average cost of the hedge and thus the long term premium p_{5Y} .

Hedging exotic default swaps : main features

- Exotic credit derivatives can be *hedged* against <u>default</u>:
 - Constrains the <u>amount</u> of underlying <u>standard</u> default swaps.
 - Variable amount of standard default swaps.
 - <u>Full protection</u> at default time by construction of the hedge.
 - No more *discontinuity* in the P&L at default time.
 - "Safety-first" criteria: *main source of risk* can be hedged.
 - Model-free approach.
- <u>Credit spread exposure</u> has to be hedged by *other means*:
 - Appropriate choice of maturity of underlying default swap
 - Computation of sensitivities with respect to changes in credit spreads are <u>model dependent</u>.

Hedging Default Risk in Credit Contingent Contracts

- Credit contingent contracts
 - client pays to dealer a periodic premium $p_T(C)$ until default time τ , or maturity of the contract T.
 - dealer pays $C(\tau)$ to client at default time τ , if $\tau \leq T$.

- Hedging side:
 - <u>Dynamic</u> strategy based on <u>standard</u> default swaps:
 - At time *t*, hold an amount *C*(*t*) of standard default swaps
 - $-\lambda(t)$ denotes the periodic premium at time t for a short-term default swap

Hedging Default Risk in Credit Contingent Contracts

• <u>Hedging side</u>:

- Amount of standard default swaps equals the (variable)
 <u>credit exposure</u> on the credit contingent contract.
- Net position is a *"basis swap"*:

• The client transfers credit spread risk to the credit derivatives dealer

- Consider a defaultable interest rate swap (with unit nominal)
 - We are <u>default-free</u>, our counterparty is <u>defaultable</u> (default intensity $\lambda(t)$).
 - We consider a (fixed-rate) receiver swap on a standalone basis.
- Recovery assumption, payments in case of default.
 - if default at time τ , compute the <u>default-free</u> value of the swap: PV_{τ}
 - and get: $\delta(PV_{\tau})^{+} + (PV_{\tau})^{-} = PV_{\tau} (1 \delta)(PV_{\tau})^{+}$
 - − 0≤ δ≤1 recovery rate, $(PV_{\tau})^+=Max(PV_{\tau},0), (PV_{\tau})^-=Min(PV_{\tau},0)$
 - In case of default,
 - \succ we <u>receive</u> default-free value PV_{τ}
 - **≻**minus
 - $\geq \underline{\text{loss}}$ equal to $(1-\delta)(\text{PV}_{\tau})^+$.

- Defaultable and default-free swap
 - Present value of <u>defaultable</u> swap = Present value of <u>default-free</u> swap (with <u>same fixed rate</u>) – Present value of the loss.
 - To compensate for default, fixed rate of defaultable swap (with given market value) is *greater* than fixed rate of default-free swap (with same market value).
 - Let us remark, that default immediately after negotiating a defaultable swap results in a <u>positive</u> jump in the P&L, because recovery is based on default-free value.
- To account for the possibility of default, we may constitute a *credit reserve*.
 - Amount of credit reserve equals expected Present Value of the loss
 - This accounts for the *expected* loss but does not hedge against realized loss.

- Using a hedging instrument rather than a credit reserve
 - Consider a credit contingent contract that pays $(1-\delta)(PV_{\tau})^+$ at default time τ (if $\tau \leq T$), where PV_{τ} is the present value of a default-free swap with *same fixed rate* than defaultable swap.
 - Such a credit contract + a defaultable swap <u>synthesises</u> a *default-free* swap (at a fixed rate equal to the <u>initial</u> fixed rate):
 - At default, we receive $(1-\delta)(PV_{\tau})^{+} + PV_{\tau} (1-\delta)(PV_{\tau})^{+} = PV_{\tau}$
 - The <u>upfront</u> premium for this credit protection is equal to the Present Value of the <u>loss</u> $(1-\delta)(PV_{\tau})^+$ given default:

$$E\left[\int_{0}^{T} \left(\exp-\int_{0}^{t} \left(r+\lambda\right)(u) du\right) \lambda(t) \left(1-\delta\right) \left(PV_{t}\right)^{+} dt\right]$$

Case study: defaultable interest rate swap Interpreting the cost of the hedge

- <u>Average</u> cost of default on a large *portfolio* of swaps
 - Large number of *homogeneous* <u>defaultable</u> receiver swaps:
 - > Same fixed rate and maturity; initial nominal value N(0)=1

 \succ independent default dates and same default intensity $\lambda(t)$.

- Outstanding nominal amount: $N(t) = \exp \int_{0}^{t} \lambda(s) ds$
- Nominal amount defaulted in [t, t+dt [: $N(t) N(t+dt) = \lambda(t)dt \exp{-\int_{0}^{t} \lambda(s)ds}$
- Cost of default in [t, t+dt [: $(N(t)-N(t+dt))(1-\delta)(PV_t)^+$
- Where PV_t : present value of receiver swap with unit nominal.
- <u>Aggregate</u> cash-flows do <u>not</u> depend on *default risk*.
- Aggregate cash-flows are those of an index amortising swap
- Standard discounting provides previous slide pricing equation

Case study: defaultable interest rate swap Interpreting the cost of the hedge

- <u>Randomly exercised</u> swaption:
 - Assume for simplicity no recovery ($\delta=0$).
 - Interpret default time as a *random time* τ with *intensity* $\lambda(t)$.
 - At that time, defaulted counterparty "exercises" a swaption, i.e.
 decides whether to cancel the swap according to its present value.
 - PV of default-losses equals price of that randomly exercised swaption
- American Swaption
 - PV of <u>American swaption</u> equals the supremum over all possible stopping times of randomly exercised swaptions.

The upper bound can be reached for *special default arrival dates*:

 $> \lambda(t) = 0$ above exercise boundary and $\lambda(t) = \infty$ on exercise boundary

- Previous hedge leads to (small) jumps in the P&L:
 - Consider a 5,1% fixed rate defaultable receiver swap with PV=3%.
 - Buy previous credit contingent contract at market price.
 - ➤Due to credit protection, we hold a synthetic default-free 5,1% swap.
 - ≻Total PV remains equal to 3%.
 - Assume that default immediate default: $\tau=0^+$.
 - Clearly a 5,1% default free swap has PV>3%, thus occurring a positive jump in P&L.
- Jumps in the P&L due to *extra default insurance*:
 - To hedge the previous credit contingent contract:
 - At time 0, we hold an amount of short term default swap that is equal to the Present Value of a default-free 5,1% swap
 - This amount is greater than 3%, the *current Present Value*.

- Alternative hedging approach:
 - Fixed rate of default-free swap with 3% PV = 5% (say)
 - Consider a credit contingent contract that pays at default time:
 - Present value of a <u>default free</u> 5% swap minus *recovered value* on the 5,1% <u>defaultable swap</u>.
 - *at default time*, holder of defaultable swap + credit contract receives:
 - recovery value on 5,1% defaultable swap + PV of default free 5% swap - recovered value on 5,1% defaultable swap
 - \geq = PV of default free 5% swap
 - Assume credit contract has a periodic annual premium denoted by *p*.
 - Prior to default time, defaultable swap + credit contract pays:
 - > Default-free swap cash-flows with fixed rate = 5,1%-*p*
 - *p* must be equal to 10bp = 5,1%-5%, otherwise arbitrage with 5% default-free swap.

- Credit contingent contract transforms 5,1% defaultable swap into a 5% default free swap with the same PV.
 - If default occurs immediately, *no jump* in the hedged P&L.
 - To hedge the default payment on the credit contingent contract, we must hold default swaps providing payments of:
 - PV of default free 5% swap recovery on 5,1% defaultable swap:

 $PV_{\tau}(5\%) - \delta PV_{\tau}(5.1\%)^{+} - PV_{\tau}(5.1\%)^{-}$

- $PV_{\tau}(5.1\%)$ is *close* to $PV_{\tau}(5\%)$ (here 3%=PV of defaultable swap).
- Required payment on hedging default swap *close* to (1- δ) PV_τ(5.1%)⁺
 ➢ Plain default swap pays 1- δ at default time.
- Nominal amount of hedging default swap almost equal to $PV_{\tau}(5.1\%)^+$

Hedging Default risk <u>and</u> credit spread risk in Credit Contingent Contracts

- Purpose : joint hedge of default risk and credit spread risk
- Hedging *default risk* only constrains the <u>amount</u> of underlying standard default swap.
 - <u>Maturity</u> of underlying default swap is arbitrary.
- Choose maturity to be protected against credit spread risk
 - PV of credit contingent contracts and standard default swaps are sensitive to the level of credit spreads
 - Sensitivity of standard default swaps to a shift in credit spreads increases with maturity
 - Choose maturity of underlying default swap in order to <u>equate</u> <u>sensitivities</u>.

Hedging credit spread risk

• Example:

- dependence of simple default swaps on defaultable forward rates.
- Consider a *T*-maturity default swap with continuously paid premium *p*.
 Assume zero-recovery (digital default swap).
- PV (at time 0) of a long position provided by:

$$PV = E\left[\int_{0}^{T} \left(\exp-\int_{0}^{t} (r+\lambda)(s)ds\right) \times (\lambda(t)-p)dt\right]$$

- where r(t) is the short rate and $\lambda(t)$ the default intensity.
- Assume that r(.) and $\lambda(.)$ are independent.
- B(0,t): price at time 0 of a *t*-maturity default-free discount bond
- f(0,t): corresponding forward rate

$$B(0,t) = E\left[\exp-\int_{0}^{t} r(u)du\right] = \exp-\int_{0}^{t} f(0,u)du$$

Hedging credit spread risk

- Let B(0,t) be the *defaultable discount bond price* and f(0,t) the corresponding instantaneous forward rate:

$$\overline{B}(0,t) = E\left[\exp-\int_{0}^{t} (r+\lambda)(u)du\right] = \exp-\int_{0}^{t} \overline{f}(0,u)du$$

- Simple expression for the PV of the *T*-maturity default swap: $PV(T) = \int_{0}^{T} \overline{B}(0,t) \left(\overline{f}(0,t) - f(0,t) - p\right) dt$
- The derivative of default swap present value with respect to a shift of defaultable forward rate $\bar{f}(0,t)$ is provided by:

$$\frac{\partial PV}{\partial \overline{f}}(t) = PV(t) - PV(T) + \overline{B}(0,t)$$

 \geq PV(*t*)-PV(*T*) is usually small compared with $\overline{B}(0, t)$.

Hedging credit spread risk

- Similarly, we can compute the sensitivities of plain default swaps with respect to *default-free forward curves f(0,t)*.
- And thus to credit spreads.
- Same approach can be conducted with the *credit contingent contract* to be hedged.
 - All the <u>computations</u> are *model dependent*.
- Several maturities of underlying default swaps can be used to match sensitivities.
 - ► For example, in the case of **defaultable** interest rate swap, the nominal amount of default swaps $(PV_{\tau})^+$ is usually small.
 - Single default swap with nominal $(PV_{\tau})^+$ has a smaller sensitivity to credit spreads than *defaultable interest rate swap*, even for long maturities.
 - Short and long positions in default swaps are required to hedge credit spread risk.

Explaining theta effects with and without hedging

- <u>Different aspects</u> of "<u>carrying</u>" credit contracts through time.
 Assume "historical" and "risk-neutral" intensities are equal.
- Consider a *short* position in a credit contingent contract.
- Present value of the deal provided by:

$$PV(u) = E_u \left[\int_{u}^{T} \left(\exp - \int_{u}^{t} (r + \lambda)(s) ds \right) \times \left(p_T - \lambda(t)C(t) \right) dt \right]$$

- (after computations) Net expected capital gain: $E_u \left[PV(u+du) - PV(u) \right] = \left(r(u) + \lambda(u) \right) PV(u) du + \left(\lambda(u)C(u) - p_T \right) du$
- Accrued cash-flows (received premiums): $p_T du$
 - By summation, Incremental P&L (if no default between *u* and *u*+*du*): $r(u)PV(u)du + \lambda(u)(C(u) + PV(u))du$

Explaining theta effects with and without hedging

- <u>Apparent</u> extra return effect : $\lambda(u)(C(u) + PV(u))du$
 - But, probability of default between *u* and $u+du: \lambda(u)du$.
 - Losses in case of default:
 - \succ Commitment to pay: C(u)
 - > Loss of PV of the credit contract: PV(u)
 - PV(u) consists in <u>unrealised</u> capital gains or losses in the credit derivatives book that "disappear" in case of default.
 - **Expected loss charge:** $\lambda(u)(C(u) + PV(u))du$
- Hedging aspects:
 - If we hold C(u) + PV(u) short-term digital default swaps, we are protected at default-time (no jump in the P&L).
 - **Premiums to be paid:** $\lambda(u)(C(u) + PV(u))du$
 - Same average rate of return, but smoother variations of the P&L.

Hedging <u>Default Risk</u> in Basket Default Swaps

- Example: first to default swap from a basket of two risky bonds.
 - If the first default time occurs before maturity,
 - The seller of the first to default swap pays the non recovered fraction of the defaulted bond.
 - Prior to that, he receives a periodic premium.
- Assume that the two bonds cannot default <u>simultaneously</u>
 - We moreover assume that default on one bond has *no effect* on the <u>credit spread</u> of the remaining bond.
- How can the seller be protected at default time ?
 - The only way to be protected at default time is to hold <u>two</u> default swaps with the *same nominal* than the *nominal* of the bonds.
 - The *maturity* of underlying default swaps **does not matter**.

Real World hedging and risk-management issues

- uncertainty at default time
 - illiquid default swaps
 - recovery risk
 - simultaneous default events

- Managing net premiums
 - Maturity of underlying default swaps
 - Lines of credit
 - Management of the carry
 - Finite maturity and discrete premiums
 - Correlation between hedging cash-flows and financial variables

Real world hedging and risk-management issues Case study : hedge ratios for first to default swaps

- Consider a first to default swap associated with a basket of two defaultable loans.
 - Hedging portfolios based on standard underlying default swaps
 - Uncertain hedge ratios if:
 - simultaneous default events
 - ► Jumps of <u>credit spreads</u> at default times
- Simultaneous default events:
 - If counterparties default *altogether*, holding the *complete* set of default swaps is a <u>conservative</u> (and thus <u>expensive</u>) hedge.
 - In the *extreme* case where default *always* occur altogether, we only need a <u>single</u> default swap on the loan with largest nominal.
 - In other cases, holding a *fraction* of underlying default swaps <u>does</u> <u>not hedge default risk</u> (if *only one* counterparty defaults).

Real world hedging and risk-management issues Case study : hedge ratios for first to default swaps

- What occurs if there is a *jump in the credit spread* of the second counterparty after <u>default</u> of the first ?
 - default of first counterparty means *bad news* for the second.
- If hedging with short-term default swaps, <u>no capital gain</u> at default.
 - Since PV of short-term default swaps is not *sensitive* to credit spreads.
- This is not the case if hedging with long term default swaps.
 - If credit spreads jump, PV of long-term default swaps jumps.
- Then, the amount of hedging default swaps can be <u>reduced</u>.
 - This reduction is *model-dependent*.

On the edge of completeness ?

• <u>Firm-value</u> structural default models:

- Stock prices follow a diffusion processes (no jumps).
- Default occurs at first time the stock value hits a barrier
- *In this modelling*, default credit derivatives can be <u>completely</u> hedged by trading the stocks:
 - "Complete" pricing and hedging model:
- Unrealistic features for hedging basket default swaps:
 - Because default times are predictable, *hedge ratios are close to zero* except for the counterparty with the smallest "distance to default".

On the edge of completeness ? <u>hazard rate</u> based models

- In <u>hazard rate</u> based models :
 - default is a sudden, non predictable event,
 - that causes a sharp jump in defaultable bond prices.
 - Most credit contingent contracts and basket default derivatives have payoffs that are *linear* in the prices of defaultable bonds.
 - Thus, good news: default risk can be hedged.
 - Credit spread risk can be *substantially reduced* but not completely eliminated.
 - More <u>realistic</u> approach to default.
 - Hedge ratios are robust with respect to default risk.

On the edge of completeness Conclusion

- Looking for a better understanding of credit derivatives
 - payments in case of default,
 - volatility of credit spreads.
- Bridge between risk-neutral valuation and the cost of the hedge approach.
- <u>dynamic</u> hedging strategy based on *standard default swaps*.
 - hedge ratios in order to get protection at default time.
 - hedging default risk is *model-independent*.
 - importance of quantitative models for a better management of the P&L and the <u>residual premiums</u>.