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i Latest techniques in hedging credit derivatives

= Default, credit spread and correlation hedges

= Anaytica computations vs importance sampling
techniques

= Dealing with multiple defaults
= Choice of copula and hedging strategies



i Latest techniques in hedging credit derivatives

= Hedging of basket default swaps and CDO tranches
= With plain CDS

= Hedging of quanto default swaps, options on CDO
tranches not addressed.

= Related papers.
= “ 1l will survive’ , RIS, June 2003

= “ Basket Default Svaps, CDO’ s and Factor copulas’,
www.defaultrisk.com

= “Inthe Core of Correlation”, http://laurent.jeanpaul .free.fr



http://www.defaultrisk.com/

i Latest techniques in hedging credit derivatives

= Survey
= Payoff definitions:
= CDS, kih to default swaps, CDO tranches

=« Sandard modelling framework
» Factor copulas and semi-analytical approach vs importance sampling
= One factor Gaussian copula,
» Gaussian copulas, Clayton, Student t, Shock models

= Default hedges

« Multiple default issues

= Credit Soread hedges
= Correlation hedges



i Basket default swaps and CDO tranches

1= 1,...,n names.

= T1,.---,Tpn default times.
= N, nomina of credit,

= §, recovery rate (between O and 1)
= N;(1—0;) lossgiven default (of namei)

= if N;(1—¢6;) doesnot depend on i: homogeneous case

= otherwise, heterogeneous case.




i Basket default swaps and CDO tranches

= Credit default swap (CDS) on namei:
s Default Ieg
= paymentof n;(1—¢;) at 7 If 7, <T
= where T isthe maturity of the CDS
= Premium leg:
= constant periodic premium paid until min(7;,7)



i Basket default swaps and CDO tranches

= K to default swaps
= 71 .../ ordered default times

= Payment of N;(1 —6;) at Tk

= Wherei isthe name in default,

« If 7% < T maturity of k-th to default swap
= Premium leg:

= constant periodic premiumuntil min(7*, 7)



i Basket default swaps and CDO tranches

= Payments are based on the accumulated | osses on the
pool of credits

s Accumulated loss at t:
Lt)= >  N;(1-§)Ni(t)
1<i<n
= Where N;(t) = 1;.<;, Ni(1—6;) lossgiven defaullt.

= Trancheswith thresholds o <4< B <Y N,
= Mezzanine: |losses are between A and B



i Basket default swaps and CDO tranches

= Cumulated payments at timet on mezzanine tranche

M(t) = (L(t) — A)) 114,p)(L(t)) + (B — A)])p [ L(1))

= Payments on default leg:
= AM(t)=M(t)— M(t") atime t<T
= Payments on premium leg:
= periodic premium,
= proportional to outstanding nominal B — A — M (t)



i Modelling framework for default times

= Copula approach

= Conditional independence

= One factor Gaussian copula

= Gaussian copula with sector correlations
= Clayton and Student t copulas

= Shock models



i Modelling framework

= Joint survival function:
S(ti,...,tn) =Q(T1>1t1,...,7n > tp)
= Needsto be specified given marginal distributions.
s Si(t) =Q(r; >t) givenfrom CDSquotes.
= (Survival) Copula of default times:
C(Sy(t1),-..,Sn(tn)) = S(ty,... ,tpn)

= C characterizes the dependence between default times.



Modelling framework

= Factor approaches to joint distributions:
= V: low dimensional factor, not observed « latent factor ».
= Conditionally on V, default times are independent.

= Conditional default probabilities:

1% V

p' =Qmi<t|V), ¢V =Qi>t|V).
= Conditional joint distribution:

Q(Tlitlu“- Tﬂgt?’llv H p?|V
1<i<n
= Joint survival function (impliesintegration wrt V):

Q(T]_ >t]_,... ,Tﬂ>tn):E Hq?‘v




i Modelling framework

= One factor Gaussian copula:
= V.Vi,i=1,...,n  independent Gaussian,

Vi=pV +1/1—pV;

= Default times: 7; = FH(®(V))

7

S ey —1 .
= Conditional default probabilities: p;" d)( f”'*V+lq) (E(*)))
. . . v/ 1 — Jﬂ“.f'

= Joint survival function:

- v — DL Fi(t,
S(ty, ..., t,) = / (]:!: () ('(? \/ﬁ(f )))) o(v)dv

= Can be extended to Student t copulas (two factors).




i Modelling framework

= Why factor models ?
« Sandard approach in finance and statistics
= Tacklewith large dimensions

= Need tractable dependence between defaults:

= Parsimonious modelling
= One factor Gaussian copula: n parameters
= But constraints on dependence structure

= Semi-explicit computations for portfolio credit derivatives
= Premiums, Greeks
= Much quicker than plain Monte-Carlo

= No need of product specific importance sampling schemes



i Modelling framework

= Gaussian copula with sector correlations

1 61 b
b6 1 B/ y
b1 B 1
1
1
1 Bm Pm
/4 Bm 1 B
Bm bm 1

= Analytical approach still applicable



Modelling framework

= Clayton copula
= Archimedean copula
= lower tail dependence: )\, = 2~ 1/¢
= NO upper tail dependence
= Kendall tau rx = 910
= Spearman rho has to be computed numerically
s Cp Increasing with ¢
= § =0 independence case
= @ = 400 Ccomonotonic case



Modelling framework

s Shock models

« Duffie & Singleton, Wong
= Default dates: 7; = min(7;, 7)
= Smultaneous defaults: Q(r; = ;) > Q (7 < min(7;, 7)) > 0

= Conditional default probabilities:
ilT

p; = 154Q(T; <)+ L
= T, T; exponential distributions with parameters A, \;

= Symmetric case: /4 does not depend on name
= /=0 Independence case, /A =0 comonotonic case
= Copulaincreasing with A

= Tail dependence



i Model dependence

= Example: first to default swap

= Onefactor Gaussian 7, = Q)(

—p.V + d)‘l(ﬂ(t)))

=« Clayton piw = exp (V (1 — E(f)_ﬂ))

v 1 —,ﬂ?

« Shockmodel  p!" = 1,2 Q(F; < t) + 1

= Semi-explicit computations

dt



Model dependence

s From first to last to default
swap premiums
= 10 names, unit nominal

=  Soreads of names uniformly
distributed between 60 and 150 bp

= Recovery rate = 40%
= Maturity = 5 years
= Gaussian correlation: 30%
= Same FTD premiums imply
consistent prices for protection
at all ranks

= Model with ssmultaneous
defaults provides very different
results

Rank layton | Gaussian | MO
I 723 723 [ 723
_ T 24 160

22 A 5
| 5 o | 37
= i 5 36

1] 1] 36
T L6 L3 | 36
g | 2 .| 36
L} []. 2= gy 36
1l .04 L) Ll 6

kendall




i Model dependence

= CDO margins (bp pa)
= Credit spreads uniformly

distributed between 80bp and
120bp

= 100 names
= Gaussian correlation = 30%
= Parameters of Clayton and
shock models are set for :
matching of equity tranches. Mﬂﬂﬂﬂlﬂf
= For thepricing of CDO
tranches, Clayton and
Gaussian copulas are close.

= Very different results with
shock models

(rausstan|Clavton

Equity

SEN0r




Default Hedges

= Default hedge (no losses in case of default)
« CDS hedging instrument

= Example: First to default swap

= If using short term credit default swaps

= Assume no simultaneous defaults can occur
Default hedge implies 100% in all names

When using long term credit default swaps
Default of one name means bad news (positive dependence)
Jumpsin credit spreads at (first to) default time
The amount of hedging CDS can be reduced (model dependent)

= Default hedge may be not feasible in case of simultaneous defaults

= CDO tranches
= Recovery risk may not be hedged




Credit Soread Hedges

= Amount of CDSto hedgea [ staiintie
shift in credit spreads Fistlodafaul  Sacond o defaut  Thi o dotau

SE MC SE MC SE MC

o% 10751 10759 214.8 214.7 28.2 2rT

. - 20% F270 B2h8 247.2 2475 ol1.4 518

= Example: six names 0% B9 ssra 2568 2576 776 78O
40% V6.6 7952 263.3 2842 Q27 220

. B0% GroE 67EOD 2888 268 1185 118.8

porthI | O 80% 5731 G717 2662 2661 410 1409

100 5000 5000 25800 2500 150.0 1850.0

PFramiums in basis points par annum as a function of corralation for a five-

n Changes | n Credl t Cu r‘veS Of Eul-jaurbrg?:gt;qiﬁﬁiggﬁﬁgmsgriﬁ af 25, B0, 100, 150, 250 and
individual names

1. Deltas calculated using semi-explicit

formulas and Monte Carlo approaches

= Semi-analytical more
accurate than 10° Monte
Carlo smulations.

= Much quicker: about 25
Monte Carlo smulations.

. —a— 15t (BE) —— 15t (MC)
—a—2nd (SE) —e—2Znd (MC)
drd (SE) —=— 3rd (MC)

S

100 200 300 400 500
Cradit apread (bp)
Comparison of deltas calculated using the analytical formulas and 105

Monte Carle simulations for the examgde given in table A. The Monte
Caro deltas are calculated by applying a 10bp parallel shift to each curve

Motional equivalent delta {2&)
o B 858838

(=]



Credit Soread Hedges

= Changesin credit curves of individual names
= Dependence upon the choice of copula for defaults

2. Deltas using Gaussian and Clayton copula

F 90- —a— 1281 (Gaussian)

EE"“' —— 15t {Clayton)

£ 701 _g 2nd (Gaussian) R

= 601 ——2nd (Clayton)

gé B0 - 3rd (Gaussian)

= 401 —a— 3rd {Clayton)

g 30-

B 20-

G 10

B, *

2 1 1 1 1 1
a 100 200 300 400 S00

Credit spread (bp)

Comparison of deltas calculated using Gaussian (30% correlation)
and Clayton copulas (B = 0.27)



Credit Soread Hedges
= Hedging of CDO tranches

With respect to credit curves  £01 e

of individual names 2o

= Amount of individual CDS E_‘________,,_M
to hedge the CDOQO tranche f 104

= Semi-analytic : some s e

seconds : EM

= Monte Carlo more than one ; = i

hour and still shaky ﬂ; A R
m Fmportance sampling | g 10-

improves convergence but is s s s - il

Credit spread (bp)

deal specific

CDO tranche deltas using the analytical method {top) and Monte
Carlo (battom) for a correlation of 505



i Correlation Hedges

= CDO premiums (bp pa)

= With respect to correlation

= Gaussian copula

= Attachment points. 3%, 10%
100 names, unit nominal

5 years maturity, recovery
rate 40%

= Credit spreads uniformly
distributed between 60 and
150 bp

= Equity tranche premiums
decrease with correlation

= Senior tranche premiums increase
with correlation

=  Small correlation sensitivity of
mezzanine tranche

Qg
i
40
3l
|44
i3

eZZALIE

Selor




Correlation Hedges

= TRAC-X Europe

Names grouped in 5 sectors
| nter sector correlation: 20%

| ntrasector correlation
varying from 20% to 80%

Tranche premiums (bp pa)

s Increase in intrasector
correlation

Less diversification

|ncrease in senior tranche
premiums

Decrease in equity tranche
premiums

1 60% 60%

60% 1  60% 20%

60% 60% 1
1
1

1 60% 60% |
20% 60% 1  60% |
60% 60% 1 |
0-3%| 3-6%| 6-9%| 9-12%| 12-22%
20%| 12739| 2875 934 333 6.0
30%| 1226.6| 2944| 1027 399 79
40%| 11689| 303.5| 1140 473 103
30%]| 1100.5) 3142| 1276| 363 133
60%| 1020.9| 325.8| 143.8| 67.2 17.0
70%| 929.1) 337.5| 163.6| 8038 21.6
80%| 8219 349.3| 188.0] 9838 272




Correlation Hedges

= Implied flat correlation

= With respect to intrasector
correlation
= * premium cannot be matched
with flat correlation

= Dueto small correlation
sengitivities of mezzanine
tranches

= Negative corrrelation smile

1 60% 60%
60% 1  60% 20%
60% 60% 1
1
1
1 60% 60% |
20% 60°% 1  60% |
60% 60% 1 |
0-3%| 3-6%| 6-9%)| 9-12%| 12-22%
20%)| 20.0%)| 20.0%| 20.0%| 20.0%| 20.0%
30%)| 22.2%)| 22.6%| 22.1%| 22.2%| 22.0%
40%| 25.0%| 27.6%| 25.2%| 24.6%| 242%
30%)| 28.5%| * 297%)| 27.3%| 2638%
60%| 32.8%| * 40.3%)| 30.6%| 293%
T0%)| 44.9%| * * 34.8%| 33.1%
80%| 44 8%| * * 41.3%| 37.1%




Correlation Hedges

- Correl atl on %r]s ti VI tl % Pairwise Correlation Sensitivity (Equity Tranche)
= Protection buyer
= 50 names

= Spreads 25, 30,..., 270 bp

= Threetranches:
= attachment points: 4%, 15%

| B& Correl a[i On: 25% Credit spread 1 (bps)

PV Change

115
Credit spread
2 (bps)

= Shift of pair-wise correlation to 35%

= Correlation sensitivities wrt the
names being perturbed

= equity (top), mezzanine (bottom)

Pairwise Correlation Sensitivity (Mezzanine Tranche)

= Negative equity tranche correlation
sengitivities
205
= Bigger effect for names with high p— 119 Credit spreas
5 105 145 185 25 e 2(bps
Spr ea'ds Credit spread 1 (bps)




Correlation Hedges

= Senior tranche correlation
sensitivities
= Positive sensitivities
= Protection buyer islong a call
on the aggregated loss
= Positive vega
= Increasing correlation
= Implieslessdiversification
= Higher volatility of the losses
= Names with high spreads
have bigger correlation
sensitivities

PV Change

Pairwise Correlation Sensitivity (Seni

0.003
0.002

0.002

HiH
T

Fh

0.001 T

0.001

0.000
25
65
105 145 185 25
225 9g5

Credit spread 1 (bps)

or Tranche)

205

115 Credit spread
2 (bps)




i Conclusion

s Factor models of default times:

« Deal easily with a large range of names and dependence
structures

= Smple computation of basket credit derivatives and CDO’s

= Prices and risk parameters

= Gaussian and Clayton copulas provide similar patterns

= Shock models quite different
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