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using Factor Models

i Accurately Valuing Basket Default Swaps and CDQO'’s

m Accurate and fast valuation of CDO tranches
= Factors and conditional independence framework

= Taking into account correlation and discounting
effects

= Contribution of different names to the pricing

= Risk management of CDO's



What are we looking for ?

s A framework where:

s One can easily deal with a large number of names,

s Tackle with different time horizons,

s Compute quickly and accurately:

= Basket credit derivatives premiums

= CDO margins on different tranches

= Deltas with respect to shifts in credit curves

= Main technical assumption:

s Default times are independent conditionnally on a low

dimensional factor




Probabilistic Tools: Survival Functions

= = 1,....,n names
m T1,.-..,7Tn default times
= Marginal distribution function Fj(t) = Q(1; < t)

= Marginal survival function S;(t) = Q(7; > t)
s Given from CDS quotes

= Joint survival function:
S(tl,... ,t-n,) = Q(Tl >t1yee. T > tn)
= (Survival) Copula of default times:
C(S1(ty), ..., Sntn)) = S(ty,... ,tn)

s C characterizes the dependence between default times.



Probabilistic Tools: Factor Copulas

» Factor approaches to joint distributions:
s V low dimensional factor, not observed « latent factor »
s Conditionally on V default times are independent

s Conditional default probabilities

V V
—Qri<t|V), ¢V =Q(r;>t|V).

s Conditional joint distribution.:
V
Q(Tlgtlv'“ Tnftn|v H p?|

1<i<n
Joint survival function (implies integration wrt V):

It

. . . v
Qri>t,... ,Tp>1ty)=E Hff;|
i=1




Probabilistic Tools: Gaussian Copulas

= One factor Gaussian copula (Basel 2):

= V.V, i=1,....,n independent Gaussian

Vi=p;V +4/1— p?f’}
s Default times:
i = F Y (D(V;))

= Conditional default probabilities:

-:'|1"’ _'.G.j L —|_ {I)_l(F;(f))
Py = 0]
\fl — p?




Probabilistic Tools : Clayton copula

s Davis & Lo ; Jarrow & Yu ; Schonbucher & Schubert

= Conditional default probabilities
piw = exp (V (l — P}(t)_ﬂ))

s V: Gamma distribution with parameter 0



Probabilistic Tools: Simultaneous Defaults

s Duffie & Singleton, Wong
= Modelling of defaut dates: 7; = min(7;, 7)
m Q(ri=7;) > Q (7 <min(7;,7;)) >0 simultaneous defaults.
= Conditional default probabilities:

ilT

Py = = 124Q(T; < ) T Lr-f:it



ﬁ Probabilistic Tools: Affine Jump Diffusion

s Duffie, Pan & Singleton ;Duffie & Garleanu.
s n -+ 1 independent affine jump diffusion processes:
X1,...,Xn, X
= Conditional default probabilities:

1%
Qri>t|V) =4 =Vay(t)

x .f
V = exp (—/ Xf.{sjds) . ooilt) = FE [(}:{p (—/ X,{S:Idﬂ):| :
0 0



Risk Management of Basket Credit Derivatives

A. Comparison of the semi-explicit formulas

- Example: S1X names with Monte Carlo simulations
f 1 First to default Second to default Third to default
SE MC SE MC SE MC
p Ort Ol110 0% 10751 1,075.9 248 2147 Ay
20% 927.0 9259 2472 2475 614 618
Ch . d . t f 0% BF9D 8579 I568 2576 776 7RO
40% 796.6 7952 2633  264.2 g27 930
u anges Imn Credit curves o 60% 6796 €780 9688 2689 1185 1198
. L. 80% 5731 57L7 2662  266.1 141.0 1409
lndIVIdual names 1005% 5000 5000 2500 2500 1500 1500

Pramiums in basis points per annum as a function of cormalation for a five-
yoar maturity basket with cradit spreads of 26, 50, 100, 150, 250 and
S00bp and equal racovery rates of 40%

s Amount of individual CDS

1. Deltas calculated using semi-explicit
to hedge the basket formulas and Monte Carlo approaches

. —a— 13t (BE) —=— 15t (MC)
—a—2nd (SE} —e—2nd (MC)
1 drd (SE) —s—3rd {MC)

S

100 200 400 400 500
Cradit spread (bp)

= Semi-analytical more
accurate than 10° Monte

Carlo simulations.

Motional equivalent delta (3&)
oo B8 888838

(=]

= Much quicker: about 25

Comparison of deltas calculated using the analytical formulas and 105

Monte CarlO SImUIatlonS . Monte Carlo simulations for the example given in table A. The Monte

Carlo daltas are calculated by applying a 10bp parallel shift to each curve



Risk Management of Basket Credit Derivatives

= Changes 1n credit curves of individual names
s Dependence upon the choice of copula for defaults

2. Deltas using Gaussian and Clayton copula

F 90 —a— 121 (Gaussian)

m BO{ —=—1st (Clayton)

£ 701 _g 2nd (Gaussian) T
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Cradit spread (bp)

Comparizon of deltas calculated using Gaussian (30% correlation)
and Clayton copulas (b = 0.27)



CDO Tranches
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«Everything should be made as simple as possible, not simplery

Explicit premium
computations for tranches

Use of loss distributions

over different time horizons

Computation of loss

distributions from FFT

Involves integration par

parts and Stieltjes integrals



Credit Loss Distributions

ccumulated loss att:  L(t) = > N;(1— 6;)N;(t)
1<i<n

= Where N;(t) = 1,.<¢, N;(1—0;) loss given default

= Characteristic function ¢z )(u) =E [EmL(t)]

= By conditioning o) =E | [] (1—p§"’:+ pﬁ"’lp]_éj(-uwj

= Distribution of L(¢) 1s obtained by FFT




One hundred names, same

nominal.
Recovery rates: 40%

Credit spreads uniformly
distributed between 60 and
250 bp.

Gaussian copula, correlation:

50%

10> Monte Carlo simulations

Credit Loss distributions

3. Loss distribution
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Lozs distribution over tima for the table B example with 50% correlation
for the semi-explicit approach (top) and Monte Carlo simulation (bottom)



Valuation of CDO'’s

s Tranches with thresholds 0 <A< B <> N;
s Mezzanine: pays whenever losses are between A and B

s Cumulated payments at time t: M(t)

M(t) = (L(t) — A)) 1 p)(L(t)) + (B — A)jp o (L(E))

T
/ B(t)dM(t)}
0

« B(t) discount factor, T maturity of CDO

= Upfront premium: E

T
= Stieltjes integration by parts B(T)E[M(T)| + / E[M(t)|dB(t)
0
b

s where E[M(t) = (B— A)Q(L(t) > B) + / (z — A)dFy ()
JA



Valuation of CDO'’s

B. Pricing of five-year maturity CDO tranches

Equity (0-3%)  Mezzanine (3-14%)  Senior (14-100%)

SE MC SE MC SE MC
0% 221894 BIZEBS d816.2 8143 0.0 0.0
20% 4.321.1 43253 g084 BOBS 4B 4Ty 13.7
40% 26888 26967 7343 7314 33.4 33.2
B0% 17808 17385 g41.0 6378 54.1 237
B0 10775 10678 B28E B209 TT.0 6.6
100% 410.3 4066 J7l2 3Gl 110.4 109.6

Premiums in basis points par annum as a function of corralation for S-year
maturity CDO tranches on a portfolio with credit spreads uniformly
distributed betwaen 60 and 25060, The racovery rates ane 0%

s One factor Gaussian copula

s CDO tranches margins with respect to correlation
parameter



Risk Management of CDO'’s
= Hedging of CDO tranches
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CDO tranche deltas using the analytical method (top) and Monte
Carlo (bottomn) for a correlation of 505



Conclusion

s Factor models of default times:
s simple computation of basket credit derivatives and CDQO’s

s deal easily with a large range of names and dependence

Structures



