Comparison results for credit risk portfolios

Jean-Paul LAURENT

ISFA, Université Lyon 1 and BNP-Paribas

Credit Risk Workshop - Evry, 27 June 2008 Joint work with Areski COUSIN

Contents

- Comparison results
 - Motivation
 - De Finetti theorem and factor representation
 - Stochastic orders
 - Main results
- 2 Application to several popular CDO pricing models
 - Factor copula approaches
 - Structural model
 - Multivariate Poisson model

Motivation

- Specify the dependence structure of default indicators D_1, \ldots, D_n which leads to:
 - an increase of the value of call options $E\left[\left(L_{t}-a\right)^{+}\right]$ for all strike level a>0
 - an increase of convex risk measures on L_t (TVaR, Wang risk measures)
- Comparison between homogeneous credit portfolios
 - D_1, \ldots, D_n are assumed to be exchangeable Bernoulli random variables
 - De Finetti's theorem leads to a factor representation of D_1, \ldots, D_n
- Application to several popular CDO pricing models

De Finetti theorem and factor representation

• Homogeneity assumption: default indicators D_1, \ldots, D_n forms an exchangeable Bernoulli random vector

Definition (Exchangeability)

A random vector (D_1, \ldots, D_n) is exchangeable if its distribution function is invariant for every permutations of its coordinates: $\forall \sigma \in S_n$

$$(D_1,\ldots,D_n)\stackrel{d}{=}(D_{\sigma(1)},\ldots,D_{\sigma(n)})$$

Same marginals

De Finetti theorem and factor representation

- Assume that D_1, \ldots, D_n, \ldots is an exchangeable sequence of Bernoulli random variables
- ullet Thanks to de Finetti's theorem, there exists a random factor \tilde{p} such that
- D_1, \ldots, D_n are conditionally independent given \tilde{p}
- Denote by $F_{\tilde{p}}$ the distribution function of \tilde{p} , then:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum_i d_i} (1-p)^{n-\sum_i d_i} F_{\tilde{p}}(dp)$$

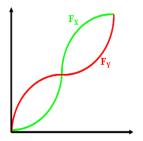
- Finite exchangeability only leads to a sign measure Jaynes (1986)
- \tilde{p} is characterized by:

$$\frac{1}{n}\sum_{i=1}^{n}D_{i}\stackrel{a.s}{\longrightarrow}\tilde{p} \text{ as } n\to\infty$$

p
 is exactly the loss of the infinitely granular portfolio (Bâle 2 terminology)

Stochastic orders

- The convex order compares the dispersion level of two random variables
- Convex order: $X \leq_{cx} Y$ if $E[f(X)] \leq E[f(Y)]$ for all convex functions f
- Stop-loss order: $X \leq_{sl} Y$ if $E[(X K)^+] \leq E[(Y K)^+]$ for all $K \in R$
 - $X \leq_{sl} Y$ and $E[X] = E[Y] \Leftrightarrow X \leq_{cx} Y$
- $X \leq_{cx} Y$ if E[X] = E[Y] and F_X , the distribution function of X and F_Y , the distribution function of Y are such that:



Supermodular order

- The supermodular order captures the dependence level among coordinates of a random vector
- $(X_1,\ldots,X_n)\leq_{sm}(Y_1,\ldots,Y_n)$ if $E[f(X_1,\ldots,X_n)]\leq E[f(Y_1,\ldots,Y_n)]$ for all supermodular function f

Definition (Supermodular function)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is supermodular if for all $x \in \mathbb{R}^n$, $1 \le i < j \le n$ and $\varepsilon, \delta > 0$ holds

$$f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j+\delta,\ldots,x_n)-f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j,\ldots,x_n)$$

$$\geq f(x_1,\ldots,x_i,\ldots,x_i+\delta,\ldots,x_n)-f(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)$$

 Consequences of new defaults are always worse when other defaults have already occurred

Review of literature

Müller(1997)

Stop-loss order for portfolios of dependent risks

$$(D_1,\ldots,D_n)\leq_{sm}(D_1^*,\ldots,D_n^*)\Rightarrow\sum_{i=1}^nM_iD_i\leq_{sl}\sum_{i=1}^nM_iD_i^*$$

Bäuerle and Müller(2005)

Stochastic orders ans risk measures: Consistency and bounds

$$X \leq_{\mathsf{sl}} Y \Rightarrow \rho(X) \leq \rho(Y)$$

for all law-invariant, convex risk measures ρ

Lefèvre and Utev(1996)

Comparing sums of exchangeable Bernoulli random variables

$$\tilde{p} \leq_{\mathsf{cx}} \tilde{p}^* \Rightarrow \sum_{i=1}^n D_i \leq_{\mathsf{sl}} \sum_{i=1}^n D_i^*$$

Main results

- Let us compare two credit portfolios with aggregate loss $L_t = \sum_{i=1}^n M_i D_i$ and $L_t^* = \sum_{i=1}^n M_i D_i^*$
- Let D_1, \ldots, D_n be exchangeable Bernoulli random variables associated with the mixture probability \tilde{p}
- Let D_1^*, \ldots, D_n^* exchangeable Bernoulli random variables associated with the mixture probability \tilde{p}^*

Theorem

$$\tilde{p} \leq_{\mathsf{cx}} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\mathsf{sm}} (D_1^*, \dots, D_n^*)$$

- In particular, if $\tilde{p} \leq_{cx} \tilde{p}^*$, then:
 - $E[(L_t a)^+] \le E[(L_t^* a)^+]$ for all a > 0.
 - $\rho(L_t) < \rho(L_t^*)$ for all convex risk measures ρ

Main results

- Let D_1, \ldots, D_n, \ldots be exchangeable Bernoulli random variables associated with the mixture probability \tilde{p}
- Let $D_1^*, \ldots, D_n^*, \ldots$ be exchangeable Bernoulli random variables associated with the mixture probability \tilde{p}^*

Theorem (reverse implication)

$$(D_1,\ldots,D_n) \leq_{sm} (D_1^*,\ldots,D_n^*), \forall n \in \mathbb{N} \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^*.$$

Contents

- Comparison results
 - Motivation
 - De Finetti theorem and factor representation
 - Stochastic orders
 - Main results
- Application to several popular CDO pricing models
 - Factor copula approaches
 - Structural model
 - Multivariate Poisson model

Ordering of CDO tranche premiums

Burtschell, Gregory, and Laurent(2008)

A comparative analysis of CDO pricing models

- Analysis of the dependence structure within some factor copula models such as:
 - Gaussian, Student t, Double t, Clayton, Marshall-Olkin copula
- An increase of the dependence parameter leads to:
 - a decrease of [0%, b] equity tranches premiums (which guaranties the uniqueness of the market base correlation)
 - an increase of [a, 100%] senior tranches premiums

Additive factor copula approaches

- The dependence structure of default times is described by some latent variables V_1, \ldots, V_n such that:
- $V_i = \rho V + \sqrt{1 \rho^2} \bar{V}_i, i = 1 \dots n$
- $V, \bar{V}_i, i = 1 \dots n$ independent
- $\tau_i = G^{-1}(H_{\rho}(V_i)), i = 1 \dots n$
 - G: distribution function of τ_i
 - H_{ρ} : distribution function of V_i
- $D_i = 1_{\{\tau_i \leq t\}}, i = 1 \dots n$ are conditionally independent given V
- $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} E[D_{i} \mid V] = P(\tau_{i} \leq t \mid V) = \tilde{p}$

Additive factor copula approaches

Theorem

For any fixed time horizon t, denote by $D_i=1_{\{\tau_i\leq t\}},\ i=1\dots n$ and $D_i^*=1_{\{\tau_i^*\leq t\}},\ i=1\dots n$ the default indicators corresponding to (resp.) ρ and ρ^* , then:

$$\rho \leq \rho^* \Rightarrow \tilde{p} \leq_{\mathsf{cx}} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\mathsf{sm}} (D_1^*, \dots, D_n^*)$$

- This framework includes popular factor copula models:
 - One factor Gaussian copula the industry standard for the pricing of CDO tranches
 - Double t: Hull and White(2004)
 - NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid and Werner(2007)
 - Double Variance Gamma: Moosbrucker(2006)

Archimedean copula

Schönbucher and Schubert(2001), Gregory and Laurent(2003), Madan *et al.*(2004), Friend and Rogge(2005)

- V is a positive random variable with Laplace transform φ^{-1}
- U_1, \ldots, U_n are independent Uniform random variables independent of V
- $V_i = \varphi^{-1} \left(-\frac{\ln U_i}{V} \right), \ i = 1 \dots n \text{ (Marshall and Olkin (1988))}$
 - (V_1, \ldots, V_n) follows a φ -archimedean copula
 - $P(V_1 \leq v_1, ..., V_n \leq v_n) = \varphi^{-1}(\varphi(v_1) + ... + \varphi(v_n))$
- $\tau_i = G^{-1}(V_i)$
 - G: distribution function of τ_i
- $D_i = 1_{\{\tau_i \le t\}}, i = 1 \dots n$ independent knowing V
- $\bullet \ \ \frac{1}{n} \sum_{i=1}^{n} D_i \xrightarrow{a.s} E[D_i \mid V] = P(\tau_i \leq t \mid V)$

Archimedean copula

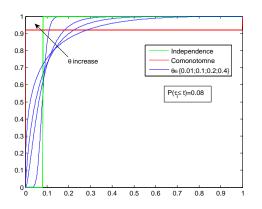
• Conditional default probability: $\tilde{p} = \exp \{-\varphi(G(t)V)\}$

Copula	Generator $arphi$	Parameter
Clayton	$t^{- heta}-1$	$\theta \geq 0$
Gumbel	$(-\ln(t))^{ heta}$	$ heta \geq 1$
Franck	$-\ln\left[(1-e^{- heta t})/(1-e^{- heta}) ight]$	$ heta \in I\!\!R^*$

Theorem

$$\theta \leq \theta^* \Rightarrow \tilde{p} \leq_{\mathsf{cx}} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\mathsf{sm}} (D_1^*, \dots, D_n^*)$$

Archimedean copula



- Clayton copula
- Mixture distributions are ordered with respect to the convex oder

Structural model

Hull, Predescu and White(2005)

- Consider n firms
- Let $V_{i,t}$, $i = 1 \dots n$ be their asset dynamics

$$V_{i,t} = \rho V_t + \sqrt{1 - \rho^2} \bar{V}_{i,t}, \quad i = 1 \dots n$$

- V, \bar{V}_i , $i=1\ldots n$ are independent standard Wiener processes
- Default times as first passage times:

$$\tau_i = \inf\{t \in R^+ | V_{i,t} \le f(t)\}, i = 1 \dots n, f : R \to R \text{ continuous}$$

• $D_i = 1_{\{\tau_i \leq T\}}$, $i = 1 \dots n$ are conditionally independent given $\sigma(V_t, t \in [0, T])$

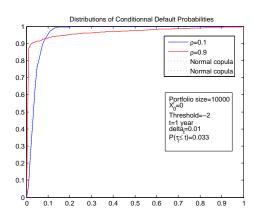
Structural model

Theorem

For any fixed time horizon T, denote by $D_i=1_{\{\tau_i\leq T\}},\ i=1\dots n$ and $D_i^*=1_{\{\tau_i^*\leq T\}},\ i=1\dots n$ the default indicators corresponding to (resp.) ρ and ρ^* , then:

$$\rho \leq \rho^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

Structural model



- $\bullet \quad \frac{1}{n} \sum_{i=1}^{n} D_i \xrightarrow{a.s} \tilde{p}$
- $\bullet \quad \frac{1}{n} \sum_{i=1}^{n} D_{i}^{*} \stackrel{a.s}{\longrightarrow} \tilde{p}^{*}$
- Empirically, mixture probabilities are ordered with respect to the convex order: $\tilde{p} <_{cx} \tilde{p}^*$

Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)

- \bar{N}_t^i Poisson with parameter $\bar{\lambda}$: idiosyncratic risk
- N_t Poisson with parameter λ : systematic risk
- $(B_i^i)_{i,j}$ Bernoulli random variable with parameter p
- All sources of risk are independent

•
$$N_t^i = \bar{N}_t^i + \sum_{j=1}^{N_t} B_j^i, \ i = 1 \dots n$$

•
$$\tau_i = \inf\{t > 0 | N_t^i > 0\}, \ i = 1 \dots n$$

- Dependence structure of (τ_1, \ldots, τ_n) is the Marshall-Olkin copula
- $\tau_i \sim Exp(\bar{\lambda} + p\lambda)$
- $D_i = 1_{\{ au_i \leq t\}}, \ i = 1 \dots n$ are conditionally independent given N_t
- $\frac{1}{n}\sum_{i=1}^{n}D_{i}\stackrel{a.s}{\longrightarrow}E[D_{i}\mid N_{t}]=P(\tau_{i}\leq t\mid N_{t})$
- Conditional default probability:

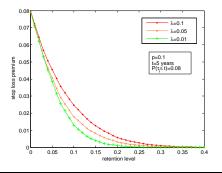
$$\tilde{p} = 1 - (1 - p)^{N_t} \exp(-\bar{\lambda}t)$$

- Comparison of two multivariate Poisson models with parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$
- Supermodular order comparison requires equality of marginals: $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda^*$
- 3 comparison directions:
 - $p = p^*$: $\bar{\lambda}$ v.s λ
 - $\lambda = \lambda^*$: $\bar{\lambda}$ v.s p
 - $\bar{\lambda} = \bar{\lambda}^*$: λ v.s p

Theorem $(p = p^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p\lambda^*$, then:

$$\lambda \leq \lambda^*, \ \bar{\lambda} \geq \bar{\lambda}^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

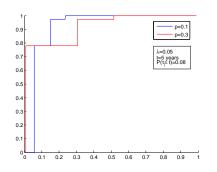


- Computation of $E[(L_t a)^+]$:
 - 30 names
 - $M_i = 1, i = 1 \dots n$
- When λ increases, the aggregate loss increases with respect to stop-loss order

Theorem $(\lambda = \lambda^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ \bar{\lambda} \geq \bar{\lambda}^* \Rightarrow \tilde{p} \leq_{\mathsf{cx}} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\mathsf{sm}} (D_1^*, \dots, D_n^*)$$

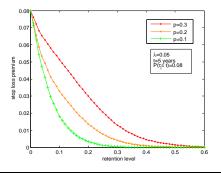


Convex order for mixture probabilities

Theorem $(\lambda = \lambda^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ \bar{\lambda} \geq \bar{\lambda}^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

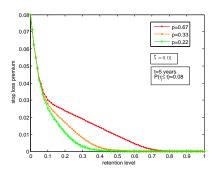


- Computation of $E[(L_t K)^+]$:
 - 30 names
 - $M_i = 1, i = 1 \dots n$
- When p increases, the aggregate loss increases with respect to stop-loss order

Theorem $(\bar{\lambda} = \bar{\lambda}^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $p\lambda = p^*\lambda^*$, then:

$$p \leq p^*, \ \lambda \geq \lambda^* \Rightarrow \tilde{p} \leq_{\mathsf{cx}} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\mathsf{sm}} (D_1^*, \dots, D_n^*)$$



- Computation of $E[(L_t K)^+]$:
 - 30 names
 - $M_i = 1, i = 1 \dots n$
- When p increases, the aggregate loss increases with respect to stop-loss order

Conclusion

- When considering an exchangeable vector of default indicators, the conditional independence assumption is not restrictive thanks to de Finetti's theorem
- The mixture probability (the factor) can be viewed as the loss of an infinitely granular portfolio
- We completely characterize the <u>supermodular order</u> between exchangeable default indicator vectors in term of the <u>convex ordering</u> of corresponding mixture probabilities
- We show that the mixture probability is the key input to study the impact of dependence on CDO tranche premiums
- Comparison analysis can be performed with the same method within a large number of popular CDO pricing models

