Comparison results for exchangeable credit risk portfolios

Areski COUSIN

Université d’Evry

Joint work with Jean-Paul Laurent, ISFA, Université de Lyon
1 Comparison results
- De Finetti theorem and factor representation
- Stochastic orders
- Main results

2 Application to several popular CDO pricing models
- Factor copula approaches
- Structural model
- Multivariate Poisson model
De Finetti theorem and factor representation

- Homogeneity assumption: default indicators D_1, \ldots, D_n forms an exchangeable Bernoulli random vector

Definition (Exchangeability)

A random vector (D_1, \ldots, D_n) is exchangeable if its distribution function is invariant for every permutations of its coordinates: $\forall \sigma \in S_n$

$$(D_1, \ldots, D_n) \overset{d}{=} (D_{\sigma(1)}, \ldots, D_{\sigma(n)})$$

- Same marginals
Assume that D_1, \ldots, D_n, \ldots is an exchangeable sequence of Bernoulli random variables.

Thanks to de Finetti’s theorem, there exists a unique random factor \tilde{p} such that D_1, \ldots, D_n are conditionally independent given \tilde{p}.

Denote by $F_{\tilde{p}}$ the distribution function of \tilde{p}, then:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum i d_i} (1 - p)^{n - \sum i d_i} F_{\tilde{p}}(dp)$$

\tilde{p} is characterized by:

$$\frac{1}{n} \sum_{i=1}^n D_i \xrightarrow{a.s.} \tilde{p} \text{ as } n \to \infty$$

\tilde{p} is exactly the loss of the infinitely granular portfolio (Basel 2 terminology).
Stochastic orders

- The convex order compares the dispersion level of two random variables.
- Convex order: $X \leq_{cx} Y$ if $E[f(X)] \leq E[f(Y)]$ for all convex functions f.
- Stop-loss order: $X \leq_{sl} Y$ if $E[(X - K)^+] \leq E[(Y - K)^+]$ for all $K \in \mathbb{R}$.
- $X \leq_{sl} Y$ and $E[X] = E[Y] \iff X \leq_{cx} Y$.
Supermodular order

- The supermodular order captures the dependence level among coordinates of a random vector
- \((X_1, \ldots, X_n) \leq_{sm} (Y_1, \ldots, Y_n)\) if \(E[f(X_1, \ldots, X_n)] \leq E[f(Y_1, \ldots, Y_n)]\) for all supermodular functions \(f\)

Definition (Supermodular function)

A function \(f : \mathbb{R}^n \to \mathbb{R}\) is supermodular if for all \(x \in \mathbb{R}^n, 1 \leq i < j \leq n\) and \(\varepsilon, \delta > 0\) holds

\[
f(x_1, \ldots, x_i + \varepsilon, \ldots, x_j + \delta, \ldots, x_n) - f(x_1, \ldots, x_i + \varepsilon, \ldots, x_j, \ldots, x_n) \\
\geq f(x_1, \ldots, x_i, \ldots, x_j + \delta, \ldots, x_n) - f(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_n)
\]

Müller (1997)

Stop-loss order for portfolios of dependent risks

\[
(D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*) \Rightarrow \sum_{i=1}^{n} M_i D_i \leq_{sl} \sum_{i=1}^{n} M_i D_i^*
\]
Main results

- Let us compare two credit portfolios with aggregate loss $L_t = \sum_{i=1}^{n} M_i D_i$ and $L_t^* = \sum_{i=1}^{n} M_i D_i^*$.
- Let D_1, \ldots, D_n be exchangeable Bernoulli random variables associated with the mixing probability \tilde{p}.
- Let D_1^*, \ldots, D_n^* exchangeable Bernoulli random variables associated with the mixing probability \tilde{p}^*.

Theorem

$$\tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$$

- In particular, if $\tilde{p} \leq_{cx} \tilde{p}^*$, then:
 - $E[(L_t - a)^+] \leq E[(L_t^* - a)^+]$ for all $a > 0$.
 - $\rho(L_t) \leq \rho(L_t^*)$ for all convex risk measures ρ.

Comparison results
Application to several popular CDO pricing models
De Finetti theorem and factor representation
Stochastic orders
Conclusion

Areski COUSIN and Jean-Paul LAURENT

Comparison results for exchangeable credit risk portfolios
Main results

- Let D_1, \ldots, D_n, \ldots be exchangeable Bernoulli random variables associated with the mixing probability \tilde{p}
- Let $D_1^*, \ldots, D_n^*, \ldots$ be exchangeable Bernoulli random variables associated with the mixing probability \tilde{p}^*

Theorem (reverse implication)

$$(D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*), \forall n \in \mathbb{N} \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^*.$$
1 Comparison results
 • De Finetti theorem and factor representation
 • Stochastic orders
 • Main results

2 Application to several popular CDO pricing models
 • Factor copula approaches
 • Structural model
 • Multivariate Poisson model
Ordering of CDO tranche premiums

- Analysis of the dependence structure in several popular CDO pricing models
- An increase of the dependence parameter leads to:
 - a decrease of \([0\%, b]\) equity tranche premiums (which guarantees the uniqueness of the market base correlation)
 - an increase of \([a, 100\%]\) senior tranche premiums
The dependence structure of default times is described by some latent variables V_1, \ldots, V_n such that:

- $V_i = \rho V + \sqrt{1 - \rho^2} \bar{V}_i, \ i = 1 \ldots n$
- $V, \bar{V}_i, \ i = 1 \ldots n$ independent
- $\tau_i = G^{-1}(H_\rho(V_i)), \ i = 1 \ldots n$
 - G: distribution function of τ_i
 - H_ρ: distribution function of V_i
- $D_i = 1\{\tau_i \leq t\}, \ i = 1 \ldots n$ are conditionally independent given V
- $\frac{1}{n} \sum_{i=1}^{n} D_i \xrightarrow{a.s.} E[D_i | V] = P(\tau_i \leq t | V) = \tilde{p}$
Additive factor copula approaches

Theorem

For any fixed time horizon t, *denote by* $D_i = 1\{\tau_i \leq t\}$, $i = 1 \ldots n$ *and* $D^*_i = 1\{\tau^*_i \leq t\}$, $i = 1 \ldots n$ *the default indicators corresponding to (resp.)* ρ *and* ρ^*, *then:*

$$\rho \leq \rho^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D^*_1, \ldots, D^*_n)$$

- This framework includes popular factor copula models:
 - One factor Gaussian copula - the industry standard for the pricing of CDO tranches
 - Double t: Hull and White(2004)
 - NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid and Werner(2007)
 - Double Variance Gamma: Moosbrucker(2006)
Archimedean copula

- V is a positive random variable with Laplace transform φ^{-1}
- U_1, \ldots, U_n are independent Uniform random variables independent of V
- $V_i = \varphi^{-1} \left(-\frac{\ln U_i}{V} \right), \ i = 1 \ldots n$ (Marshall and Olkin (1988))
 - (V_1, \ldots, V_n) follows a φ-archimedean copula
 - $P(V_1 \leq v_1, \ldots, V_n \leq v_n) = \varphi^{-1} (\varphi(v_1) + \ldots + \varphi(v_n))$
- $\tau_i = G^{-1}(V_i)$
 - G: distribution function of τ_i
- $D_i = 1\{\tau_i \leq t\}, \ i = 1 \ldots n$ independent knowing V
- $\frac{1}{n} \sum_{i=1}^{n} D_i \overset{a.s.}{\rightarrow} \mathbb{E}[D_i | V] = P(\tau_i \leq t | V)$
Conditional default probability: \(\tilde{p} = \exp\{-\varphi(G(t)V)\} \)

<table>
<thead>
<tr>
<th>Copula</th>
<th>Generator (\varphi)</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clayton</td>
<td>(t^{-\theta} - 1)</td>
<td>(\theta \geq 0)</td>
</tr>
<tr>
<td>Gumbel</td>
<td>((-\ln(t))^{\theta})</td>
<td>(\theta \geq 1)</td>
</tr>
<tr>
<td>Franck</td>
<td>(- \ln \left[\frac{(1 - e^{-\theta t})}{(1 - e^{-\theta})} \right])</td>
<td>(\theta \in \mathbb{R}^*)</td>
</tr>
</tbody>
</table>

Theorem

\(\theta \leq \theta^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*) \)
Archimedean copula

- Clayton copula
- Mixture distributions are ordered with respect to the convex order
Hull, Predescu and White (2005)

- Consider \(n \) firms
- Let \(V_{i,t}, i = 1 \ldots n \) be their asset dynamics
 \[
 V_{i,t} = \rho V_t + \sqrt{1 - \rho^2} \bar{V}_{i,t}, \quad i = 1 \ldots n
 \]
- \(V, \bar{V}_i, i = 1 \ldots n \) are independent standard Wiener processes
- Default times as first passage times:
 \[
 \tau_i = \inf \{ t \in \mathbb{R}^+ | V_{i,t} \leq f(t) \}, \quad i = 1 \ldots n, \quad f : \mathbb{R} \rightarrow \mathbb{R} \text{ continuous}
 \]
- \(D_i = 1_{\{\tau_i \leq \tau\}}, i = 1 \ldots n \) are conditionally independent given \(\sigma(V_t, t \in [0, T]) \)
Theorem

For any fixed time horizon T, denote by $D_i = 1\{\tau_i \leq \tau\}, \ i = 1 \ldots n$ and $D_i^* = 1\{\tau_i^* \leq \tau\}, \ i = 1 \ldots n$ the default indicators corresponding to (resp.) ρ and ρ^*, then:

$$\rho \leq \rho^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$$
Structural model

Distributions of Conditionnal Default Probabilities

- $\frac{1}{n} \sum_{i=1}^{n} D_i \overset{a.s.}{\rightarrow} \bar{p}$
- $\frac{1}{n} \sum_{i=1}^{n} D_i^* \overset{a.s.}{\rightarrow} \bar{p}^*$
- Empirically, mixture probabilities are ordered with respect to the convex order: $\bar{p} \leq_{cx} \bar{p}^*$

Portfolio size=10000
$X_0=0$
Threshold=-2
$t=1$ year
$\delta t=0.01$
$P(\tau_i \leq t)=0.033$

Areski COUSIN and Jean-Paul LAURENT

Comparison results for exchangeable credit risk portfolios
Multivariate Poisson model

- \tilde{N}_t^i Poisson with parameter $\bar{\lambda}$: idiosyncratic risk
- N_t Poisson with parameter λ: systematic risk
- $(B_j^i)_{i,j}$ Bernoulli random variable with parameter p
- All sources of risk are independent
- $N_t^i = \tilde{N}_t^i + \sum_{j=1}^{N_t} B_j^i, \; i = 1 \ldots n$
- $\tau_i = \inf\{t > 0|N_t^i > 0\}, \; i = 1 \ldots n$
Multivariate Poisson model

- Dependence structure of \((\tau_1, \ldots, \tau_n)\) is the Marshall-Olkin copula
- \(\tau_i \sim \text{Exp}(\bar{\lambda} + p\lambda)\)
- \(D_i = 1\{\tau_i \leq t\}, \ i = 1 \ldots n\) are conditionally independent given \(N_t\)
- \(\frac{1}{n} \sum_{i=1}^{n} D_i \xrightarrow{a.s.} E[D_i \mid N_t] = P(\tau_i \leq t \mid N_t)\)
- Conditional default probability:

\[
\tilde{p} = 1 - (1 - p)^{N_t} \exp(-\bar{\lambda} t)
\]
Multivariate Poisson model

- Comparison of two multivariate Poisson models with parameter sets
 \((\bar{\lambda}, \lambda, p)\) and \((\bar{\lambda}^*, \lambda^*, p^*)\)

- Supermodular order comparison requires equality of marginals:
 \(\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda^*\)

- 3 comparison directions:
 - \(p = p^*\): \(\bar{\lambda} \text{ v.s } \lambda\)
 - \(\lambda = \lambda^*\): \(\bar{\lambda} \text{ v.s } p\)
 - \(\bar{\lambda} = \bar{\lambda}^*\): \(\lambda \text{ v.s } p\)
Theorem \((p = p^*)\)

Let parameter sets \((\bar{\lambda}, \lambda, p)\) and \((\bar{\lambda}^*, \lambda^*, p^*)\) be such that \(\bar{\lambda} + p\lambda = \bar{\lambda}^* + p\lambda^*\), then:

\[
\lambda \leq \lambda^*, \quad \bar{\lambda} \geq \bar{\lambda}^* \Rightarrow \bar{p} \leq_{cx} \bar{p}^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)
\]

- Computation of \(E[(L_t - a)^+]\):
 - 30 names
 - \(M_i = 1, \; i = 1 \ldots n\)
- When \(\lambda\) increases, the aggregate loss increases with respect to stop-loss order
Theorem ($\lambda = \lambda^*$)

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$p \leq p^*$, $\bar{\lambda} \geq \bar{\lambda}^*$ \implies \tilde{p} \leq_{cx} \tilde{p}^* \implies (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$

Convex order for mixture probabilities
Theorem \((\lambda = \lambda^*)\)

Let parameter sets \((\bar{\lambda}, \lambda, p)\) and \((\bar{\lambda}^*, \lambda^*, p^*)\) be such that \(\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda\), then:

\[p \leq p^*, \quad \bar{\lambda} \geq \bar{\lambda}^* \Rightarrow \tilde{p} \leq \tilde{p}^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*) \]

- Computation of \(E[(L_t - K)^+]\):
 - 30 names
 - \(M_i = 1, \quad i = 1 \ldots n\)
- When \(p\) increases, the aggregate loss increases with respect to stop-loss order
Theorem \((\bar{\lambda} = \bar{\lambda}^*)\)

Let parameter sets \((\bar{\lambda}, \lambda, p)\) and \((\bar{\lambda}^*, \lambda^*, p^*)\) be such that \(p\lambda = p^*\lambda^*\), then:

\[
p \leq p^*, \lambda \geq \lambda^* \Rightarrow \tilde{p} \leq p^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)
\]

- Computation of \(E[(L_t - K)^+]\):
 - 30 names
 - \(M_i = 1, \ i = 1 \ldots n\)
- When \(p\) increases, the aggregate loss increases with respect to stop-loss order
Conclusion

- When considering an exchangeable vector of default indicators, the conditional independence assumption is not restrictive thanks to de Finetti’s theorem.
- The mixing probability (the factor) can be viewed as the loss of an infinitely granular portfolio.
- We completely characterize the supermodular order between exchangeable default indicator vectors in term of the convex ordering of corresponding mixing probabilities.
- We show that the mixing probability is the key input to study the impact of dependence on CDO tranche premiums.
- Comparison analysis can be performed with the same method within a large class of CDO pricing models.
Exchangeability: how realistic is a homogeneous assumption?

- Homogeneity of default marginals is an issue when considering the pricing and hedging of CDO tranches
 - ex: Sudden surge of GMAC spreads in the CDX index in May, 2005
 - This event dramatically impacts the equity tranche compared to the others
- But composition of standard indices are updated every semester, resulting in an increase of portfolio homogeneity
- It may be reasonable to split a credit portfolio in several homogeneous sub-portfolios (by economic sectors for example)
 - Then, for each sub-portfolio, we can find a specific factor and apply the previous comparison analysis
 - The initial credit portfolio can thus be associated with a vector of factors (one by sector)
 - Is it possible to relate comparison between global aggregate losses to comparison between vectors of random factors?
Are comparisons in a static framework restrictive?

- Are comparisons among aggregate losses at fixed horizons too restrictive?
- Computation of CDO tranche premiums only requires marginal loss distributions at several horizons
 - Comparison among aggregate losses at different dates is sufficient
- However, comparison of more complex products such as options on tranche or forward started CDOs are not possible in this framework
- Building a framework in which one can compare directly aggregate loss processes is a subject of future research