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Abstract

We propose a Shared Frailty model for the representation of lifetimes
stochastic dependence. The estimation of the parameters is computed using
two models: the �rst model is a standard Gompertz model, the second one is
a Gompertz model with a shared frailty term. Non-linear pricing measures,
such as percentile premiums and reinsurance premiums, are computed with
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1 Introduction

Over the past few years, we have observed a signi�cant development of Life
Insurance risk transfer activities. The issued notional of Life Insurance
risk securitizations has grown exponentially from 1.8Bn USD in 2001 to
15Bn USD in 2007. With capital markets investors looking for risk diver-
si�cation, activities like Life Settlements have litterally exploded. The Life
Reinsurancemarket has signi�cantly increased between 1990 and 2000. Ac-
cording to Clark [2003], only 15% of US life insurance business was reinsured
in 1993. In 2000, this percentage grew up to 64%. In 1995, 17 life reinsurers
represented 90% of the life reinsurance market. These same 90% were only
represented by 10 companies in 2002.
The risk management in these risk transfer activities strongly relies upon

non-linear risk measures. For instance, Stop-Loss premiums and Percent-
ile measures are common practice in Life Reinsurance. On the other hand,
capital markets are looking to trade Synthetic Tranches of life insurance port-
folios. Such derivative product o¤ers an enhanced yield to the investors, in
exchange of the payment of death bene�ts when the portfolio aggregate losses
is located between two thresholds.
Unlike their linear counterparts used by traditional insurance compan-

ies, non-linear risk measure are very sensitive to the modelling of the
mortality �uctuations, in particular the stochastic dependence of the
lifetimes of the individuals in the pool. Intuitively, we give value to very
out-of-the-money options by increasing the tail of the underlying risk distri-
bution. In the case of a multiple risk portfolio, the tail of the aggregate risk
distribution is controlled by the correlation between the single risks.
Although it might not be intuitive in Life Insurance, there are situations

where lifetimes can be correlated. We observe dependent lifetimes in married
couples, or twins. Events like epidemics or wars generate also correlation in
lifetimes. The medical improvement also correlates lifetimes because it is not
observable and common to a large number of individuals (Hougaard [2000]).
In general, dependence of lifetimes in a greater population is not a cause to
e¤ect phenomenon, but is rather generated by the common e¤ect of some
unobservable risk factors on the death intensity of a group of individuals.
The aim of this article is to propose a simple framework to model depend-

ent lifetimes, in order to analyse the impact of this dependence in some of
the non-linear risk measures. We will compare two models: one traditional
Gompertz model and the same model enhanced with a shared frailty com-
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ponent whose aim is to create some dependence between lifetimes. We will
calibrate the models to observed mortality data, and use the calibrated para-
meters to calculate some risk measures, aggregate loss distribution and life
reinsurance premium.
We will start with a review of the most common approaches to mortality

deviations modelling (section 2). In the third section, we will introduce the
shared frailty model in more detail, and make the speci�cation of its un-
derlying functions and distributions. Results of the estimation of a model
without frailty and the shared frailty model are presented brie�y. We use
two data sets with low and high dependence respectively. Finally, in section
4, we propose the application of the frailty model to a life reinsurance pri-
cing example. We analyse the impact of the dependence on the tail of the
aggregate loss distribution and then we look at the impact on non-linear life
reinsurance premiums.

2 Mortality models

2.1 Intensity models

These models assume a dynamic for the mortality rate, and the individual
lifetimes are assumed to be independent. For a given individual with age x
at year t, a general formulation of the mortality rate �x (t) can be expressed
as the solution of the stochastic equation:

d�x (t) = � (x; t; �x (t)) dt+ � (x; t; �x (t)) dWt

where fWtg is a Brownian motion. We will now give some examples from
this class of models, amongst the best known in actuarial science and demo-
graphics.
The Gompertz model is traditionally used in the construction of mor-

tality tables by actuaries. We �nd this model when we take � (x; t; �x (t)) =
p�x (t) with p = cte and � (x; t; �x (t)) = 0, resulting in the following expres-
sion:

�x (t) =  exp [p (t+ x)]

where  is a strictly positive constant. In the remainder of the article, we
will use the Gompertz model, as a �base case�actuarial model.
Lee-Carter method is considered as a reference by many actuaries and

demographers, hence we found useful to mention it, even if we won�t use it
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in the rest of the paper. This model can be obtained by taking:

� (x; t; �x (t)) =

�
� (x) + � (x)�0 (t)� 1

2
�2
�
�x (t)

� (x; t; �x (t)) = ��x (t)

where � (x) and � (x) are two functions of age x and � (t) is scalar function
of time t. Applying Itô�s Lemma to ln�x (t) leads to the formulation of the
model, separating the mortality rate into an age-speci�c component and a
time-speci�c component:

�x (t) = exp (� (x) + � (x)� (t) + "x;t)

2.2 Models of dependent lifetimes

Comonotonic models represent a case of perfect dependence. A set of
random variables (Y1; :::; Yn) is comonotonic if there exists a random variable
Z and a set of non-decreasing functions (g1; :::; gn) of the real variable such
that we have the equality in distribution:

(Y1; :::; Yn) � (g1 (Z) ; :::; gn (Z))

Mixture models belong to another class of lifetime dependence models.
For instance, we can assume that the lifetimes � 1; :::; �n follow aWeibull (a; b)
distribution, where the parameters a and b are random (Pitacco and Olivieri
[2002]). Conditionally on a and b, the lifetimes � 1; :::; �n are independent.
The shared frailty model has been suggested by Hougaard [1984] for

the representation of lifetimes dependence within a group of individuals. In
the model, each individual has a mortality rate, function of the observed
risk factors such as age or sex. In addition, an unobservable risk factor, the
frailty, has a common e¤ect on the mortality of all the individuals. Such com-
mon risk dependence could be illustrated by pollutions (asbestos), epidemics
(SRAS, Esbola), lifestyle (smoking, obesity), wars, catastrophes and medical
improvement. In the remainder of the paper, we will use the Shared Frailty
model to represent the dependence of lifetimes in a group of individuals.

3 Formulation of the shared frailty model

In this section, we explain the assumptions of the shared frailty model, its
speci�cation and how to estimate its parameters.
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3.1 Assumptions and notations

For the sake of simplicity, we assume only one group of individuals sharing
the same frailty. We use the following notations:

� Z is the frailty shared by all individuals of the group

� ' (z) or ' (z;�) is the common density probability of frailty Z; � being
the vector of parameters of the frailty distribution.

� 	(s) or 	(s;�) is the Laplace transform of the distribution of Z;
de�ned as E

�
e�sZ j �

�
for all s 2 R+.

� �j (t j Z) is the mortality rate of individual j; conditional to Z

� �0j (t) is the baseline hazard rate of individual j and M0j (t) is the
integrated baseline hazard rate

The assumptions of the shared frailty model are the following:

Assumption (A1) conditional on the frailty Z, the random lifetimes of
individuals within the group are independent

Assumption (A2) the frailty Z has a multiplicative e¤ect on the mortality
rate of the individuals:

�j (t j Z) = Z�0j (t) (1)

Additionally, we make the following distribution assumptions:

Assumption (A3) the baseline mortality follows the Gompertz (p; ) model

Assumption (A4) the shared frailty Z is Gamma (�; �) distributed

In the Gompertz (p; ) model, the integrated baseline hazard rate of an
individual with age xj is expressed:

M0j (t) =


p
exp (pxj) (exp (pt)� 1)

and the Laplace transform of the Gamma (�; �) distribution is:

	(s) =

�
�

� + s

��
The lifetimes dependence is driven by the variance of the shared frailty.
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3.2 Probabilistic functions

We will now describe the basic probabilistic functions of the shared frailty
model. We focus on the individual and the multivariate survival functions,
because they are used in the parameters estimation process. The individual
survival function, conditional to frailty is:

P (� j > t j Z) = exp (�ZM0j (t))

Using above expression, and conditional independence assumption (A1), one
can write the conditional multivariate survival function of lifetimes � 1; :::; �n
as:

S (t1; :::; tn j Z) = exp
"
�Z

(
nX
j=1

M0j (tj)

)#
(2)

We obtain the individual survival function after taking the expectation with
respect to Z of the conditional individual survival function:

Sj (t) = 	 (M0j (t)) (3)

Similarly, we calculate the multivariate survival function as a function of
the Laplace transform 	 and the individual integrated mortality rates:

S (t1; :::; tn) = 	

 
nX
j=1

M0j (tj)

!
(4)

3.3 Estimation of the parameters

We will now provide some reasonable values of the dependence parameters
and brie�y describe the estimation procedure.
The data have been retrieved from the HumanMortality Database (HMD)

website. We observe French populations from 1900 to 1997. The groups con-
sist of males, aged from 30 to 80 years at the beginning of the study. Each
group is observed for 5 years: 1900-1905 (Group 1), 1905-1910 (Group 2), ....
, 1990-1995 (Group 19).

� Data Set 1: we have excluded the war periods. This data set repres-
ents a population with low level of �uctuations

� Data Set 2: we have included the war periods. This data set repres-
ents a population with high level of �uctuations
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For the Shared Frailty model, the parameters have been estimated us-
ing the EM algorithm. This is an iterative Bayesian method, aiming at
maximizing the sample likelihood in the case of incomplete data. Therefore,
it is relevant to the Shared Frailty model, since the common risk factor Z
is not directly observable. We refer to Klein and Moeschberger [1997] for a
description of the EM algorithm in the frailty case and we refer to Dempster,
Laird and Rubin [1977] for a theoretical presentation of the EM algorithm.
The estimated parameters are given in the two tables below, for data set

1 and 2 respectively:

Data Set 1 Gompertz standard Gamma-Gompertz Frailtyb1 bIndep1 = 0:000122 bFrailty1 = 0:000116bp1 bpIndep1 = 0:081016 bpFrailty1 = 0:081826b�1 - b�Frailty1 = 227:6571b�1 = b�1 - b�Frailty1 = 227:6571

Data Set 2 Gompertz standard Gamma-Gompertz Frailtyb2 bIndep2 = 0:000227 bFrailty2 = 0:000231bp2 bpIndep2 = 0:077562 bpFrailty2 = 0:078801b�2 - b�Frailty2 = 10:06357b�2 = b�2 - b�Frailty2 = 10:06357

The parameter � is around 10 for a strong dependence and around 200
for a low dependence. Moreover, the Gompertz parameters  and p are not
signi�cantly modi�ed by the introduction of a frailty. In fact, they only
adjust in order to conserve the value of the marginal mortality rate.
From such results, we can say that a high degree of dependence (CV 2(Z) �

10%) corresponds to populations exposed to wars, mass epidemics or natural
catastrophes. It could also correspond to speci�c groups of individuals ex-
posed to the same risks a priori. For instance building workers have been
exposed to asbestos before they knew its risks. The case of patients with
Leukemia also illustrates high dependence. These patients lifetimes would
all increase if a better treatment of the disease was discovered.
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Figure 1: Comparison of CV 2(Z) with Kendall coe¢ cient of concordance
and Spearman correlation coe¢ cient.

3.4 Measure of the dependence obtained

In order to measure the degree of dependence generated by the model, we
will use the coe¢ cient of variability of the frailty (Hougaard [2000]), de�ned
as:

CV 2(Z) =
Var (Z)

E (Z)

In Figure 1, we plotted Kendall Tau � (� i; � j) and Spearman Rho �S (� i; � j)
of two lifetimes � j and � j, against CV 2(Z). The graphs seem quite close to
each other for CV 2(Z) < 0:5, which corresponds to � > 2 in the Gamma-
Gompertz case. We obtained the dependence levels CV 2(Z) � 0:5% for the
data set 1 and CV 2(Z) � 10% for the data set 2.

4 Applications

4.1 Impact on the aggregate loss distribution for a
portfolio of lives

We have derived the distribution of the total liability of an Insurance com-
pany (Figure 2). We assume a closed portfolio of n = 1000 temporary death
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Figure 2: Probability density function of Y for various levels of dependence,
in the case of the death insurance portfolio (Age = 50 years)

contracts of maturity T = 8 years. The premium is paid upfront and the
death bene�t is C = 100 000 e. The individuals have same age x = 50 years
at underwriting date.
We have represented several degrees of dependence, including the ones

implied by the two sets of parameters previously estimated. The main obser-
vation is an increase of both left and right tails with increased dependence.

4.2 Impact on aggregate risk measures

For the Life Insurance portfolio described previously, we have calculated the
Value-At-Risk V aR�, the Tail-Value-At-Risk CTE� and the Wang Trans-
form WT� for a level of con�dence � = 5% and a time horizon of 8 years,
corresponding to the maturity of the contracts. The results are in the table
below, in ke:

8



CV2(Z) V aR0:05 CTE0:05 WT0:05
� = 2 0:5 272:54 322:72 281:24
� = 10 0:1 191:35 211:98 194:23
� = 50 0:02 158:29 161:59 158:81
� = 200 0:005 147:91 150:35 147:62

Independence 0:000 141:64 145:30 141:58

We observe that the three measures are sensitive to dependence. They
stay relatively close to each other with a moderate dependence level, and
become signi�cantly di¤erent with a higher dependence level (� < 10), with
a dominance of the CTE. This is another illustration of the impact of de-
pendence in the tail of the aggregate risk distribution. These results suggest
the application of the shared frailty model to Economic Capital calculations.

4.3 Application to a Stop-Loss Life Reinsurance ar-
rangement

We now evaluate the impact of the dependence on Stop-Loss Life Reinsurance
arrangements similar to the ones described by Terrier [2000] or Olivieri [2002].

4.3.1 Notations and mechanism

The principle of the treaty is to cover negative Release of Surplus1 of the
Life Insurer on an annual basis. A time horizon is speci�ed, with a start
date h and an end date H: The Reinsurer must make a payment if
at date H, the value of the assets of the Insurer is lower than the
value of his liabilities, or, in other terms, when the Insurer�s Release
of Surplus at H is negative. The liability of the Reinsurer is limited to
a share 1 � w of the negative Release of Surplus. The share of the Release
of Surplus �nanced by the insurer is therefore w. The Stop-Loss coverage
runs for the whole period [0; eT ]. The mechanism of payments over a year of
insurance is the following:

� At the beginning of the year h, the insurer creates a reserve for potential
losses hV

� At h + 1, the insurer must pay
Pn

j=1Bj1f�j2[h;h+1[g, corresponding to
the total death bene�ts between h and h+ 1

1This quantity is also called Solvency Margin (Olivieri [2000])
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� At h + 1, the insurer must create a reserve h+1V for expected future
liabilities

If v (h; h+ 1) is the 1 year discount factor starting at date h, the Release
of Surplus of the insurer at h+ 1 can be expressed:

Mh+1 =
hV

v (h; h+ 1)
�

nX
j=1

Bj1f�j2[h;h+1[g � h+1V

hV =
nX
j=1

1�j>h � hVj

The reserves per individual hVj and h+1Vj are calculated using the mor-
tality assumptions of the insurer. The mortality risk assumption of the Re-
insurer will be made for the random lifetimes � j.

4.3.2 Numerical results

We will now present the results of the pricing of the Stop-Loss contracts, us-
ing the Gompertz model without and with frailty. The insurer�s portfolio is
constituted of n = 1000 death insurance contracts, each paying 100k e upon
death of the reference individual. We assume that this portfolio is closed2

during the time of the reinsurance arrangement. The time horizon eT for the
reinsurance coverage and the term T of death insurance contract are equal
to 8 years. We also assume that the share of participation of the insurer is
w = 10%. We assume that the insurer uses Gompertz

�bpIndep; bIndep� as a
mortality assumption for pricing and reserving, whereas the Reinsurer will
use alternatively independence model Gompertz

�bpIndep; bIndep� or depend-
ence model GammaGompertz

�bpFrailty; bFrailty;b�Frailty�.
We start with the analysis of simulated Release of Surplus paths. In Fig-

ure 3, we simulated 20 paths with the independence model (plain lines) and
with the dependence model (dotted lines). The dotted lines are more dis-
persed than the plain lines, because of the heavier tails in the loss distribution
of the Shared Frailty model.
Finally, we evaluate the Stop-Loss premiums. In Figure 4, using Monte-

Carlo method with 1000 paths simulations. we have plotted the upfront

2The extension to non-closed portfolios can easily be made.
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Simulation based on Standard Table model
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Figure 3: Simulated Release of Surplus paths with time. Plain lines are simu-
lations without dependence and dotted lines are simulations with dependence

Stop-Loss Reinsurance premiums. We have represented the cash amount
(ke) and percentage amount of the initial Insurer portfolio reserve (% 0V )
in order to give a better sense of the magnitude of the impact.

For data set 1, we observe an overall increase of the premium after in-
troducing the dependence term in the model. The positive di¤erence seem
to increase with age and saturates after age 70. The premium is lower for
ages 20 and 40, but we strongly believe that sampling error is the cause, as
we have used only 1000 simulations. For data set 2, we observe a signi�cant
impact of introducing a dependence term. This impact seem to be reach-
ing a maximum around age 70, corresponding to the mode of the Insurance
portfolio loss distribution.

5 Conclusion

This article is an attempt to represent mortality �uctuations and apply it to
the pricing and risk management of life insurance portfolios, using a Shared
Frailty model. This model belongs to the class of dependent lifetimes models.
We have considered the simplest form, with a stationnary risk factor, common
to all inviduals in the population. This choice has been made in order to
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Figure 4: Upfront Stop-Loss premium in kEUR and in % of 0V , for both
dependence and independence cases and with both low and high �uctuations
data sets.

focus on the main e¤ects of the model. We have used the EM algorithm for
the parameter estimation, and used two data sets: one with a low level of
mortality �uctuations, the other one with a large level of �uctuations.
The introduction of a frailty results in a modi�cation of the portfolio

aggregate loss distribution, mostly in the tails. Even a low level of depend-
ence resulted in a signi�cant increase. Aggregate risk measures increased
in average by +4% for a low dependence level (0:5%) and by +39% for a
large dependence level (10%). Stop-Loss premiums increased respectively by
+15% and +200% for low and high dependence. These results suggest to
use the Shared Frailty model in order to calculate Economic Capital, or any
provision against tail risks.
Finally, we have found that the increase was reaching a saturation or a

maximum at the age corresponding to the mode of the individual lifetime
density function. This suggests to look at time consistent or more granular
models, such as a non-stationary Shared Frailty, or a Shared Frailty by risk or
age group. For further research, we could imagine combined approaches, us-
ing trend plus frailty or a dynamic frailty term, in order to represent longevity
increase. We would have a complete modelling framework, representing both
increase in longevity and shocks in mortality.
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