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Outlook 


 Semi-analytical pricing of multiname credit derivatives 
and CDO’s 


 Use of probability generating functions and conditional 
independence assumption 


 Copula approaches including Gaussian, Archimedean, 
multivariate exponential models 


 Analytical pricing of multiname credit derivatives in 
Duffie’s affine framework 


 Effective computation of risk parameters 







What are we looking for ? 


 A framework where: 
 One can easily deal with a large number of names, 


 Tackle with different time horizons, 


 Compute quickly and accurately: 
 Basket credit derivatives premiums 


 CDO margins on different tranches 


 Deltas with respect to shifts in credit curves 


 Main technical assumption: 
 Default times are independent conditionnally on a low 


dimensional factor 







 Presentation Overview 
 Probabilistic Tools 


 Survival functions of default times 
 Factor copulas 
 Number of defaults 


 Basket Credit Derivatives 
 Valuation of premium leg 
 Valuation of default leg: homogeneous baskets 
 Valuation of default leg: non homogeneous baskets 
 Example: first to default swap 
 Risk management of basket credit derivatives 


 Valuation of CDO Tranches 
 Credit loss distributions 
 Valuation of CDO’s 
 Risk management of CDO tranches 







Probabilistic Tools: Survival Functions 


                        names 
                      default times 
 Marginal distribution function 
 Marginal survival function 


 Risk-neutral probabilities of default 
 Obtained from defaultable bond prices or CDS quotes 


 « Historical » probabilities of default 
 Obtained from time series of default times 







Probabilistic Tools: Survival functions 


 Joint survival function: 
 


 Needs to be specified given marginals. 


 (Survival) Copula of default times: 
 


 C characterizes the dependence between default times. 


 We need tractable dependence between defaults: 
 Parsimonious modelling 


 Semi-explicit computations for portfolio credit derivatives 







Probabilistic Tools 







Probabilistic Tools: Factor Copulas 


 Factor approaches to joint distributions: 
 V low dimensional factor, not observed « latent factor » 
 Conditionally on V default times are independent 
 Conditional default probabilities 


 


 Conditional joint distribution: 


 


 Joint survival function (implies integration wrt V): 


 
 


 







Probabilistic Tools: Gaussian Copulas 


 One factor Gaussian copula (Basel 2): 
                                        independent Gaussian 


 
 


 Default times: 
 Conditional default probabilities: 


 Joint survival function:   


 


 Copula: 







Probabilistic Tools : Clayton copula 


 Davis & Lo ; Jarrow & Yu ; Schönbucher & Schubert 
 Conditional default probabilities 


 
 


 V: Gamma distribution with parameter 
 Joint survival function: 


 
 


 Copula:  







Probabilistic Tools: Simultaneous Defaults 


 Duffie & Singleton, Wong 
 Modelling of defaut dates: 


                                                             simultaneous defaults. 


 Conditionally on            are independent. 


 


 Conditional default probabilities: 
  
 Copula of default times:   







Probabilistic Tools: Affine Jump Diffusion 


 Duffie, Pan & Singleton ;Duffie & Garleanu. 
             independent affine jump diffusion processes:  


 


 Conditional default probabilities: 
 
 
 


 Survival function: 
 


 
 Explicitely known. 







Probabilistic Tools: Conditional Survivals 


 Conditional survival functions and factors: 
 Example: survival functions up to first to default time…; 


 Conditional joint survival function easy to compute since: 
 
 
 
 
 


 However be cautious, usually: 







Probabilistic Tools 







                                                    Number of defaults at t. 


         kth to default time. 


                                        Survival function of kth to default. 


 Remark that:   


 Survival function of        : 


 Computation of                   


 Use of pgf of N(t):   


                            «Counting time is not so important as making time count» 


Probabilistic Tools: Number of Defaults 







                            «Counting time is not so important as making time count» 


Probabilistic tools: Number of Defaults 
 Probability generating function of  


                                                                     iterated expectations 


                                                               conditional independence 


                                                             binary random variable 


                                                          polynomial in u 


  One can then compute  


  Since 







   «the whole is simpler than the sum of its parts » 


Basket Credit Derivatives Valuation 







Valuation of Premium Leg 


 kth to default swap, maturity T 
                                    premium payment dates 
 Periodic premium p is paid until  


 lth premium payment 
              payment of p at date 
 Present value: 
                           accrued premium of                      at 


 
 Present value: 


 
 PV of premium leg given by summation over l 







Valuation of Default Leg: Homogeneous Baskets 


                        names 


 Equal nominal (say 1) and recovery rate (say 0) 


 Payoff : 1 at k-th to default time if less than T 


 Credit curves can be different 


                                    given from credit curves 


                                      : survival function of 


             computed from pgf of   







Valuation of Default Leg: Homogeneous Baskets 


 Expected discounted payoff 
 


 
 From transfer theorem 
 B(t) discount factor 


 Integrating by parts 
 
 
 Present value of default payment leg 
 Involves only known quantities 
 Numerical integration is easy 







Valuation of Default Leg: Non Homogeneous Baskets 


                          names 


                                  loss given default for i 


 Payment at kth default of        if i is in default 
 No simultaneous defaults 


 Otherwise, payoff is not defined 


 i kth default iff k-1 defaults before  
                    number of defaults (i excluded) at  


 k-1 defaults before        iff  







Valuation of Default Leg: Non Homogeneous Baskets 


 
 
 
 


 Guido Fubini 







Valuation of Default Leg: Non Homogeneous Baskets 


 (discounted) Payoff  
 


 Upfront Premium 
 … by iterated expectations theorem 


 
 
 


 … by Fubini + conditional independence 
 
 
 


 where 
 


                                            : formal expansion of 







Example: First to Default Swap 







Example: First to Default Swap 


 Case where 
                                                              no defaults for                 


 
  premium = 


 
 


 =                                                                      (regular case) 
 


 One factor Gaussian 


 Archimedean  







Example: First to Default Swap 


 Dependence upon correlation parameter 
 One factor Gaussian copula 
 10 names, recovery rate = 40%, maturity = 5 years 
 5 spreads at 50 bps, 5 spreads at 350 bps 


 
 
 
 


  
 
 
 x axis: correlation parameter, y axis: annual premium 
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Risk Management of Basket Credit Derivatives 


 Computation of greeks 
 Changes in credit curves of individual names 
 Changes in correlation parameters 


 Greeks can be computed up to an integration over 
factor distribution 
 Lenghty but easy to compute formulas 
 The technique is applicable to Gaussian and non Gaussian 


copulas 
 See « I will survive », RISK magazine, June 2003, for more 


about the derivation. 


 







Risk Management of Basket Credit Derivatives 


 Example: six names 
portfolio 


 Changes in credit curves of 
individual names 


 Amount of individual CDS 
to hedge the basket 


 Semi-analytical more 
accurate than 105 Monte 
Carlo simulations. 


 Much quicker: about 25 
Monte Carlo simulations. 







Risk Management of Basket Credit Derivatives 


 Changes in credit curves of individual names 
 Dependence upon the choice of copula for defaults 


 
 







CDO Tranches 
 «Everything should be made as simple as possible, not simpler» 


 Explicit premium 


computations for tranches 


 Use of loss distributions 


over different time horizons 


 Computation of loss 


distributions from FFT 


 Involves integration par 


parts and Stieltjes integrals 







Credit Loss Distributions 
 Accumulated loss at t: 


 


 Where                                                             loss given default  


 Characteristic function 


 By conditioning   


 If recovery rates  follows a beta distribution: 


 


 where M is a Kummer function, aj,bj some parameters 


 Distribution of L(t) is obtained by Fast Fourier Transform 







Credit Loss Distributions 
 Beta distribution for recovery rates 
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Credit Loss distributions 


 One hundred names, same 
nominal. 


 Recovery rates: 40% 


 Credit spreads uniformly 
distributed between 60 and 
250 bp. 


 Gaussian copula, correlation: 
50% 


 105 Monte Carlo simulations 







Valuation of CDO’s 


 Tranches with thresholds  
 Mezzanine: pays whenever losses are between A and B 
 Cumulated payments at time t: M(t) 


 
 
 


 Upfront premium:  
 


 B(t) discount factor, T maturity of CDO 
 


 Stieltjes integration by parts 
 


 where  







Valuation of CDO’s 
 
 
 
 
 
 
 
 
 
 


 One factor Gaussian copula 
 CDO tranches margins with respect to correlation 


parameter 







Risk Management of CDO’s 


 Hedging of CDO tranches 
with respect to credit curves 
of individual names 


 Amount of individual CDS 
to hedge the CDO tranche 


 Semi-analytic : some 
seconds 


 Monte Carlo more than one 
hour and still shaky 





		Factor Models �and Credit Derivatives

		Outlook

		What are we looking for ?

		 Presentation Overview

		Probabilistic Tools: Survival Functions

		Probabilistic Tools: Survival functions

		Probabilistic Tools

		Probabilistic Tools: Factor Copulas

		Probabilistic Tools: Gaussian Copulas

		Probabilistic Tools : Clayton copula

		Probabilistic Tools: Simultaneous Defaults

		Probabilistic Tools: Affine Jump Diffusion

		Probabilistic Tools: Conditional Survivals

		Probabilistic Tools

		                            «Counting time is not so important as making time count»�Probabilistic Tools: Number of Defaults

		                            «Counting time is not so important as making time count»�Probabilistic tools: Number of Defaults

					«the whole is simpler than the sum of its parts »�Basket Credit Derivatives Valuation

		Valuation of Premium Leg

		Valuation of Default Leg: Homogeneous Baskets

		Valuation of Default Leg: Homogeneous Baskets

		Valuation of Default Leg: Non Homogeneous Baskets

		Valuation of Default Leg: Non Homogeneous Baskets

		Valuation of Default Leg: Non Homogeneous Baskets

		Example: First to Default Swap

		Example: First to Default Swap

		Example: First to Default Swap

		Risk Management of Basket Credit Derivatives

		Risk Management of Basket Credit Derivatives

		Risk Management of Basket Credit Derivatives

		CDO Tranches�	«Everything should be made as simple as possible, not simpler»

		Credit Loss Distributions

		Credit Loss Distributions

		Credit Loss distributions

		Valuation of CDO’s

		Valuation of CDO’s

		Risk Management of CDO’s






1 


Factor Models  
and Credit Derivatives 


KIER-TMU International Workshop on 
Financial Engineering 2010 


 
Doshisha University, Kanbai-kan 


 
 
 


28 July 2010 
 


Jean-Paul Laurent 
Université Paris 1 – Panthéon Sorbonne 


 
 


laurent.jeanpaul@free.fr 
http://laurent.jeanpaul.free.fr 


 







2 


Factor Models and Credit Derivatives 


 Parametric factor copulas 
 Gaussian, double t, VG, NIG, Student t, Clayton, Marshall 


Olkin 


 Semi-parametric approaches 
 Stochastic correlation 


 Local correlation 


 Non parametric factor approaches 
 Perfect copula 
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CDO pricing : introduction 


                        names. 


                    default times. 


        nominal of credit i,  


        recovery rate (between 0 and 1) 
                                    loss given default (of name i) 


 if             does not depend on i: homogeneous case 


 otherwise, heterogeneous case. 


 Aggregate loss at time t 
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CDO pricing : introduction 


 CDO payments are based on the accumulated losses 
on the pool of credits 


 Accumulated loss at t: 


 
 


         pure jump process 


1.1 2.4 
10 


3.7 


30 
L(t) 
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CDO pricing : introduction 


 Tranches with thresholds  
 Mezzanine: losses are between A and B 


 Cumulated payments at time t on mezzanine tranche 
 
 


 Payments on default leg: 
                                    at time  


 Payments on premium leg:  
 periodic premium,  


 proportional to outstanding nominal:  
B A L(t) 


M(t) 


B-A 
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CDO pricing : introduction 


 Upfront premium:  
 


 B(t) discount factor, T maturity of CDO 


 Integration by parts: 
 


 Where 
 Premium only involves loss distributions 


 Marginal loss distribution for time horizon t: 


 


 Pricing of CDOs only involve options on aggregate losses 


[ ] [ ]∫−
T
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CDO pricing : introduction 


 Modelling approaches 
 Modelling of default indicators        of names:  


 individual model  
 Aggregation issues 


 Modelling the dependence between default dates? 


 Direct modelling of        : collective model 
 Dealing with heterogeneous portfolios 


 non stationary, non Markovian 


 bespoke portfolios, CDO squared? 


 Risk management of correlation risk? 


)(tL


1
i tτ ≤
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CDO pricing : introduction 


 Individual model / factor based copulas 
 Allows to deal with non homogeneous portfolios 
 Arbitrage free prices  


 non standard attachment –detachment points 
 Non standard maturities 


 Consistent pricing of bespoke, CDO2, zero-coupon CDOs 
 Computations 


 Semi-explicit pricing, computation of Greeks, LHP 


 But… 
 Poor dynamics of aggregate losses (forward starting CDOs) 
 Risk management, credit deltas, theta effects 
 Calibration onto liquid tranches (matching the skew) 
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CDO pricing : introduction 


 Why factor copulas 
 Perfectly well suited in the homogeneous case 


 De Finetti theorem 
 Asymptotic results : factor identification 


 Non parametric copulas 
 Efficient numerical approaches for computing prices and 


greeks 
 Name per name vs loss models 


 Individual vs collective 
 Individual models take into account name heterogeneity 


 Different credit curves or recovery rates 
 Needs some aggregation procedure to derive loss 


distributions 
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 Factor approaches to joint default times distributions: 
 V: low dimensional factor 
 Conditionally on V, default times are independent. 
 Conditional default and survival probabilities: 


 
 


 Why factor models ? 
 Tackle with large dimensions (i-Traxx, CDX) 


 Need of tractable dependence between defaults: 
 Parsimonious modelling 
 Semi-explicit computations for CDO tranches 
 Large portfolio approximations 


CDO pricing : introduction 
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 Semi-explicit pricing for CDO tranches 
 Laurent & Gregory [2003] 


 Default payments are based on the accumulated losses on 
the pool of credits: 
 
 


 Tranche premiums only involve call options on the 
accumulated losses 
 
 


 This is equivalent to knowing the distribution of L(t) 


{ }
1


( ) 1 ,   (1 )
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CDO pricing : introduction 
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 Characteristic function: 


 By conditioning upon V and using conditional independence:   


 


 


 Distribution of L(t) can be obtained by FFT 


 Only need of conditional default probabilities i V
tp


CDO pricing : introduction 
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No loss 


Notional = 4 Notional = 9 


Loss = 0-5 


No loss 


Loss = 0-5 


Loss = 5-10 


Loss = 10-15 


No loss 


Loss = 0-5 


Loss = 5-10 


Loss = 10-15 


Notional = 3 


Loss = 15-20 


 
 


 


 


 


 


 


 


 
 


Loss distribution 


1 | |
( ) ( ) ( ) 1(1 )i i k V i k V
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Recursion  approach 


new name survives new name defaults 


CDO pricing : introduction 
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CDO pricing : introduction 


 Large homogeneous portfolio approximations 
 « infinitely granular » portfolios (Basel II, Vasicek) 
 All names have the same conditional default probabilities 


 
 Number on names 


 
 
 


 From Dhaene et al:  
 


n →∞
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CDO pricing : introduction 


 Large (non homogeneous) portfolios 


 


 


 Pricing with large portfolio approximations 
          is usually monotonic in V (say non decreasing) 


          is thus a non decreasing univariate function of V 
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CDO pricing with factor copulas 


 2 One factor Gaussian copula 
 Ordering of risks, Base correlation 
 correlation sensitivities 
 Stochastic recovery rates 


 3 Model dependence/Choice of copula 
 double t, VG, NIG, Student t, Clayton, Marshall-Olkin, Stochastic 


correlation 
 Distribution of conditional default probabilities 


 4 Beyond the Gaussian copula 
 Stochastic correlation and state dependent correlation 
 Marginal and local correlation 
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CDO pricing with factor copulas 


 One factor Gaussian copula: 


                                        independent Gaussian, 


 


 


 Default times: 


      marginal distribution function of default times 


 Conditional default probabilities: 
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CDO pricing with factor copulas 


 Equity tranche premiums are decreasing wrt 


 General result (use of stochastic orders theory) 


 Equity tranche premium is always decreasing with 


correlation parameter 


 Guarantees uniqueness of « base correlation » 


 Monotonicity properties extend to Student t, Clayton and 


Marshall-Olkin copulas 


ρ
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CDO pricing with factor copulas 


   
 Equity tranche premiums decrease with correlation 
 Does                   correspond to some lower bound? 
                    corresponds to « comonotonic » default dates: 
                  is a model free lower bound for the equity tranche 


premium 
   


 Does               correspond to the higher bound on the equity 
tranche premium? 


              corresponds to the independence case between 
default dates 


 The answer is no, negative dependence can occur 
 Base correlation does not always exists 


100%ρ =
100%ρ =


100%ρ =


100%ρ =


0%ρ =
0%ρ =


0%ρ =
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CDO pricing with factor copulas 


 Equity tranche premiums are decreasing wrt 
 General result ? 
 Supermodular function f is such that: 


 
 
 


 Supermodular order 


: nf → 
( ) ( ) ( )i if x f x e f xε ε∆ = + −


( ) 0i j f xε δ∆ ∆ ≥, , 0nx ε δ∀ ∈ ∀ >
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CDO pricing with factor copulas 


 « Supermodular » order of Gaussian vectors 
 Let X and Y be Gaussian vectors with zero mean 


 
 
 
 
 
 
 


 Müller & Scarsini (2000), Müller (2001) 
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CDO pricing with factor copulas 


 « Stop-Loss » order 
 Accumulated losses: 


 
 


 Supermodular order of latent variables implies stop-loss 
order of accumulated losses 


 Thus, equity tranche premium is always decreasing with 
correlation 


 Guarantees uniqueness of « base correlation » 


( ), '( )L t L t
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CDO pricing with factor copulas 


 Second issue 
 Equity tranche premium decrease with correlation 


 Does                   correspond to some lower bound? 


                    corresponds to « comonotonic » default dates: 


 


 where U is uniform 


 
 Tchen (1980) 


                  is a model free lower bound for the equity tranche 
premium 


100%ρ =
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CDO pricing with factor copulas 


 Pair-wise correlations 
 
 Pair-wise correlation 


sensitivities for CDO tranches 
 


 Can be computed analytically 
 See Gregory & Laurent, « In the Core 


of Correlation », Risk 


 
 Higher correlation sensitivities 


for riskier names (senior 
tranche) 
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CDO pricing with factor copulas 


 Intra Inter sector correlations 
 i, name, s(i) sector 
 Ws(i) factor for sector s(i) 
 W global factor 
 Allows for ratings agencies 


correlation matrices 
 Analytical computations still 


available for CDOs 
 Increasing intra or intersector 


correlations decrease equity 
tranche premiums 


 Does not explain the skew 
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CDO pricing with factor copulas 


 Correlation between default dates and recovery rates 
 One factor Gaussian copula for default dates 


 Losses Given Default also have a one factor structure: 


 


 Merton type LGD: 


 A two factor Gaussian model with factors 
 Correlation between defaults & recoveries and amongst 


recoveries 
 See Credit Risk Assessment and Stochastic LGD's: an Investigation 


of Correlation Effects in Recovery Risk: The Next Challenge in Credit 
Risk Management, Risk Books 
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CDO pricing with factor copulas 
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CDO pricing with factor copulas 


 Correlation between default dates and recovery rates 
 Correlation smile implied from the correlated recovery rates 
 Not as important as what is found in the market 
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CDO pricing with factor copulas 


 Extensions of the Gaussian copula 
 Additive factor models 


 Latent variables 


 


 


           independent, with zero mean and unit variance 


         correlation parameter 


           are no longer Gaussian 


 May follow student t, Variance Gamma or Normal 
Inverse Gaussian distributions 
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CDO pricing with factor copulas 


 Double t model (Hull & White) 
 
 
            are independent Student t variables 


 with    and     degrees of freedom 


 


 where      is the distribution function of Vi 
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CDO pricing with factor copulas 


 VG: Variance Gamma 
 


            independent random variables with VG distributions 
        is also VG (stability under scaling and convolution) 


 
 density function of X is explicitly known 
 X can be easily simulated (CDO squared) 


 
 G with Gamma distribution,  
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CDO pricing with factor copulas 


 Moosbrucker (2006) 
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CDO pricing with factor copulas 


 NIG (Normal Inverse Gaussian) 
 


          independent random variables with NIG distributions 
      is also VG (stability under scaling and convolution) 


 
 Density of X explicitly known 
 Monte Carlo simulation (see Rydberg (1997) or mathlab 


code by Werner) 
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CDO pricing with factor copulas 


 Kalemanova et al (2005) 
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CDO pricing with factor copulas 


 Other non additive parametric copulas 
 Still some latent variables       and a factor V 


 The dependence is embedded in the latent variables 
 Copula of default times = copula of latent variables 


 Conditionally on V, default times are independent 
 Student t 


 Clayton (Frailty models), 


 Marshall-Olkin (Shock models) 


 Computation of conditional default probabilities 


 Simulation of default times                      feasible 
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CDO pricing with factor copulas 


 Student t copula 
 
 
 


 
         independent Gaussian variables 
         follows a        distribution  


 Conditional default probabilities (two factor model) 
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CDO pricing with factor copulas 


 Clayton copula 
 


 


 


 V: Gamma distribution with parameter 


                 independent uniform variables 


 Conditional default probabilities (one factor model) 
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CDO pricing with factor copulas 


 Shock models (multivariate exponential copulas) 
 Marshall-Olkin copula 


 Modelling of default dates: 


          exponential with parameters  


 Default dates 


                                                       marginal survival function 


 Conditionally on           are independent. 


 Conditional default probabilities 
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CDO pricing with factor copulas 


 Calibration procedure 
 One parameter copulas 


 Fit Clayton, Student t, double t, Marshall Olkin 
parameters onto CDO equity tranches 
 Computed under one factor Gaussian model 


 Reprice mezzanine and senior CDO tranches 
 Given the fitted parameter 


 Look for departures from the Gaussian copula 


 Look for ability to explain the correlation skew 
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 CDO margins (bps pa) 


 With respect to correlation 
  Gaussian copula 
 Attachment points: 3%, 10% 
 100 names 
 Unit nominal 
 Credit spreads 100 bps 
 5 years maturity 


equity mezzanine senior 


0% 5341 560 0.03 


10% 3779 632 4.6 


30% 2298 612 20 


50% 1491 539 36 


70% 937 443 52 


100% 167 167 91 


CDO pricing with factor copulas 
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ρ  0% 10% 30% 50% 70% 100% 
Gaussian 560 633 612 539 443 167 
Clayton 560 637 628 560 464 167 


Student (6)   637 550 447 167 
Student (12)   621 543 445 167 


t(4)-t(4) 560 527 435 369 313 167 
t(5)-t(4) 560 545 454 385 323 167 
t(4)-t(5) 560 538 451 385 326 167 
t(3)-t(4) 560 495 397 339 316 167 
t(4)-t(3) 560 508 406 342 291 167 


MO 560 284 144 125 134 167 
Table 6: mezzanine tranche (bps pa) 







42 


ρ  0% 10% 30% 50% 70% 100% 
Gaussian 0.03 4.6 20 36 52 91 
Clayton 0.03 4.0 18 33 50 91 


Student (6)   17 34 51 91 
Student (12)   19 35 52 91 


t(4)-t(4) 0.03 11 30 45 60 91 
t(5)-t(4) 0.03 10 29 45 59 91 
t(4)-t(5) 0.03 10 29 44 59 91 
t(3)-t(4) 0.03 12 32 47 71 91 
t(4)-t(3) 0.03 12 32 47 61 91 


MO 0.03 25 49 62 73 91 
Table 7: senior tranche (bps pa) 


CDO pricing with factor copulas 


Gaussian, Clayton and Student t CDO premiums are close 
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CDO pricing with factor copulas 


implied compound correlation
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CDO pricing with factor copulas 
 Why do Clayton and Gaussian copulas provide same premiums? 


 Loss distributions depend on the distribution of conditional default 
probabilities 
 
 


 Distribution of conditional default probabilities are close for Gaussian 
and Clayton 
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CDO pricing with factor copulas 


 De Finetti theorem 


                             default indicators  
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CDO pricing with factor copulas 


 Practical issues with the use of parametric copulas 
 Need to know the density function of the factor V 
 Analytical form 
 Or only Laplace transform or characteristic function 


 Case of affine jump diffusion intensity models 
 Need of some inversion, more complex computations 


 Need to know the cdf of the latent variables 
 To calibrate the marginal credit curves 
 An issue with the double t model 


 Numerical integration is required 


iV
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CDO pricing with factor copulas 


 Computation of Greeks may be problematic 
 Threshold models may lead to irregular patterns in credit 


deltas 


 Extreme cases in mixture models (comonotonic case) may 
raise similar issues 


 Only provide a reasonable fit to correlation smiles 


 Calibration on two different time horizons remains 
problematic 
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CDO pricing with factor copulas 


 Stochastic correlation copula 
                                     independent Gaussian variables 
           correlation     ,            correlation ρ
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CDO pricing with factor copulas 


 Stochastic correlation 
 Latent variables 


 
 
 
 
 


 Conditional default probabilities 
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CDO pricing with factor copulas 


 Stochastic correlation   
 Semi-analytical techniques for pricing CDOs available 
 Large portfolio approximation can be derived 
 Allows for Monte Carlo 
                          leads to increase senior tranche premiums 


 State dependent correlation 
 Local correlation 


 Turc et al 


 Random factor loadings 
 Andersen & Sidenius   


, ,sq qρ  
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CDO pricing with factor copulas 


 Distribution functions of conditional default probabilities 
  stochastic correlation vs RFL 


 
 
 
 
 
 
 
 
 
 
 


 With respect to level of aggregate losses 
 Also correspond to loss distributions on large portfolios 
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CDO pricing with factor copulas 


 Marginal compound correlation 
 Compound correlation of a             tranche 


 Digital call on aggregate loss 


 obtained from conditional default probability 
distribution 


 Need to solve a second order equation 


 zero, one or two marginal compound correlations 


[ ],α α
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CDO pricing with factor copulas 


 Marginal compound correlations: 
 With respect to attachment – detachment point 


 
 
 
 
 
 
 
 
 
 


 Stochastic correlation vs RFL 
 zero marginal compound correlation at the expected loss 
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CDO pricing with factor copulas 


 Calibration history (from 15 April 2005) 
 Implied correlation, implied idiosyncratic and systemic probabilities 


 
 
 
 
 
 
 
 
 


 Trouble in fitting during the crisis 
 Since then, decrease in systemic probability 
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CDO pricing with non parametric factor copulas 


 Still remains in the factor copula framework 
 Semi-analytical pricing techniques for CDOs 
 Taking into account heterogeneity across names 


 Non parametric specification of conditional default 
probabilities 
 Under some  constraints 


 Consistency with marginal credit curves 


 Consistency with quotes of liquid tranches 


 Local correlation, implied copulas, entropic calibration 
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CDO pricing with factor copulas 


 Local correlation 


 
 Can be computed from the distribution of  


 Through some fixed point algorithm 


 Local correlation at step one: rescaled marginal 
compound correlation 
 Same issues of uniqueness and existence as marginal compound 


correlation 


2( ) 1 ( )i iV V V V Vρ ρ= − + −
iV
tp
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CDO pricing with factor copulas 


 Local correlation associated with RFL (as a function of the factor) 
 
 
 
 
 
 
 
 
 
 
 


 Jump at threshold 2, low correlation level 5%, high correlation level 85% 
 Possibly two local correlations 







58 


CDO pricing with factor copulas 


 Local correlation associated with stochastic correlation model 
 With respect to factor V 


 
 
 
 
 
 
 
 
 


 Correlations of 1 for high-low values of V (comonotonic state) 
 Possibly two local correlations leading to the same prices 
 As for RFL, rather irregular pattern 
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CDO pricing with factor copulas 


 Checking for the convergence of the fixed point 
algorithm 


 
 
 
 
 
 
 
 
 


 Good news: convergence at step one 
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The Perfect Copula Approach 
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 Different 1F copula models just specify differently the conditional 
default probabilities 
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CDO pricing with factor copulas 


 Perfect copula (Hull & White) 
 discrete distribution of conditional default probabilities 


 Limit the number of parameter to the number of 
market prices  
 5 tranches + 1 index 


 See paper by Hull and White for more complex 
calibration procedures 


iV
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Motivation


Specify the dependence structure of default indicators D1, . . . , Dn which
leads to:


an increase of the value of call options E
[
(Lt − a)+]


for all strike
level a > 0
an increase of convex risk measures on Lt (TVaR, Wang risk
measures)


Comparison between homogeneous credit portfolios


D1, . . . , Dn are assumed to be exchangeable Bernoulli random
variables
De Finetti’s theorem leads to a factor representation of D1, . . . , Dn


Application to several popular CDO pricing models
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De Finetti theorem and factor representation


Homogeneity assumption: default indicators D1, . . . , Dn forms an
exchangeable Bernoulli random vector


Definition (Exchangeability)


A random vector (D1, . . . , Dn) is exchangeable if its distribution function is
invariant for every permutations of its coordinates: ∀σ ∈ Sn


(D1, . . . , Dn)
d
= (Dσ(1), . . . , Dσ(n))


Same marginals
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De Finetti theorem and factor representation


Assume that D1, . . . , Dn, . . . is an exchangeable sequence of Bernoulli
random variables


Thanks to de Finetti’s theorem, there exists a random factor p̃ such that


D1, . . . , Dn are conditionally independent given p̃


Denote by Fp̃ the distribution function of p̃, then:


P(D1 = d1, . . . , Dn = dn) =


∫ 1


0
p


∑
i di (1− p)n−


∑
i di Fp̃(dp)


Finite exchangeability only leads to a sign measure Jaynes (1986)
p̃ is characterized by:


1
n


n∑
i=1


Di
a.s−→ p̃ as n →∞


p̃ is exactly the loss of the infinitely granular portfolio (Bâle 2
terminology)
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Stochastic orders


The convex order compares the dispersion level of two random variables


Convex order: X ≤cx Y if E [f (X )] ≤ E [f (Y )] for all convex functions f


Stop-loss order: X ≤sl Y if E [(X − K)+] ≤ E [(Y − K)+] for all K ∈ IR


X ≤sl Y and E [X ] = E [Y ] ⇔ X ≤cx Y


X ≤cx Y if E [X ] = E [Y ] and FX , the distribution function of X and FY ,
the distribution function of Y are such that:
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Supermodular order


The supermodular order captures the dependence level among coordinates
of a random vector


(X1, . . . , Xn) ≤sm (Y1, . . . , Yn) if E [f (X1, . . . , Xn)] ≤ E [f (Y1, . . . , Yn)] for
all supermodular function f


Definition (Supermodular function)


A function f : Rn → R is supermodular if for all x ∈ IRn, 1 ≤ i < j ≤ n and
ε, δ > 0 holds


f (x1, . . . , xi + ε, . . . , xj + δ, . . . , xn)− f (x1, . . . , xi + ε, . . . , xj , . . . , xn)


≥ f (x1, . . . , xi , . . . , xj + δ, . . . , xn)− f (x1, . . . , xi , . . . , xj , . . . , xn)


Consequences of new defaults are always worse when other defaults have
already occurred
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Review of literature


Müller(1997)
Stop-loss order for portfolios of dependent risks


(D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n ) ⇒
n∑


i=1


MiDi ≤sl


n∑
i=1


MiD∗
i


Bäuerle and Müller(2005)
Stochastic orders ans risk measures: Consistency and bounds


X ≤sl Y ⇒ ρ(X ) ≤ ρ(Y )


for all law-invariant, convex risk measures ρ


Lefèvre and Utev(1996)
Comparing sums of exchangeable Bernoulli random variables


p̃ ≤cx p̃∗ ⇒
n∑


i=1


Di ≤sl


n∑
i=1


D∗
i
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Main results


Let us compare two credit portfolios with aggregate loss Lt =
∑n


i=1 MiDi


and L∗t =
∑n


i=1 MiD∗
i


Let D1, . . . , Dn be exchangeable Bernoulli random variables associated
with the mixture probability p̃


Let D∗
1 , . . . , D∗


n exchangeable Bernoulli random variables associated with
the mixture probability p̃∗


Theorem


p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )


In particular, if p̃ ≤cx p̃∗, then:


E [(Lt − a)+] ≤ E [(L∗t − a)+] for all a > 0.
ρ(Lt) ≤ ρ(L∗t ) for all convex risk measures ρ
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Main results


Let D1, . . . , Dn, . . . be exchangeable Bernoulli random variables associated
with the mixture probability p̃


Let D∗
1 , . . . , D∗


n , . . . be exchangeable Bernoulli random variables associated
with the mixture probability p̃∗


Theorem (reverse implication)


(D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n ),∀n ∈ N ⇒ p̃ ≤cx p̃∗.
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Ordering of CDO tranche premiums


Burtschell, Gregory, and Laurent(2008)
A comparative analysis of CDO pricing models


Analysis of the dependence structure within some factor copula
models such as:


Gaussian, Student t, Double t, Clayton, Marshall-Olkin copula
An increase of the dependence parameter leads to:


a decrease of [0%, b] equity tranches premiums (which
guaranties the uniqueness of the market base correlation)
an increase of [a, 100%] senior tranches premiums
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Additive factor copula approaches


The dependence structure of default times is described by some latent
variables V1, . . . , Vn such that:


Vi = ρV +
√


1− ρ2V̄i , i = 1 . . . n


V , V̄i , i = 1 . . . n independent


τi = G−1(Hρ(Vi )), i = 1 . . . n


G : distribution function of τi


Hρ: distribution function of Vi


Di = 1{τi≤t}, i = 1 . . . n are conditionally independent given V
1
n


∑n
i=1 Di


a.s−→ E [Di | V ] = P(τi ≤ t | V ) = p̃
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Additive factor copula approaches


Theorem


For any fixed time horizon t, denote by Di = 1{τi≤t}, i = 1 . . . n and
D∗


i = 1{τ∗i ≤t}, i = 1 . . . n the default indicators corresponding to (resp.) ρ and
ρ∗, then:


ρ ≤ ρ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )


This framework includes popular factor copula models:


One factor Gaussian copula - the industry standard for the pricing of
CDO tranches
Double t: Hull and White(2004)
NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid
and Werner(2007)
Double Variance Gamma: Moosbrucker(2006)
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Archimedean copula


Schönbucher and Schubert(2001), Gregory and Laurent(2003),
Madan et al.(2004), Friend and Rogge(2005)


V is a positive random variable with Laplace transform ϕ−1


U1, . . . , Un are independent Uniform random variables independent of V


Vi = ϕ−1
(
− ln Ui


V


)
, i = 1 . . . n (Marshall and Olkin (1988))


(V1, . . . , Vn) follows a ϕ-archimedean copula
P(V1 ≤ v1, . . . , Vn ≤ vn) = ϕ−1 (ϕ(v1) + . . . + ϕ(vn))


τi = G−1(Vi )


G : distribution function of τi


Di = 1{τi≤t}, i = 1 . . . n independent knowing V
1
n


∑n
i=1 Di


a.s−→ E [Di | V ] = P(τi ≤ t | V )
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Archimedean copula


Conditional default probability: p̃ = exp {−ϕ(G(t)V )}


Copula Generator ϕ Parameter
Clayton t−θ − 1 θ ≥ 0
Gumbel (− ln(t))θ θ ≥ 1
Franck − ln


[
(1− e−θt)/(1− e−θ)


]
θ ∈ IR∗


Theorem


θ ≤ θ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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Archimedean copula
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Structural model


Hull, Predescu and White(2005)


Consider n firms


Let Vi,t , i = 1 . . . n be their asset dynamics


Vi,t = ρVt +
√


1− ρ2V̄i,t , i = 1 . . . n


V , V̄i , i = 1 . . . n are independent standard Wiener processes


Default times as first passage times:


τi = inf{t ∈ IR+|Vi,t ≤ f (t)}, i = 1 . . . n, f : IR → IR continuous


Di = 1{τi≤T} , i = 1 . . . n are conditionally independent
given σ(Vt , t ∈ [0, T ])
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Structural model


Theorem


For any fixed time horizon T , denote by Di = 1{τi≤T}, i = 1 . . . n and
D∗


i = 1{τ∗i ≤T}, i = 1 . . . n the default indicators corresponding to (resp.) ρ
and ρ∗, then:


ρ ≤ ρ∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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Structural model
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1
n


∑n
i=1 Di


a.s−→ p̃
1
n


∑n
i=1 D∗


i
a.s−→ p̃∗


Empirically, mixture
probabilities are ordered with
respect to the convex order:
p̃ ≤cx p̃∗
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Multivariate Poisson model


Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)


N̄ i
t Poisson with parameter λ̄: idiosyncratic risk


Nt Poisson with parameter λ: systematic risk


(B i
j )i,j Bernoulli random variable with parameter p


All sources of risk are independent


N i
t = N̄ i


t +
∑Nt


j=1 B i
j , i = 1 . . . n


τi = inf{t > 0|N i
t > 0}, i = 1 . . . n


Jean-Paul LAURENT and Areski COUSIN Comparison results for credit risk portfolios







Comparison results
Application to several popular CDO pricing models


Conclusion


Factor copula approaches
Structural model
Multivariate Poisson model


Multivariate Poisson model


Dependence structure of (τ1, . . . , τn) is the Marshall-Olkin copula


τi ∼ Exp(λ̄ + pλ)


Di = 1{τi≤t}, i = 1 . . . n are conditionally independent given Nt


1
n


∑n
i=1 Di


a.s−→ E [Di | Nt ] = P(τi ≤ t | Nt)


Conditional default probability:


p̃ = 1− (1− p)Nt exp(−λ̄t)
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Multivariate Poisson model


Comparison of two multivariate Poisson models with parameter sets
(λ̄, λ, p) and (λ̄∗, λ∗, p∗)


Supermodular order comparison requires equality of marginals:
λ̄ + pλ = λ̄∗ + p∗λ∗


3 comparison directions:


p = p∗: λ̄ v.s λ
λ = λ∗: λ̄ v.s p
λ̄ = λ̄∗: λ v.s p
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Multivariate Poisson model


Theorem (p = p∗)


Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + pλ∗,
then:


λ ≤ λ∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗
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When λ increases, the aggregate loss
increases with respect to stop-loss order
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Multivariate Poisson model


Theorem (λ = λ∗)


Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + p∗λ,
then:


p ≤ p∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗
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Multivariate Poisson model


Theorem (λ = λ∗)


Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + p∗λ,
then:


p ≤ p∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗
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When p increases, the aggregate loss
increases with respect to stop-loss order
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Multivariate Poisson model


Theorem (λ̄ = λ̄∗)


Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that pλ = p∗λ∗, then:


p ≤ p∗, λ ≥ λ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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Computation of E [(Lt − K)+]:
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Mi = 1, i = 1 . . . n


When p increases, the aggregate loss
increases with respect to stop-loss order
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Conclusion


Conclusion


When considering an exchangeable vector of default indicators, the
conditional independence assumption is not restrictive thanks to de
Finetti’s theorem


The mixture probability (the factor) can be viewed as the loss of an
infinitely granular portfolio


We completely characterize the supermodular order between exchangeable
default indicator vectors in term of the convex ordering of corresponding
mixture probabilities


We show that the mixture probability is the key input to study the impact
of dependence on CDO tranche premiums


Comparison analysis can be performed with the same method within a
large number of popular CDO pricing models
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Main practical issue 
 Better understanding of large credit portfolio losses 


 After the credit and liquidity crisis 


 By introducing stochastic recovery rates 


 « correlated » together 


 And « correlated » with default dates 


 Through dependence upon common factor(s) 


 Study the properties of such (bottom-up) models 


 Results of interest for market risk assessment 
 And not only portfolio credit risk 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Need to distinguish CDOs of subprimes 
 Overestimated ratings for AAA senior tranches 


 Comonotonic losses 
 Related to real estate market in the US 
 Overestimation of diversification effects amongst assets 


 Underestimation of marginal default probabilities 
 Huge adverse selection problems with originate and distribute system 


especially in the low-quality  


 Huge losses borne by so-called “sophisticated investors” 
 … such as regional banks in Europe 
 “Because of the dispersion of financial risks to those more willing 


and able to bear them, the economy and the financial system are 
more resilient,”  


 Ben Bernanke keynote address, Federal Reserve Bank of Chicago’s annual 
conference on bank structure and competition on May 18, 2006  
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Need to distinguish between CDOs of subprimes and corporate 
CDOs 
 CDO of subprimes are CDO squared 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Need to distinguish between CDOs of subprimes and corporate CDOs 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Huge losses to “sponsors” of SIV 
 Mainly US banks actively operating 


in private securitization of  subprime 
mortgages 


 A SIV being a shadow bank, with 
highly illiquid low rated MBS on the 
asset side and on the liability side, no 
core equity, funding itself issuing 
short-term CP 
 Obvious solvency and liquidity 


issues for such SIV 
 How did it infect the sponsor banks? 
 through “accounting engineering” 


such as 365 days lines of credit 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Huge losses to “sponsors” of SIV 
 Credit and liquidity exposures 


unconsolidated?  
 poor regulation (Basel I) and banking 


supervision 
 “Citigroup has agreed to pay $75m 


to settle civil charges that it misled 
investors over potential losses from 
high-risk mortgages” 


 Citigroup had said in 2007 that its 
exposure was $13bn or less. The SEC 
said it exceeded $50bn. 


 SEC Enforcement Director Robert 
Khuzami said Citigroup had misled 
analysts and the market of its ability 
to reduce its subprime exposure. 
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State dependent  
recovery rates 


 Practical context 
 Calibration of super senior tranches during the liquidity and 


credit crisis 
 Insurance against very large credit losses 
 [30-100] tranche on CDX starts to pay when (approximately) 50% of 


the 125 major companies in North America are in default 
 Contributed to the collapse of AIG 


 AIG reinsurer of major banks 
 Sold protection through AIG Financial Products (London) and Banque 


AIG (Paris) 
 Between 440 and 500 billion “CDS” outstanding 
 Issues with accounting, counterparty risk, collateral management and 


liquidity. 
 Large MTM losses 
 Though no insurance payments were to be made 
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State dependent  
recovery rates 


 Asymmetric CSA and downgrading of AIG triggered huge 
collateral posting  
 30 billion USD of collateral to be posted for super senior tranches  
 Not corresponding to actual credit losses on tranches but to « mark to 


market » of  highly illiquid insurance policies 
 What occurred when US Treasury took over AIG? 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Practical context: high spreads on senior tranches 
 Increase of risk for individual losses leads to increase of risk 


in aggregate losses 
 For proper positive dependence 
 General results likely to be useful for market risk analysis 


 Comparing risks when claim frequency increase and claim 
amount decrease (with equal mean) 
 Analysis of changing recovery rate assumptions on convex measures 


of risk 
 Comparing risks for granular portfolios sharing the same large 


portfolio limit 
 Stochastic recovery rate versus recovery markdown 


 Numerical issues 
 Expansion techniques vs recursion techniques 
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State dependent recovery rates 


 High spreads on super senior tranches 
 Could not be calibrated with a standard 40% recovery rate  
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State dependent recovery rates 


 High spreads on super senior tranches 
 Could not be calibrated with a standard 40% recovery 


rate 
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State dependent recovery rates 


 High spreads on super senior tranches 
 Could not be calibrated with a standard 40% recovery rate 
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State dependent recovery rates 


 Practical context 
 Steep “base correlations” 
 Implied dependence as measured by implied Gaussian 


copula correlation 
 Increases strongly with respect to attachment point 


 Reflecting “fat tails” in aggregate loss distributions 
 A bunch of issues of trading desks 


 Negative tranchelet prices 
 Delta discriminance 
 Weird Idiosyncratic gamma 


 These issues are (partly) solved in a stochastic recovery 
rate approach 


 Main issue during 2008 and 2009 for investment banks 
14 







State dependent recovery rates 
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State dependent recovery rates and credit modelling 


 Credit models often focus on the dependence between default dates 
 Bottom-up models 


 Well-suited to analyze changes of portfolio allocation 
 Top-down models 


 Markov models for aggregate losses 
 Dependence through contagion effects : jumps in aggregate loss intensity 


at default times 
 It is not obvious to relate risks to portfolio structure 
 Unit losses are capped by credit nominal, aggregate loss is also capped 


 Our approach is (currently) related to bottom-up approach 
 When clustering comes (only) through simultaneous defaults 
 It can actually create huge dependence effects (common shocks) 
 For example, possibility of an Armageddon risk 


 Is this building really safe regarding earthquakes? 
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State dependent recovery rates and credit modelling 


 Competing approaches for modelling default date dependencies 
 Joint defaults : common shock models 


 Starts from Duffie (1999), then Lindskog & McNeil (2003) 
 Multivariate structural models 


 CreditMetrics, Basel II, Moody’s KMV 
 Correlated intensities 


 Multivariate Cox processes 
 Frailty models (Archimedean copulas) 


 Hierarchical Archimedean copulas (partially nested) 
 Gaussian copula 


 Li (2000) 
 Intra & inter sector correlations: Gregory & Laurent (2004) 


 Factor copulas 
 Associated with a wide range of dependence structures 
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 Markov Copulae 
 Bielecki and co-authors 
 In between top-down and bottom-up 
 Small homogeneous portfolios may be considered as Markov 
 Dependence  comes from simultaneous defaults (related with paper?) 


 GPL: Brigo et al. 
 No embedding framework 
 Large credit losses can also come from stochastic recovery rates 


 “collateral damage” 
 Consider a model with factor dependence 
 Large homogeneous approximation with factor dependent recovery rate 
 Change of mixing distribution for defaults or change recovery rates ? 
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State dependent recovery rates and credit modelling 


 Dependence in large dimension 
 The puzzling issue of parametrization 


 Take the Gaussian copula case as the simplest example 


 Homogeneous portfolios (static case) 
 De Finetti theorem 
 One factor  


 Partially exchangeable portfolios 
 A number of ways to introduce sector-based effects 


 Homogeneous sub-portfolios 


 Common shock model is rather well-known 
 Multivariate exponential distributions 
 Marshall Olkin copulas 
 Within the factor copula framework 
 This eases CDO computations and model analysis 
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State dependent recovery rates and credit modelling 
 Common shock models developed for CDOs by Elouerkhaoui 
 The model can be associated with very large dependence 


 Much higher than Cox process models and even that frailty models 
 Allows to control for loss distributions  (here small mezzanine tranches) 
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State dependent recovery rates and credit modelling 


 Properties of the common shock model 
 Specifying the dependence structure 


 Huge overfitting 
 n names can lead to 2n intensities! 
 Checking model restrictions? 


 Dynamics of credit spreads 
 No contagion effects 


 Dependence only due to simultaneous defaults 
 Due to the large number of states, incomplete 


markets 
 Requires more involved techniques to construct risk-


mitigating dynamic strategies 
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State dependent recovery rates and credit modelling 


 What are we looking at? 
 Risk measurement 


 At which time horizon ? 
 Need to account for rating migration, changes in credit spreads 
 (not only defaults) 
 Possible changes in the (local) correlation structure. 
 Static versus dynamic 


 CDO pricing 
 Investment grade names (100 names), medium size 


corporate portfolios, mortgages 
 Not the same inputs  


 historical default data, recovery rates, definition of a 
default, credit spreads, ratings, bond prices, etc. 
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State dependent recovery rates and credit modelling 


 Coping with Basel 2 “++” 
 Capital requirements for CDS and CDO trading books 
 CRM : Comprehensive Risk Measure 
 Incremental Risk Capital Charge (IRC) 
 Stressed VaR : 99.9%, 1 Year time horizon 
 Must take into account dynamic hedging with CDO 


tranches, credit migration, credit spread volatility, 
stochastic correlation, stochastic recovery rates,… 


 Urgent action required (completion by end of year 2010) 
 Moody’s KMV, CreditMetrics and related packages 


are frontrunners 
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State dependent recovery rates and credit modelling 


 Timing of defaults and default date definition 
 Not that clear in the corporate world 
 Costly non-defaults, costless defaults 
 For example, is a bail-out a default?  


 What has occurred to Merrill Lynch counterparties after BofA stepped-in? 
 Then, it is associated with a joint default event, together with Lehman 


 Credit migration? 
 Prior to Bear Stearns bail out by JP Morgan, many counterparties 


transferred their OTC exposures to thirds parties 
 Novation: transfer rights and obligations to a third party 
 “In the three weeks preceding Bear Stearns's collapse, GS, Citadel and 


Paulson exited about 400 trades where Bear Stearns was the trading 
partner, more than any other firms did.” 


 GS unloaded a number of swap contracts. Positions were transferred to a 
variety of players, including Lehman Brothers and Morgan Stanley. 
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State dependent recovery rates and credit modelling 


 (Almost) costless defaults : Fannie Mae Subordinated,  
 Final price, 6th October CDS auction : 99.9 


 Jarrow et al. (2008) 
 Distressed Debt Prices and Recovery Rate Estimation 


 Large discrepancies between economic and recorded 
default dates 
 Likely to be a major issue when dealing with the estimation 
of  a model with simultaneous defaults 
 more problematic then in the case of no simultaneous 
defaults 


 Recovery rates also contribute to dependence between 
individual default dates 
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State dependent recovery rates 


 Theoretical context 
 Aggregate loss = sum of individual losses 
 Individual loss = default indicator times loss given default 
 Recovery rate = 1 – loss given default / credit notional 
 Recovery rates are stochastic 


 Cross dependencies 
 Amongst default events (copula models, etc.) 
 Between default events and recovery rates 
 Amongst recovery rates 


 Dependence through common latent factors 
 For convenience 
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State dependent recovery rates 


 When does an increase in individual risk leads to an 
increase in the risk on the aggregate portfolio (sum of 
individual risks) ? 
 (Multivariate) Gaussian risks 


 Individual risks with same expectation 
 Increase in risk = increase in variance 
 Increase in aggregate portfolio risk occurs if and only if pairwise 


correlations are non negative 


 What about the general case ? 
 Stochastic orders 


 Univariate case : convex order (close to second order stochastic 
dominance) 


 Positive dependence between individual risks 
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State dependent recovery rates 


 Positive dependence 
 MTP2: Multivariate Total Positivity of Order 2 (Karlin & 


Rinott (1980)) 
 Log-density is supermodular 


 Conditionally Increasing 
                                 is CI if and only if                                   is 


increasing in                 for increasing  


 Positive association (Esary, Proschan &Walkup (1967)) 
 PSMD: positive supermodular dependent 


 Gaussian copula 
 Positive association = PSMD = positive pairwise 


correlations 
 MTP2 = CI (Müller & Scarsini (2001)) 
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State dependent recovery rates 


 Theoretical context 
 Non Gaussian framework 


 Individual risks have a probability mass at 0 
 Increase of risk of individual risks: convex order 
 Theorem (Müller & Scarsini (2001)) 


 X and Y random vectors with common conditionally increasing copula 
      smaller than      for all i 
 Then X smaller than Y with respect to dcx (directionally convex) order 


 Then X smaller than Y  with respect to stop-loss order 


 Gaussian copula dependence 
 Conditionally increasing if and only if the inverse of covariance matrix 


is a M-matrix 
     non singular, entrywise non negative,        has positive non diagonal 


entries  
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State dependent  
recovery rates 


 Dependence in large dimension 
 Well known to finance people 
 Factor models 


 Arbitrage pricing theory, asymptotic portfolios 
 Chamberlain & Rothschild (1983) 


 Large portfolio approximations (infinite granular 
portfolios) 


 Conditional law of large numbers 
 Qualitative data with spatial dependence 


 CreditRisk + (Binomial mixtures), Creditmetrics, Basel II 
(Gaussian copula) 


 Gordy (2000, 2003) Crouhy et al. (2000) 
 Factor models may not be related to a causal view upon 


dependence 
 De Finetti, exchangeable sequences of Bernoulli variables 


are Binomial mixtures 
 Mixing random variable latent factor 
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State dependent recovery rates 


 Spatial dependence with 
qualitative data 
 Factor models have been used 


for long in other fields 
 IQ tests (differential psychology), 


Bock & Lieberman (1970), 
Holland (1981) 


 Item Response Models 
 Latent Monotone Univariate 


Models, Holland (1981), Holland 
& Rosenbaum (1986) 


 Stochastic recovery rates 
 Modeling of cross 


dependencies 
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State dependent  
recovery rates 


 Stochastic recovery rates 
 Modeling of cross dependencies 


 Individual loss = default indicator times loss given default 
 What is important for the computation of tranche premiums 


(or risk measures) is the joint distribution of individual 
losses 


 Direct approach: (discretized) individual loss seen as a 
polychotomous (or multinomial) variable 


 Multivariate Probit model (Krekel (2008)) 
 Dual view of Creditmetrics (default side versus ratings) 


 Sequential models 
 Probit or logit models for default events (dichotomous model) 
 Modeling of loss given default : Amraoui & Hitier (2008) 
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State dependent 
recovery rates 


 Gaussian copula 
 When is it conditionally increasing? 
 One factor case (positive betas) 


 Gaussian copula is Conditionally Increasing (proof based on Holland & 
Rosenbaum (1986)) 


 Multifactor case : more intricate, even if all betas are positive, 
Gaussian copula may not be Conditionally Increasing 
 Counterexamples 


 Gaussian copula with positive pairwise correlation 
 Increase of marginal risk (convex order) 
 May lead to a decrease of convex risk measures on aggregate portfolio 
 Constraints on conditional covariance matrix 


 Hierarchical Gaussian copulas 
 Intra and intersector correlations, Gregory & Laurent (2004) 
 Conditionally Increasing copula (proof based upon Karlin & Rinott (1980)) 
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State dependent recovery rates 


 Consequences of previous analysis 
 Other examples of Conditionally Increasing copulas 


 Archimedean copulas, Müller & Scarsini (2005) 


 Dichotomous models with monotone unidimensional 
representation 
 Default indicators conditionally independent upon scalar V 


 Conditional default probabilities are non decreasing in V 


 Most known and used models 


 Includes additive factor copula models (Cousin & Laurent (2008)), 
such as generic one factor Levy model of Albrecher et al. (2007). 
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State dependent  
recovery rates 


 Consequences of previous analysis 
 Non stochastic recovery rates 
 Analysis of a “recovery markdown” 
 Change recovery rate assumption from 40% to 30% (say) 
 Change marginal default probability so that expected loss 


unit is unchanged 
 Lemma : increase of  marginal risk with respect to convex 


order 
 Then, given a CI copula, increase of risk of the 


aggregate portfolio with respect to convex order 
 Increase in senior tranche premiums 
 Or CDO senior tranche spreads 
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State dependent recovery rates 


 Consequences of previous analysis 
 Stochastic recovery rate of Amraoui and Hitier (2008) 
 Depends only upon latent factor 


 As in Altman et al (JoB 2005) 
 Specification of recovery rate is such that conditional upon 


latent factor is the same as in a recovery mark-down case 
 Same conditional expected losses 


 Same large portfolio approximations 
 Same “infinitely granular” portfolios 
 When number of names tends to infinity, strong convergence of aggregate 


losses to large portfolio limits 
 Stochastic recovery rate (AH) versus recovery markdown 


 Same infinitely granular portfolios 
 But finitely granular portfolios behave (slightly) differently 
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State dependent recovery rates 


 Stochastic recovery rate (AH) vs recovery markdown 
 Main comparison result 
 Aggregate losses are ordered with respect to convex order 
 Smaller risks in stochastic recovery rate specification 
 Smaller spreads on senior tranches 
 Small numerical discrepancies 


 Numerical issues 
 Computation of aggregate loss distributions in individual 


loss model with spatial dependence (factor models) 
 Actuarial methods (recursions, etc.) 
 FFT, inverse of Laplace transforms 
 Expansions (Stein’s method, Gram-Charlier expansions) 37 







State dependent recovery rates 


 Numerical issues 
 Lots of smuggling around 
 Key issues for implementation 


 Computation of prices 
 Much quicker than Monte Carlo 


 Issues for the use of Hierarchical 
Archimedean Copulas 


 More importantly computations of 
Greeks 


 Risk Management 
 Maximum Likelihood methods 


 Needs to be reassessed in case of 
stochastic recovery models 
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