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Outlook 


 Semi-analytical pricing of multiname credit derivatives 
and CDO’s 


 Use of probability generating functions and conditional 
independence assumption 


 Copula approaches including Gaussian, Archimedean, 
multivariate exponential models 


 Analytical pricing of multiname credit derivatives in 
Duffie’s affine framework 


 Effective computation of risk parameters 







What are we looking for ? 


 A framework where: 
 One can easily deal with a large number of names, 


 Tackle with different time horizons, 


 Compute quickly and accurately: 
 Basket credit derivatives premiums 


 CDO margins on different tranches 


 Deltas with respect to shifts in credit curves 


 Main technical assumption: 
 Default times are independent conditionnally on a low 


dimensional factor 







 Presentation Overview 
 Probabilistic Tools 


 Survival functions of default times 
 Factor copulas 
 Number of defaults 


 Basket Credit Derivatives 
 Valuation of premium leg 
 Valuation of default leg: homogeneous baskets 
 Valuation of default leg: non homogeneous baskets 
 Example: first to default swap 
 Risk management of basket credit derivatives 


 Valuation of CDO Tranches 
 Credit loss distributions 
 Valuation of CDO’s 
 Risk management of CDO tranches 







Probabilistic Tools: Survival Functions 


                        names 
                      default times 
 Marginal distribution function 
 Marginal survival function 


 Risk-neutral probabilities of default 
 Obtained from defaultable bond prices or CDS quotes 


 « Historical » probabilities of default 
 Obtained from time series of default times 







Probabilistic Tools: Survival functions 


 Joint survival function: 
 


 Needs to be specified given marginals. 


 (Survival) Copula of default times: 
 


 C characterizes the dependence between default times. 


 We need tractable dependence between defaults: 
 Parsimonious modelling 


 Semi-explicit computations for portfolio credit derivatives 







Probabilistic Tools 







Probabilistic Tools: Factor Copulas 


 Factor approaches to joint distributions: 
 V low dimensional factor, not observed « latent factor » 
 Conditionally on V default times are independent 
 Conditional default probabilities 


 


 Conditional joint distribution: 


 


 Joint survival function (implies integration wrt V): 


 
 


 







Probabilistic Tools: Gaussian Copulas 


 One factor Gaussian copula (Basel 2): 
                                        independent Gaussian 


 
 


 Default times: 
 Conditional default probabilities: 


 Joint survival function:   


 


 Copula: 







Probabilistic Tools : Clayton copula 


 Davis & Lo ; Jarrow & Yu ; Schönbucher & Schubert 
 Conditional default probabilities 


 
 


 V: Gamma distribution with parameter 
 Joint survival function: 


 
 


 Copula:  







Probabilistic Tools: Simultaneous Defaults 


 Duffie & Singleton, Wong 
 Modelling of defaut dates: 


                                                             simultaneous defaults. 


 Conditionally on            are independent. 


 


 Conditional default probabilities: 
  
 Copula of default times:   







Probabilistic Tools: Affine Jump Diffusion 


 Duffie, Pan & Singleton ;Duffie & Garleanu. 
             independent affine jump diffusion processes:  


 


 Conditional default probabilities: 
 
 
 


 Survival function: 
 


 
 Explicitely known. 







Probabilistic Tools: Conditional Survivals 


 Conditional survival functions and factors: 
 Example: survival functions up to first to default time…; 


 Conditional joint survival function easy to compute since: 
 
 
 
 
 


 However be cautious, usually: 







Probabilistic Tools 







                                                    Number of defaults at t. 


         kth to default time. 


                                        Survival function of kth to default. 


 Remark that:   


 Survival function of        : 


 Computation of                   


 Use of pgf of N(t):   


                            «Counting time is not so important as making time count» 


Probabilistic Tools: Number of Defaults 







                            «Counting time is not so important as making time count» 


Probabilistic tools: Number of Defaults 
 Probability generating function of  


                                                                     iterated expectations 


                                                               conditional independence 


                                                             binary random variable 


                                                          polynomial in u 


  One can then compute  


  Since 







   «the whole is simpler than the sum of its parts » 


Basket Credit Derivatives Valuation 







Valuation of Premium Leg 


 kth to default swap, maturity T 
                                    premium payment dates 
 Periodic premium p is paid until  


 lth premium payment 
              payment of p at date 
 Present value: 
                           accrued premium of                      at 


 
 Present value: 


 
 PV of premium leg given by summation over l 







Valuation of Default Leg: Homogeneous Baskets 


                        names 


 Equal nominal (say 1) and recovery rate (say 0) 


 Payoff : 1 at k-th to default time if less than T 


 Credit curves can be different 


                                    given from credit curves 


                                      : survival function of 


             computed from pgf of   







Valuation of Default Leg: Homogeneous Baskets 


 Expected discounted payoff 
 


 
 From transfer theorem 
 B(t) discount factor 


 Integrating by parts 
 
 
 Present value of default payment leg 
 Involves only known quantities 
 Numerical integration is easy 







Valuation of Default Leg: Non Homogeneous Baskets 


                          names 


                                  loss given default for i 


 Payment at kth default of        if i is in default 
 No simultaneous defaults 


 Otherwise, payoff is not defined 


 i kth default iff k-1 defaults before  
                    number of defaults (i excluded) at  


 k-1 defaults before        iff  







Valuation of Default Leg: Non Homogeneous Baskets 


 
 
 
 


 Guido Fubini 







Valuation of Default Leg: Non Homogeneous Baskets 


 (discounted) Payoff  
 


 Upfront Premium 
 … by iterated expectations theorem 


 
 
 


 … by Fubini + conditional independence 
 
 
 


 where 
 


                                            : formal expansion of 







Example: First to Default Swap 







Example: First to Default Swap 


 Case where 
                                                              no defaults for                 


 
  premium = 


 
 


 =                                                                      (regular case) 
 


 One factor Gaussian 


 Archimedean  







Example: First to Default Swap 


 Dependence upon correlation parameter 
 One factor Gaussian copula 
 10 names, recovery rate = 40%, maturity = 5 years 
 5 spreads at 50 bps, 5 spreads at 350 bps 


 
 
 
 


  
 
 
 x axis: correlation parameter, y axis: annual premium 
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Risk Management of Basket Credit Derivatives 


 Computation of greeks 
 Changes in credit curves of individual names 
 Changes in correlation parameters 


 Greeks can be computed up to an integration over 
factor distribution 
 Lenghty but easy to compute formulas 
 The technique is applicable to Gaussian and non Gaussian 


copulas 
 See « I will survive », RISK magazine, June 2003, for more 


about the derivation. 


 







Risk Management of Basket Credit Derivatives 


 Example: six names 
portfolio 


 Changes in credit curves of 
individual names 


 Amount of individual CDS 
to hedge the basket 


 Semi-analytical more 
accurate than 105 Monte 
Carlo simulations. 


 Much quicker: about 25 
Monte Carlo simulations. 







Risk Management of Basket Credit Derivatives 


 Changes in credit curves of individual names 
 Dependence upon the choice of copula for defaults 


 
 







CDO Tranches 
 «Everything should be made as simple as possible, not simpler» 


 Explicit premium 


computations for tranches 


 Use of loss distributions 


over different time horizons 


 Computation of loss 


distributions from FFT 


 Involves integration par 


parts and Stieltjes integrals 







Credit Loss Distributions 
 Accumulated loss at t: 


 


 Where                                                             loss given default  


 Characteristic function 


 By conditioning   


 If recovery rates  follows a beta distribution: 


 


 where M is a Kummer function, aj,bj some parameters 


 Distribution of L(t) is obtained by Fast Fourier Transform 







Credit Loss Distributions 
 Beta distribution for recovery rates 
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Credit Loss distributions 


 One hundred names, same 
nominal. 


 Recovery rates: 40% 


 Credit spreads uniformly 
distributed between 60 and 
250 bp. 


 Gaussian copula, correlation: 
50% 


 105 Monte Carlo simulations 







Valuation of CDO’s 


 Tranches with thresholds  
 Mezzanine: pays whenever losses are between A and B 
 Cumulated payments at time t: M(t) 


 
 
 


 Upfront premium:  
 


 B(t) discount factor, T maturity of CDO 
 


 Stieltjes integration by parts 
 


 where  







Valuation of CDO’s 
 
 
 
 
 
 
 
 
 
 


 One factor Gaussian copula 
 CDO tranches margins with respect to correlation 


parameter 







Risk Management of CDO’s 


 Hedging of CDO tranches 
with respect to credit curves 
of individual names 


 Amount of individual CDS 
to hedge the CDO tranche 


 Semi-analytic : some 
seconds 


 Monte Carlo more than one 
hour and still shaky 
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Factor Models and Credit Derivatives 


 Parametric factor copulas 
 Gaussian, double t, VG, NIG, Student t, Clayton, Marshall 


Olkin 


 Semi-parametric approaches 
 Stochastic correlation 


 Local correlation 


 Non parametric factor approaches 
 Perfect copula 
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CDO pricing : introduction 


                        names. 


                    default times. 


        nominal of credit i,  


        recovery rate (between 0 and 1) 
                                    loss given default (of name i) 


 if             does not depend on i: homogeneous case 


 otherwise, heterogeneous case. 


 Aggregate loss at time t 


1, , nτ τ


( )1i i iLGD N δ= −


iLGD


∑
=
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n


i
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LGDtL
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CDO pricing : introduction 


 CDO payments are based on the accumulated losses 
on the pool of credits 


 Accumulated loss at t: 


 
 


         pure jump process 


1.1 2.4 
10 
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30 
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CDO pricing : introduction 


 Tranches with thresholds  
 Mezzanine: losses are between A and B 


 Cumulated payments at time t on mezzanine tranche 
 
 


 Payments on default leg: 
                                    at time  


 Payments on premium leg:  
 periodic premium,  


 proportional to outstanding nominal:  
B A L(t) 


M(t) 


B-A 
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CDO pricing : introduction 


 Upfront premium:  
 


 B(t) discount factor, T maturity of CDO 


 Integration by parts: 
 


 Where 
 Premium only involves loss distributions 


 Marginal loss distribution for time horizon t: 


 


 Pricing of CDOs only involve options on aggregate losses 


[ ] [ ]∫−
T


tdBtMETMETB
0


)()()()(


( ) ( )ltLQlFl tL ≤=→ )()(


( )[ ]+− KtLEQ )(
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CDO pricing : introduction 


 Modelling approaches 
 Modelling of default indicators        of names:  


 individual model  
 Aggregation issues 


 Modelling the dependence between default dates? 


 Direct modelling of        : collective model 
 Dealing with heterogeneous portfolios 


 non stationary, non Markovian 


 bespoke portfolios, CDO squared? 


 Risk management of correlation risk? 


)(tL


1
i tτ ≤
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CDO pricing : introduction 


 Individual model / factor based copulas 
 Allows to deal with non homogeneous portfolios 
 Arbitrage free prices  


 non standard attachment –detachment points 
 Non standard maturities 


 Consistent pricing of bespoke, CDO2, zero-coupon CDOs 
 Computations 


 Semi-explicit pricing, computation of Greeks, LHP 


 But… 
 Poor dynamics of aggregate losses (forward starting CDOs) 
 Risk management, credit deltas, theta effects 
 Calibration onto liquid tranches (matching the skew) 
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CDO pricing : introduction 


 Why factor copulas 
 Perfectly well suited in the homogeneous case 


 De Finetti theorem 
 Asymptotic results : factor identification 


 Non parametric copulas 
 Efficient numerical approaches for computing prices and 


greeks 
 Name per name vs loss models 


 Individual vs collective 
 Individual models take into account name heterogeneity 


 Different credit curves or recovery rates 
 Needs some aggregation procedure to derive loss 


distributions 
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 Factor approaches to joint default times distributions: 
 V: low dimensional factor 
 Conditionally on V, default times are independent. 
 Conditional default and survival probabilities: 


 
 


 Why factor models ? 
 Tackle with large dimensions (i-Traxx, CDX) 


 Need of tractable dependence between defaults: 
 Parsimonious modelling 
 Semi-explicit computations for CDO tranches 
 Large portfolio approximations 


CDO pricing : introduction 
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 Semi-explicit pricing for CDO tranches 
 Laurent & Gregory [2003] 


 Default payments are based on the accumulated losses on 
the pool of credits: 
 
 


 Tranche premiums only involve call options on the 
accumulated losses 
 
 


 This is equivalent to knowing the distribution of L(t) 


{ }
1


( ) 1 ,   (1 )
i


n


i i i it
i


L t LGD LGD Nτ δ≤
=


= = −∑


( )( )E L t K + − 


CDO pricing : introduction 
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 Characteristic function: 


 By conditioning upon V and using conditional independence:   


 


 


 Distribution of L(t) can be obtained by FFT 


 Only need of conditional default probabilities i V
tp


CDO pricing : introduction 
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No loss 


Notional = 4 Notional = 9 


Loss = 0-5 


No loss 


Loss = 0-5 


Loss = 5-10 


Loss = 10-15 


No loss 


Loss = 0-5 


Loss = 5-10 


Loss = 10-15 


Notional = 3 


Loss = 15-20 


 
 


 


 


 


 


 


 


 
 


Loss distribution 


1 | |
( ) ( ) ( ) 1(1 )i i k V i k V


L k i L k i t L k i tP P p P p+
= = = −= − +


Recursion  approach 


new name survives new name defaults 


CDO pricing : introduction 
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CDO pricing : introduction 


 Large homogeneous portfolio approximations 
 « infinitely granular » portfolios (Basel II, Vasicek) 
 All names have the same conditional default probabilities 


 
 Number on names 


 
 
 


 From Dhaene et al:  
 


n →∞


{ } { }
. .


1


1( ) 1 1
i i


iVa s
tt tn


i n
L t E V p


n τ τ≤ ≤→∞
≤ ≤


 = → = ∑


( ) ( )( ) ( )iV iVQ Q
t cx tp L t E p K E L t K


+ +   ≤ ⇒ − ≤ −   


1V iV nV
t t tp p p= = = = 
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CDO pricing : introduction 


 Large (non homogeneous) portfolios 


 


 


 Pricing with large portfolio approximations 
          is usually monotonic in V (say non decreasing) 


          is thus a non decreasing univariate function of V 


 


 


 


1
( )


n
iV


i t
i


L t LGD p
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≈ ×∑


iV
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( )L t


( )
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CDO pricing with factor copulas 


 2 One factor Gaussian copula 
 Ordering of risks, Base correlation 
 correlation sensitivities 
 Stochastic recovery rates 


 3 Model dependence/Choice of copula 
 double t, VG, NIG, Student t, Clayton, Marshall-Olkin, Stochastic 


correlation 
 Distribution of conditional default probabilities 


 4 Beyond the Gaussian copula 
 Stochastic correlation and state dependent correlation 
 Marginal and local correlation 
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CDO pricing with factor copulas 


 One factor Gaussian copula: 


                                        independent Gaussian, 


 


 


 Default times: 


      marginal distribution function of default times 


 Conditional default probabilities: 
 


( )1 ( )
ii iF Vττ −= Φ


( )1
|


2


( )


1
i ii V


t


i


F t V
p τ ρ


ρ


− Φ −
 = Φ
 − 


i
Fτ
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CDO pricing with factor copulas 


 Equity tranche premiums are decreasing wrt 


 General result (use of stochastic orders theory) 


 Equity tranche premium is always decreasing with 


correlation parameter 


 Guarantees uniqueness of « base correlation » 


 Monotonicity properties extend to Student t, Clayton and 


Marshall-Olkin copulas 


ρ
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CDO pricing with factor copulas 


   
 Equity tranche premiums decrease with correlation 
 Does                   correspond to some lower bound? 
                    corresponds to « comonotonic » default dates: 
                  is a model free lower bound for the equity tranche 


premium 
   


 Does               correspond to the higher bound on the equity 
tranche premium? 


              corresponds to the independence case between 
default dates 


 The answer is no, negative dependence can occur 
 Base correlation does not always exists 


100%ρ =
100%ρ =


100%ρ =


100%ρ =


0%ρ =
0%ρ =


0%ρ =
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CDO pricing with factor copulas 


 Equity tranche premiums are decreasing wrt 
 General result ? 
 Supermodular function f is such that: 


 
 
 


 Supermodular order 


: nf → 
( ) ( ) ( )i if x f x e f xε ε∆ = + −


( ) 0i j f xε δ∆ ∆ ≥, , 0nx ε δ∀ ∈ ∀ >


( )1, , nX X X= 


( )1, , nY Y Y= 


( ) ( )sm   ,    supermodularX Y E f X E f Y f≤ ⇔ ≤ ∀      


ρ
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CDO pricing with factor copulas 


 « Supermodular » order of Gaussian vectors 
 Let X and Y be Gaussian vectors with zero mean 


 
 
 
 
 
 
 


 Müller & Scarsini (2000), Müller (2001) 
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CDO pricing with factor copulas 


 « Stop-Loss » order 
 Accumulated losses: 


 
 


 Supermodular order of latent variables implies stop-loss 
order of accumulated losses 


 Thus, equity tranche premium is always decreasing with 
correlation 


 Guarantees uniqueness of « base correlation » 


( ), '( )L t L t


( ) ( )
def


sl( ) '( ) ( ) '( ) , 0L t L t E L t K E L t K K+ +   ≤ ⇔ − ≤ − ∀ ≥   
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CDO pricing with factor copulas 


 Second issue 
 Equity tranche premium decrease with correlation 


 Does                   correspond to some lower bound? 


                    corresponds to « comonotonic » default dates: 


 


 where U is uniform 


 
 Tchen (1980) 


                  is a model free lower bound for the equity tranche 
premium 


100%ρ =


100%ρ =


( ) ( ) ( )1 1
1 1 1, ,  comonotonic , , ( ), , ( )


d


n n nF U F Uτ τ τ τ − −⇔ =  


( ) ( )1 1
1 sm 1, , ( ), , ( )n nF U F Uτ τ − −≤ 


100%ρ =
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CDO pricing with factor copulas 


 Pair-wise correlations 
 
 Pair-wise correlation 


sensitivities for CDO tranches 
 


 Can be computed analytically 
 See Gregory & Laurent, « In the Core 


of Correlation », Risk 


 
 Higher correlation sensitivities 


for riskier names (senior 
tranche) 
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CDO pricing with factor copulas 


 Intra Inter sector correlations 
 i, name, s(i) sector 
 Ws(i) factor for sector s(i) 
 W global factor 
 Allows for ratings agencies 


correlation matrices 
 Analytical computations still 


available for CDOs 
 Increasing intra or intersector 


correlations decrease equity 
tranche premiums 


 Does not explain the skew 
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CDO pricing with factor copulas 


 Correlation between default dates and recovery rates 
 One factor Gaussian copula for default dates 


 Losses Given Default also have a one factor structure: 


 


 Merton type LGD: 


 A two factor Gaussian model with factors 
 Correlation between defaults & recoveries and amongst 


recoveries 
 See Credit Risk Assessment and Stochastic LGD's: an Investigation 


of Correlation Effects in Recovery Risk: The Next Challenge in Credit 
Risk Management, Risk Books 


1i iρ ρΨ = Ψ + − Ψ


1i iξ βξ βξ= + −


( )max 0,1 ieµ σξ+−


,ξΨ







27 


CDO pricing with factor copulas 
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CDO pricing with factor copulas 


 Correlation between default dates and recovery rates 
 Correlation smile implied from the correlated recovery rates 
 Not as important as what is found in the market 
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CDO pricing with factor copulas 


 Extensions of the Gaussian copula 
 Additive factor models 


 Latent variables 


 


 


           independent, with zero mean and unit variance 


         correlation parameter 


           are no longer Gaussian 


 May follow student t, Variance Gamma or Normal 
Inverse Gaussian distributions 


21i iV V Vρ ρ= + −


, iV V


, iV V


ρ







30 


CDO pricing with factor copulas 


 Double t model (Hull & White) 
 
 
            are independent Student t variables 


 with    and     degrees of freedom 


 


 where      is the distribution function of Vi 
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CDO pricing with factor copulas 


 VG: Variance Gamma 
 


            independent random variables with VG distributions 
        is also VG (stability under scaling and convolution) 


 
 density function of X is explicitly known 
 X can be easily simulated (CDO squared) 


 
 G with Gamma distribution,  
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, iV V


( ), , ,X VG θ µ σ µ


GX G Wµ θ σ= + +


iV


(0, )tW N t


( )1
|


2


( )


1
i i


i


V ii V
t V


i


F F t V
p F τ ρ


ρ


− −
 =
 − 







32 


CDO pricing with factor copulas 


 Moosbrucker (2006) 
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CDO pricing with factor copulas 


 NIG (Normal Inverse Gaussian) 
 


          independent random variables with NIG distributions 
      is also VG (stability under scaling and convolution) 


 
 Density of X explicitly known 
 Monte Carlo simulation (see Rydberg (1997) or mathlab 


code by Werner) 
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CDO pricing with factor copulas 


 Kalemanova et al (2005) 
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CDO pricing with factor copulas 


 Other non additive parametric copulas 
 Still some latent variables       and a factor V 


 The dependence is embedded in the latent variables 
 Copula of default times = copula of latent variables 


 Conditionally on V, default times are independent 
 Student t 


 Clayton (Frailty models), 


 Marshall-Olkin (Shock models) 


 Computation of conditional default probabilities 


 Simulation of default times                      feasible 


iV


1, , nτ τ
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CDO pricing with factor copulas 


 Student t copula 
 
 
 


 
         independent Gaussian variables 
         follows a        distribution  


 Conditional default probabilities (two factor model) 
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CDO pricing with factor copulas 


 Clayton copula 
 


 


 


 V: Gamma distribution with parameter 


                 independent uniform variables 


 Conditional default probabilities (one factor model) 
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CDO pricing with factor copulas 


 Shock models (multivariate exponential copulas) 
 Marshall-Olkin copula 


 Modelling of default dates: 


          exponential with parameters  


 Default dates 


                                                       marginal survival function 


 Conditionally on           are independent. 


 Conditional default probabilities 
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CDO pricing with factor copulas 


 Calibration procedure 
 One parameter copulas 


 Fit Clayton, Student t, double t, Marshall Olkin 
parameters onto CDO equity tranches 
 Computed under one factor Gaussian model 


 Reprice mezzanine and senior CDO tranches 
 Given the fitted parameter 


 Look for departures from the Gaussian copula 


 Look for ability to explain the correlation skew 
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 CDO margins (bps pa) 


 With respect to correlation 
  Gaussian copula 
 Attachment points: 3%, 10% 
 100 names 
 Unit nominal 
 Credit spreads 100 bps 
 5 years maturity 


equity mezzanine senior 


0% 5341 560 0.03 


10% 3779 632 4.6 


30% 2298 612 20 


50% 1491 539 36 


70% 937 443 52 


100% 167 167 91 


CDO pricing with factor copulas 
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CDO pricing with factor copulas 


ρ  0% 10% 30% 50% 70% 100% 
Gaussian 560 633 612 539 443 167 
Clayton 560 637 628 560 464 167 


Student (6)   637 550 447 167 
Student (12)   621 543 445 167 


t(4)-t(4) 560 527 435 369 313 167 
t(5)-t(4) 560 545 454 385 323 167 
t(4)-t(5) 560 538 451 385 326 167 
t(3)-t(4) 560 495 397 339 316 167 
t(4)-t(3) 560 508 406 342 291 167 


MO 560 284 144 125 134 167 
Table 6: mezzanine tranche (bps pa) 
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ρ  0% 10% 30% 50% 70% 100% 
Gaussian 0.03 4.6 20 36 52 91 
Clayton 0.03 4.0 18 33 50 91 


Student (6)   17 34 51 91 
Student (12)   19 35 52 91 


t(4)-t(4) 0.03 11 30 45 60 91 
t(5)-t(4) 0.03 10 29 45 59 91 
t(4)-t(5) 0.03 10 29 44 59 91 
t(3)-t(4) 0.03 12 32 47 71 91 
t(4)-t(3) 0.03 12 32 47 61 91 


MO 0.03 25 49 62 73 91 
Table 7: senior tranche (bps pa) 


CDO pricing with factor copulas 


Gaussian, Clayton and Student t CDO premiums are close 
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CDO pricing with factor copulas 


implied compound correlation
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CDO pricing with factor copulas 
 Why do Clayton and Gaussian copulas provide same premiums? 


 Loss distributions depend on the distribution of conditional default 
probabilities 
 
 


 Distribution of conditional default probabilities are close for Gaussian 
and Clayton 


( )( )exp 1 ( )i V
t ip V F t θ−= −


( )1


2


( )


1
i V i
t


V F t
p


ρ


ρ


− − +Φ
= Φ  − 


0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50
0


0,1


0,2


0,3


0,4


0,5


0,6


0,7


0,8


0,9


1
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5


Clayton
Gaussian
MO
independence
comonotonic
stoch.







45 


CDO pricing with factor copulas 


 De Finetti theorem 


                             default indicators  


 


 


 For any permutation 


 


 


 


    distribution of conditional default probability 
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CDO pricing with factor copulas 


 Practical issues with the use of parametric copulas 
 Need to know the density function of the factor V 
 Analytical form 
 Or only Laplace transform or characteristic function 


 Case of affine jump diffusion intensity models 
 Need of some inversion, more complex computations 


 Need to know the cdf of the latent variables 
 To calibrate the marginal credit curves 
 An issue with the double t model 


 Numerical integration is required 


iV
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CDO pricing with factor copulas 


 Computation of Greeks may be problematic 
 Threshold models may lead to irregular patterns in credit 


deltas 


 Extreme cases in mixture models (comonotonic case) may 
raise similar issues 


 Only provide a reasonable fit to correlation smiles 


 Calibration on two different time horizons remains 
problematic 
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CDO pricing with factor copulas 


 Stochastic correlation copula 
                                     independent Gaussian variables 
           correlation     ,            correlation ρ
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CDO pricing with factor copulas 


 Stochastic correlation 
 Latent variables 


 
 
 
 
 


 Conditional default probabilities 
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CDO pricing with factor copulas 


 Stochastic correlation   
 Semi-analytical techniques for pricing CDOs available 
 Large portfolio approximation can be derived 
 Allows for Monte Carlo 
                          leads to increase senior tranche premiums 


 State dependent correlation 
 Local correlation 


 Turc et al 


 Random factor loadings 
 Andersen & Sidenius   
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CDO pricing with factor copulas 


 Distribution functions of conditional default probabilities 
  stochastic correlation vs RFL 


 
 
 
 
 
 
 
 
 
 
 


 With respect to level of aggregate losses 
 Also correspond to loss distributions on large portfolios 
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CDO pricing with factor copulas 


 Marginal compound correlation 
 Compound correlation of a             tranche 


 Digital call on aggregate loss 


 obtained from conditional default probability 
distribution 


 Need to solve a second order equation 


 zero, one or two marginal compound correlations 


[ ],α α
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CDO pricing with factor copulas 


 Marginal compound correlations: 
 With respect to attachment – detachment point 


 
 
 
 
 
 
 
 
 
 


 Stochastic correlation vs RFL 
 zero marginal compound correlation at the expected loss 
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CDO pricing with factor copulas 


 Calibration history (from 15 April 2005) 
 Implied correlation, implied idiosyncratic and systemic probabilities 


 
 
 
 
 
 
 
 
 


 Trouble in fitting during the crisis 
 Since then, decrease in systemic probability 







55 


CDO pricing with non parametric factor copulas 


 Still remains in the factor copula framework 
 Semi-analytical pricing techniques for CDOs 
 Taking into account heterogeneity across names 


 Non parametric specification of conditional default 
probabilities 
 Under some  constraints 


 Consistency with marginal credit curves 


 Consistency with quotes of liquid tranches 


 Local correlation, implied copulas, entropic calibration 
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CDO pricing with factor copulas 


 Local correlation 


 
 Can be computed from the distribution of  


 Through some fixed point algorithm 


 Local correlation at step one: rescaled marginal 
compound correlation 
 Same issues of uniqueness and existence as marginal compound 


correlation 


2( ) 1 ( )i iV V V V Vρ ρ= − + −
iV
tp
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CDO pricing with factor copulas 


 Local correlation associated with RFL (as a function of the factor) 
 
 
 
 
 
 
 
 
 
 
 


 Jump at threshold 2, low correlation level 5%, high correlation level 85% 
 Possibly two local correlations 
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CDO pricing with factor copulas 


 Local correlation associated with stochastic correlation model 
 With respect to factor V 


 
 
 
 
 
 
 
 
 


 Correlations of 1 for high-low values of V (comonotonic state) 
 Possibly two local correlations leading to the same prices 
 As for RFL, rather irregular pattern 
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CDO pricing with factor copulas 


 Checking for the convergence of the fixed point 
algorithm 


 
 
 
 
 
 
 
 
 


 Good news: convergence at step one 
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The Perfect Copula Approach 
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 Different 1F copula models just specify differently the conditional 
default probabilities 
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CDO pricing with factor copulas 


 Perfect copula (Hull & White) 
 discrete distribution of conditional default probabilities 


 Limit the number of parameter to the number of 
market prices  
 5 tranches + 1 index 


 See paper by Hull and White for more complex 
calibration procedures 
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Motivation


Specify the dependence structure of default indicators D1, . . . , Dn which
leads to:


an increase of the value of call options E
[
(Lt − a)+]


for all strike
level a > 0
an increase of convex risk measures on Lt (TVaR, Wang risk
measures)


Comparison between homogeneous credit portfolios


D1, . . . , Dn are assumed to be exchangeable Bernoulli random
variables
De Finetti’s theorem leads to a factor representation of D1, . . . , Dn


Application to several popular CDO pricing models


Jean-Paul LAURENT and Areski COUSIN Comparison results for credit risk portfolios
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De Finetti theorem and factor representation


Homogeneity assumption: default indicators D1, . . . , Dn forms an
exchangeable Bernoulli random vector


Definition (Exchangeability)


A random vector (D1, . . . , Dn) is exchangeable if its distribution function is
invariant for every permutations of its coordinates: ∀σ ∈ Sn


(D1, . . . , Dn)
d
= (Dσ(1), . . . , Dσ(n))


Same marginals


Jean-Paul LAURENT and Areski COUSIN Comparison results for credit risk portfolios
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De Finetti theorem and factor representation


Assume that D1, . . . , Dn, . . . is an exchangeable sequence of Bernoulli
random variables


Thanks to de Finetti’s theorem, there exists a random factor p̃ such that


D1, . . . , Dn are conditionally independent given p̃


Denote by Fp̃ the distribution function of p̃, then:


P(D1 = d1, . . . , Dn = dn) =


∫ 1


0
p


∑
i di (1− p)n−


∑
i di Fp̃(dp)


Finite exchangeability only leads to a sign measure Jaynes (1986)
p̃ is characterized by:


1
n


n∑
i=1


Di
a.s−→ p̃ as n →∞


p̃ is exactly the loss of the infinitely granular portfolio (Bâle 2
terminology)


Jean-Paul LAURENT and Areski COUSIN Comparison results for credit risk portfolios
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Stochastic orders


The convex order compares the dispersion level of two random variables


Convex order: X ≤cx Y if E [f (X )] ≤ E [f (Y )] for all convex functions f


Stop-loss order: X ≤sl Y if E [(X − K)+] ≤ E [(Y − K)+] for all K ∈ IR


X ≤sl Y and E [X ] = E [Y ] ⇔ X ≤cx Y


X ≤cx Y if E [X ] = E [Y ] and FX , the distribution function of X and FY ,
the distribution function of Y are such that:


Jean-Paul LAURENT and Areski COUSIN Comparison results for credit risk portfolios
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Supermodular order


The supermodular order captures the dependence level among coordinates
of a random vector


(X1, . . . , Xn) ≤sm (Y1, . . . , Yn) if E [f (X1, . . . , Xn)] ≤ E [f (Y1, . . . , Yn)] for
all supermodular function f


Definition (Supermodular function)


A function f : Rn → R is supermodular if for all x ∈ IRn, 1 ≤ i < j ≤ n and
ε, δ > 0 holds


f (x1, . . . , xi + ε, . . . , xj + δ, . . . , xn)− f (x1, . . . , xi + ε, . . . , xj , . . . , xn)


≥ f (x1, . . . , xi , . . . , xj + δ, . . . , xn)− f (x1, . . . , xi , . . . , xj , . . . , xn)


Consequences of new defaults are always worse when other defaults have
already occurred


Jean-Paul LAURENT and Areski COUSIN Comparison results for credit risk portfolios
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Review of literature


Müller(1997)
Stop-loss order for portfolios of dependent risks


(D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n ) ⇒
n∑


i=1


MiDi ≤sl


n∑
i=1


MiD∗
i


Bäuerle and Müller(2005)
Stochastic orders ans risk measures: Consistency and bounds


X ≤sl Y ⇒ ρ(X ) ≤ ρ(Y )


for all law-invariant, convex risk measures ρ


Lefèvre and Utev(1996)
Comparing sums of exchangeable Bernoulli random variables


p̃ ≤cx p̃∗ ⇒
n∑


i=1


Di ≤sl


n∑
i=1


D∗
i
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Main results


Let us compare two credit portfolios with aggregate loss Lt =
∑n


i=1 MiDi


and L∗t =
∑n


i=1 MiD∗
i


Let D1, . . . , Dn be exchangeable Bernoulli random variables associated
with the mixture probability p̃


Let D∗
1 , . . . , D∗


n exchangeable Bernoulli random variables associated with
the mixture probability p̃∗


Theorem


p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )


In particular, if p̃ ≤cx p̃∗, then:


E [(Lt − a)+] ≤ E [(L∗t − a)+] for all a > 0.
ρ(Lt) ≤ ρ(L∗t ) for all convex risk measures ρ


Jean-Paul LAURENT and Areski COUSIN Comparison results for credit risk portfolios
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Main results


Let D1, . . . , Dn, . . . be exchangeable Bernoulli random variables associated
with the mixture probability p̃


Let D∗
1 , . . . , D∗


n , . . . be exchangeable Bernoulli random variables associated
with the mixture probability p̃∗


Theorem (reverse implication)


(D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n ),∀n ∈ N ⇒ p̃ ≤cx p̃∗.
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Ordering of CDO tranche premiums


Burtschell, Gregory, and Laurent(2008)
A comparative analysis of CDO pricing models


Analysis of the dependence structure within some factor copula
models such as:


Gaussian, Student t, Double t, Clayton, Marshall-Olkin copula
An increase of the dependence parameter leads to:


a decrease of [0%, b] equity tranches premiums (which
guaranties the uniqueness of the market base correlation)
an increase of [a, 100%] senior tranches premiums
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Additive factor copula approaches


The dependence structure of default times is described by some latent
variables V1, . . . , Vn such that:


Vi = ρV +
√


1− ρ2V̄i , i = 1 . . . n


V , V̄i , i = 1 . . . n independent


τi = G−1(Hρ(Vi )), i = 1 . . . n


G : distribution function of τi


Hρ: distribution function of Vi


Di = 1{τi≤t}, i = 1 . . . n are conditionally independent given V
1
n


∑n
i=1 Di


a.s−→ E [Di | V ] = P(τi ≤ t | V ) = p̃
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Additive factor copula approaches


Theorem


For any fixed time horizon t, denote by Di = 1{τi≤t}, i = 1 . . . n and
D∗


i = 1{τ∗i ≤t}, i = 1 . . . n the default indicators corresponding to (resp.) ρ and
ρ∗, then:


ρ ≤ ρ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )


This framework includes popular factor copula models:


One factor Gaussian copula - the industry standard for the pricing of
CDO tranches
Double t: Hull and White(2004)
NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid
and Werner(2007)
Double Variance Gamma: Moosbrucker(2006)
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Archimedean copula


Schönbucher and Schubert(2001), Gregory and Laurent(2003),
Madan et al.(2004), Friend and Rogge(2005)


V is a positive random variable with Laplace transform ϕ−1


U1, . . . , Un are independent Uniform random variables independent of V


Vi = ϕ−1
(
− ln Ui


V


)
, i = 1 . . . n (Marshall and Olkin (1988))


(V1, . . . , Vn) follows a ϕ-archimedean copula
P(V1 ≤ v1, . . . , Vn ≤ vn) = ϕ−1 (ϕ(v1) + . . . + ϕ(vn))


τi = G−1(Vi )


G : distribution function of τi


Di = 1{τi≤t}, i = 1 . . . n independent knowing V
1
n


∑n
i=1 Di


a.s−→ E [Di | V ] = P(τi ≤ t | V )
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Archimedean copula


Conditional default probability: p̃ = exp {−ϕ(G(t)V )}


Copula Generator ϕ Parameter
Clayton t−θ − 1 θ ≥ 0
Gumbel (− ln(t))θ θ ≥ 1
Franck − ln


[
(1− e−θt)/(1− e−θ)


]
θ ∈ IR∗


Theorem


θ ≤ θ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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Archimedean copula
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Structural model


Hull, Predescu and White(2005)


Consider n firms


Let Vi,t , i = 1 . . . n be their asset dynamics


Vi,t = ρVt +
√


1− ρ2V̄i,t , i = 1 . . . n


V , V̄i , i = 1 . . . n are independent standard Wiener processes


Default times as first passage times:


τi = inf{t ∈ IR+|Vi,t ≤ f (t)}, i = 1 . . . n, f : IR → IR continuous


Di = 1{τi≤T} , i = 1 . . . n are conditionally independent
given σ(Vt , t ∈ [0, T ])


Jean-Paul LAURENT and Areski COUSIN Comparison results for credit risk portfolios







Comparison results
Application to several popular CDO pricing models


Conclusion


Factor copula approaches
Structural model
Multivariate Poisson model


Structural model


Theorem


For any fixed time horizon T , denote by Di = 1{τi≤T}, i = 1 . . . n and
D∗


i = 1{τ∗i ≤T}, i = 1 . . . n the default indicators corresponding to (resp.) ρ
and ρ∗, then:


ρ ≤ ρ∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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Structural model
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Distributions of Conditionnal Default Probabilities 


ρ=0.1


ρ=0.9
Normal copula
Normal copula


Portfolio size=10000
Xi


0=0


Threshold=−2
t=1 year
deltat=0.01
P(τi≤ t)=0.033


1
n


∑n
i=1 Di


a.s−→ p̃
1
n


∑n
i=1 D∗


i
a.s−→ p̃∗


Empirically, mixture
probabilities are ordered with
respect to the convex order:
p̃ ≤cx p̃∗
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Multivariate Poisson model


Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)


N̄ i
t Poisson with parameter λ̄: idiosyncratic risk


Nt Poisson with parameter λ: systematic risk


(B i
j )i,j Bernoulli random variable with parameter p


All sources of risk are independent


N i
t = N̄ i


t +
∑Nt


j=1 B i
j , i = 1 . . . n


τi = inf{t > 0|N i
t > 0}, i = 1 . . . n
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Multivariate Poisson model


Dependence structure of (τ1, . . . , τn) is the Marshall-Olkin copula


τi ∼ Exp(λ̄ + pλ)


Di = 1{τi≤t}, i = 1 . . . n are conditionally independent given Nt


1
n


∑n
i=1 Di


a.s−→ E [Di | Nt ] = P(τi ≤ t | Nt)


Conditional default probability:


p̃ = 1− (1− p)Nt exp(−λ̄t)
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Multivariate Poisson model


Comparison of two multivariate Poisson models with parameter sets
(λ̄, λ, p) and (λ̄∗, λ∗, p∗)


Supermodular order comparison requires equality of marginals:
λ̄ + pλ = λ̄∗ + p∗λ∗


3 comparison directions:


p = p∗: λ̄ v.s λ
λ = λ∗: λ̄ v.s p
λ̄ = λ̄∗: λ v.s p
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Multivariate Poisson model


Theorem (p = p∗)


Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + pλ∗,
then:


λ ≤ λ∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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When λ increases, the aggregate loss
increases with respect to stop-loss order
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Multivariate Poisson model


Theorem (λ = λ∗)


Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + p∗λ,
then:


p ≤ p∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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Multivariate Poisson model


Theorem (λ = λ∗)


Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + p∗λ,
then:


p ≤ p∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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Multivariate Poisson model


Theorem (λ̄ = λ̄∗)


Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that pλ = p∗λ∗, then:


p ≤ p∗, λ ≥ λ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗


n )
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When p increases, the aggregate loss
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Conclusion


When considering an exchangeable vector of default indicators, the
conditional independence assumption is not restrictive thanks to de
Finetti’s theorem


The mixture probability (the factor) can be viewed as the loss of an
infinitely granular portfolio


We completely characterize the supermodular order between exchangeable
default indicator vectors in term of the convex ordering of corresponding
mixture probabilities


We show that the mixture probability is the key input to study the impact
of dependence on CDO tranche premiums


Comparison analysis can be performed with the same method within a
large number of popular CDO pricing models
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Main practical issue 
 Better understanding of large credit portfolio losses 


 After the credit and liquidity crisis 


 By introducing stochastic recovery rates 


 « correlated » together 


 And « correlated » with default dates 


 Through dependence upon common factor(s) 


 Study the properties of such (bottom-up) models 


 Results of interest for market risk assessment 
 And not only portfolio credit risk 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Need to distinguish CDOs of subprimes 
 Overestimated ratings for AAA senior tranches 


 Comonotonic losses 
 Related to real estate market in the US 
 Overestimation of diversification effects amongst assets 


 Underestimation of marginal default probabilities 
 Huge adverse selection problems with originate and distribute system 


especially in the low-quality  


 Huge losses borne by so-called “sophisticated investors” 
 … such as regional banks in Europe 
 “Because of the dispersion of financial risks to those more willing 


and able to bear them, the economy and the financial system are 
more resilient,”  


 Ben Bernanke keynote address, Federal Reserve Bank of Chicago’s annual 
conference on bank structure and competition on May 18, 2006  
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Need to distinguish between CDOs of subprimes and corporate 
CDOs 
 CDO of subprimes are CDO squared 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Need to distinguish between CDOs of subprimes and corporate CDOs 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Huge losses to “sponsors” of SIV 
 Mainly US banks actively operating 


in private securitization of  subprime 
mortgages 


 A SIV being a shadow bank, with 
highly illiquid low rated MBS on the 
asset side and on the liability side, no 
core equity, funding itself issuing 
short-term CP 
 Obvious solvency and liquidity 


issues for such SIV 
 How did it infect the sponsor banks? 
 through “accounting engineering” 


such as 365 days lines of credit 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Huge losses to “sponsors” of SIV 
 Credit and liquidity exposures 


unconsolidated?  
 poor regulation (Basel I) and banking 


supervision 
 “Citigroup has agreed to pay $75m 


to settle civil charges that it misled 
investors over potential losses from 
high-risk mortgages” 


 Citigroup had said in 2007 that its 
exposure was $13bn or less. The SEC 
said it exceeded $50bn. 


 SEC Enforcement Director Robert 
Khuzami said Citigroup had misled 
analysts and the market of its ability 
to reduce its subprime exposure. 
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State dependent  
recovery rates 


 Practical context 
 Calibration of super senior tranches during the liquidity and 


credit crisis 
 Insurance against very large credit losses 
 [30-100] tranche on CDX starts to pay when (approximately) 50% of 


the 125 major companies in North America are in default 
 Contributed to the collapse of AIG 


 AIG reinsurer of major banks 
 Sold protection through AIG Financial Products (London) and Banque 


AIG (Paris) 
 Between 440 and 500 billion “CDS” outstanding 
 Issues with accounting, counterparty risk, collateral management and 


liquidity. 
 Large MTM losses 
 Though no insurance payments were to be made 
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State dependent  
recovery rates 


 Asymmetric CSA and downgrading of AIG triggered huge 
collateral posting  
 30 billion USD of collateral to be posted for super senior tranches  
 Not corresponding to actual credit losses on tranches but to « mark to 


market » of  highly illiquid insurance policies 
 What occurred when US Treasury took over AIG? 
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Pricing CDOs with state dependent  
stochastic recovery rates 


 Practical context: high spreads on senior tranches 
 Increase of risk for individual losses leads to increase of risk 


in aggregate losses 
 For proper positive dependence 
 General results likely to be useful for market risk analysis 


 Comparing risks when claim frequency increase and claim 
amount decrease (with equal mean) 
 Analysis of changing recovery rate assumptions on convex measures 


of risk 
 Comparing risks for granular portfolios sharing the same large 


portfolio limit 
 Stochastic recovery rate versus recovery markdown 


 Numerical issues 
 Expansion techniques vs recursion techniques 
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State dependent recovery rates 


 High spreads on super senior tranches 
 Could not be calibrated with a standard 40% recovery rate  
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State dependent recovery rates 


 High spreads on super senior tranches 
 Could not be calibrated with a standard 40% recovery 


rate 
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State dependent recovery rates 


 High spreads on super senior tranches 
 Could not be calibrated with a standard 40% recovery rate 
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State dependent recovery rates 


 Practical context 
 Steep “base correlations” 
 Implied dependence as measured by implied Gaussian 


copula correlation 
 Increases strongly with respect to attachment point 


 Reflecting “fat tails” in aggregate loss distributions 
 A bunch of issues of trading desks 


 Negative tranchelet prices 
 Delta discriminance 
 Weird Idiosyncratic gamma 


 These issues are (partly) solved in a stochastic recovery 
rate approach 


 Main issue during 2008 and 2009 for investment banks 
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State dependent recovery rates 
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State dependent recovery rates and credit modelling 


 Credit models often focus on the dependence between default dates 
 Bottom-up models 


 Well-suited to analyze changes of portfolio allocation 
 Top-down models 


 Markov models for aggregate losses 
 Dependence through contagion effects : jumps in aggregate loss intensity 


at default times 
 It is not obvious to relate risks to portfolio structure 
 Unit losses are capped by credit nominal, aggregate loss is also capped 


 Our approach is (currently) related to bottom-up approach 
 When clustering comes (only) through simultaneous defaults 
 It can actually create huge dependence effects (common shocks) 
 For example, possibility of an Armageddon risk 


 Is this building really safe regarding earthquakes? 
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State dependent recovery rates and credit modelling 


 Competing approaches for modelling default date dependencies 
 Joint defaults : common shock models 


 Starts from Duffie (1999), then Lindskog & McNeil (2003) 
 Multivariate structural models 


 CreditMetrics, Basel II, Moody’s KMV 
 Correlated intensities 


 Multivariate Cox processes 
 Frailty models (Archimedean copulas) 


 Hierarchical Archimedean copulas (partially nested) 
 Gaussian copula 


 Li (2000) 
 Intra & inter sector correlations: Gregory & Laurent (2004) 


 Factor copulas 
 Associated with a wide range of dependence structures 
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 Markov Copulae 
 Bielecki and co-authors 
 In between top-down and bottom-up 
 Small homogeneous portfolios may be considered as Markov 
 Dependence  comes from simultaneous defaults (related with paper?) 


 GPL: Brigo et al. 
 No embedding framework 
 Large credit losses can also come from stochastic recovery rates 


 “collateral damage” 
 Consider a model with factor dependence 
 Large homogeneous approximation with factor dependent recovery rate 
 Change of mixing distribution for defaults or change recovery rates ? 
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State dependent recovery rates and credit modelling 







State dependent recovery rates and credit modelling 


 Dependence in large dimension 
 The puzzling issue of parametrization 


 Take the Gaussian copula case as the simplest example 


 Homogeneous portfolios (static case) 
 De Finetti theorem 
 One factor  


 Partially exchangeable portfolios 
 A number of ways to introduce sector-based effects 


 Homogeneous sub-portfolios 


 Common shock model is rather well-known 
 Multivariate exponential distributions 
 Marshall Olkin copulas 
 Within the factor copula framework 
 This eases CDO computations and model analysis 
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State dependent recovery rates and credit modelling 
 Common shock models developed for CDOs by Elouerkhaoui 
 The model can be associated with very large dependence 


 Much higher than Cox process models and even that frailty models 
 Allows to control for loss distributions  (here small mezzanine tranches) 
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State dependent recovery rates and credit modelling 


 Properties of the common shock model 
 Specifying the dependence structure 


 Huge overfitting 
 n names can lead to 2n intensities! 
 Checking model restrictions? 


 Dynamics of credit spreads 
 No contagion effects 


 Dependence only due to simultaneous defaults 
 Due to the large number of states, incomplete 


markets 
 Requires more involved techniques to construct risk-


mitigating dynamic strategies 
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State dependent recovery rates and credit modelling 


 What are we looking at? 
 Risk measurement 


 At which time horizon ? 
 Need to account for rating migration, changes in credit spreads 
 (not only defaults) 
 Possible changes in the (local) correlation structure. 
 Static versus dynamic 


 CDO pricing 
 Investment grade names (100 names), medium size 


corporate portfolios, mortgages 
 Not the same inputs  


 historical default data, recovery rates, definition of a 
default, credit spreads, ratings, bond prices, etc. 
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State dependent recovery rates and credit modelling 


 Coping with Basel 2 “++” 
 Capital requirements for CDS and CDO trading books 
 CRM : Comprehensive Risk Measure 
 Incremental Risk Capital Charge (IRC) 
 Stressed VaR : 99.9%, 1 Year time horizon 
 Must take into account dynamic hedging with CDO 


tranches, credit migration, credit spread volatility, 
stochastic correlation, stochastic recovery rates,… 


 Urgent action required (completion by end of year 2010) 
 Moody’s KMV, CreditMetrics and related packages 


are frontrunners 
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State dependent recovery rates and credit modelling 


 Timing of defaults and default date definition 
 Not that clear in the corporate world 
 Costly non-defaults, costless defaults 
 For example, is a bail-out a default?  


 What has occurred to Merrill Lynch counterparties after BofA stepped-in? 
 Then, it is associated with a joint default event, together with Lehman 


 Credit migration? 
 Prior to Bear Stearns bail out by JP Morgan, many counterparties 


transferred their OTC exposures to thirds parties 
 Novation: transfer rights and obligations to a third party 
 “In the three weeks preceding Bear Stearns's collapse, GS, Citadel and 


Paulson exited about 400 trades where Bear Stearns was the trading 
partner, more than any other firms did.” 


 GS unloaded a number of swap contracts. Positions were transferred to a 
variety of players, including Lehman Brothers and Morgan Stanley. 
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State dependent recovery rates and credit modelling 


 (Almost) costless defaults : Fannie Mae Subordinated,  
 Final price, 6th October CDS auction : 99.9 


 Jarrow et al. (2008) 
 Distressed Debt Prices and Recovery Rate Estimation 


 Large discrepancies between economic and recorded 
default dates 
 Likely to be a major issue when dealing with the estimation 
of  a model with simultaneous defaults 
 more problematic then in the case of no simultaneous 
defaults 


 Recovery rates also contribute to dependence between 
individual default dates 
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State dependent recovery rates 


 Theoretical context 
 Aggregate loss = sum of individual losses 
 Individual loss = default indicator times loss given default 
 Recovery rate = 1 – loss given default / credit notional 
 Recovery rates are stochastic 


 Cross dependencies 
 Amongst default events (copula models, etc.) 
 Between default events and recovery rates 
 Amongst recovery rates 


 Dependence through common latent factors 
 For convenience 
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State dependent recovery rates 


 When does an increase in individual risk leads to an 
increase in the risk on the aggregate portfolio (sum of 
individual risks) ? 
 (Multivariate) Gaussian risks 


 Individual risks with same expectation 
 Increase in risk = increase in variance 
 Increase in aggregate portfolio risk occurs if and only if pairwise 


correlations are non negative 


 What about the general case ? 
 Stochastic orders 


 Univariate case : convex order (close to second order stochastic 
dominance) 


 Positive dependence between individual risks 
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State dependent recovery rates 


 Positive dependence 
 MTP2: Multivariate Total Positivity of Order 2 (Karlin & 


Rinott (1980)) 
 Log-density is supermodular 


 Conditionally Increasing 
                                 is CI if and only if                                   is 


increasing in                 for increasing  


 Positive association (Esary, Proschan &Walkup (1967)) 
 PSMD: positive supermodular dependent 


 Gaussian copula 
 Positive association = PSMD = positive pairwise 


correlations 
 MTP2 = CI (Müller & Scarsini (2001)) 
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State dependent recovery rates 


 Theoretical context 
 Non Gaussian framework 


 Individual risks have a probability mass at 0 
 Increase of risk of individual risks: convex order 
 Theorem (Müller & Scarsini (2001)) 


 X and Y random vectors with common conditionally increasing copula 
      smaller than      for all i 
 Then X smaller than Y with respect to dcx (directionally convex) order 


 Then X smaller than Y  with respect to stop-loss order 


 Gaussian copula dependence 
 Conditionally increasing if and only if the inverse of covariance matrix 


is a M-matrix 
     non singular, entrywise non negative,        has positive non diagonal 


entries  
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State dependent  
recovery rates 


 Dependence in large dimension 
 Well known to finance people 
 Factor models 


 Arbitrage pricing theory, asymptotic portfolios 
 Chamberlain & Rothschild (1983) 


 Large portfolio approximations (infinite granular 
portfolios) 


 Conditional law of large numbers 
 Qualitative data with spatial dependence 


 CreditRisk + (Binomial mixtures), Creditmetrics, Basel II 
(Gaussian copula) 


 Gordy (2000, 2003) Crouhy et al. (2000) 
 Factor models may not be related to a causal view upon 


dependence 
 De Finetti, exchangeable sequences of Bernoulli variables 


are Binomial mixtures 
 Mixing random variable latent factor 
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State dependent recovery rates 


 Spatial dependence with 
qualitative data 
 Factor models have been used 


for long in other fields 
 IQ tests (differential psychology), 


Bock & Lieberman (1970), 
Holland (1981) 


 Item Response Models 
 Latent Monotone Univariate 


Models, Holland (1981), Holland 
& Rosenbaum (1986) 


 Stochastic recovery rates 
 Modeling of cross 


dependencies 
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State dependent  
recovery rates 


 Stochastic recovery rates 
 Modeling of cross dependencies 


 Individual loss = default indicator times loss given default 
 What is important for the computation of tranche premiums 


(or risk measures) is the joint distribution of individual 
losses 


 Direct approach: (discretized) individual loss seen as a 
polychotomous (or multinomial) variable 


 Multivariate Probit model (Krekel (2008)) 
 Dual view of Creditmetrics (default side versus ratings) 


 Sequential models 
 Probit or logit models for default events (dichotomous model) 
 Modeling of loss given default : Amraoui & Hitier (2008) 
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State dependent 
recovery rates 


 Gaussian copula 
 When is it conditionally increasing? 
 One factor case (positive betas) 


 Gaussian copula is Conditionally Increasing (proof based on Holland & 
Rosenbaum (1986)) 


 Multifactor case : more intricate, even if all betas are positive, 
Gaussian copula may not be Conditionally Increasing 
 Counterexamples 


 Gaussian copula with positive pairwise correlation 
 Increase of marginal risk (convex order) 
 May lead to a decrease of convex risk measures on aggregate portfolio 
 Constraints on conditional covariance matrix 


 Hierarchical Gaussian copulas 
 Intra and intersector correlations, Gregory & Laurent (2004) 
 Conditionally Increasing copula (proof based upon Karlin & Rinott (1980)) 
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State dependent recovery rates 


 Consequences of previous analysis 
 Other examples of Conditionally Increasing copulas 


 Archimedean copulas, Müller & Scarsini (2005) 


 Dichotomous models with monotone unidimensional 
representation 
 Default indicators conditionally independent upon scalar V 


 Conditional default probabilities are non decreasing in V 


 Most known and used models 


 Includes additive factor copula models (Cousin & Laurent (2008)), 
such as generic one factor Levy model of Albrecher et al. (2007). 
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State dependent  
recovery rates 


 Consequences of previous analysis 
 Non stochastic recovery rates 
 Analysis of a “recovery markdown” 
 Change recovery rate assumption from 40% to 30% (say) 
 Change marginal default probability so that expected loss 


unit is unchanged 
 Lemma : increase of  marginal risk with respect to convex 


order 
 Then, given a CI copula, increase of risk of the 


aggregate portfolio with respect to convex order 
 Increase in senior tranche premiums 
 Or CDO senior tranche spreads 
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State dependent recovery rates 


 Consequences of previous analysis 
 Stochastic recovery rate of Amraoui and Hitier (2008) 
 Depends only upon latent factor 


 As in Altman et al (JoB 2005) 
 Specification of recovery rate is such that conditional upon 


latent factor is the same as in a recovery mark-down case 
 Same conditional expected losses 


 Same large portfolio approximations 
 Same “infinitely granular” portfolios 
 When number of names tends to infinity, strong convergence of aggregate 


losses to large portfolio limits 
 Stochastic recovery rate (AH) versus recovery markdown 


 Same infinitely granular portfolios 
 But finitely granular portfolios behave (slightly) differently 
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State dependent recovery rates 


 Stochastic recovery rate (AH) vs recovery markdown 
 Main comparison result 
 Aggregate losses are ordered with respect to convex order 
 Smaller risks in stochastic recovery rate specification 
 Smaller spreads on senior tranches 
 Small numerical discrepancies 


 Numerical issues 
 Computation of aggregate loss distributions in individual 


loss model with spatial dependence (factor models) 
 Actuarial methods (recursions, etc.) 
 FFT, inverse of Laplace transforms 
 Expansions (Stein’s method, Gram-Charlier expansions) 37 







State dependent recovery rates 


 Numerical issues 
 Lots of smuggling around 
 Key issues for implementation 


 Computation of prices 
 Much quicker than Monte Carlo 


 Issues for the use of Hierarchical 
Archimedean Copulas 


 More importantly computations of 
Greeks 


 Risk Management 
 Maximum Likelihood methods 


 Needs to be reassessed in case of 
stochastic recovery models 
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