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Preliminary or obituary?

On human grounds, shrinkage rather than enlargement of
the job market

On scientific grounds, collapse of the market standards for
risk managing CDOs
Thanksto the crisis, our knowledge of the flaws of the
various competing models has dramatically improved...

— Weknow that we don’t know and why

— No new paradigm has yet emerged (if ever)

— Paradoxically, academic research is making good progress

— ... but at its own pace

Model to be presented is low tech, unrealistic, nothing new
But deserves to be known (this is pure speculation).



* CDO Business context

— Decline of the one factor Gaussian copula model for risk
management purposes
— Recent correlation crisis

— Unsatisfactory credit deltas for CDO tranches
* Risksat hand in CDO tranches
* Tree approach to hedging defaults

— From theoretical ideas
— To practical implementation of hedging strategies
— Robustness of the approach?



CDO Business context

CDS hedge ratios are computed by bumping the marginal
Credit CUrves 4. CDO tranche deltas

— In 1F Gaussian copulaframework 570

— Focus on credit spread risk b e -
— individual name effects & 10, i
— Bottom-up approach fiﬁ | _______.....-—--—-"”'M
— Smooth effects ;12 | | | |
— Pre-crisis... = e Credit ;F?rgad (bp) - &

Poor theoretical properties
— Does not lead to areplication of CDO tranche payoffs
— Not a hedge against defaults...
— Unclear issues with respect to the management of correlation risks



CDO Business context

* We are still within afinancia turmoil
— Lotsof restructuring and risk management of trading books
— Collapse of highly leveraged products (CPDO)
— February and March crisison iTraxx and CDX markets

» Surge in credit spreads
» Extremely high correlations
» Trading of [60-100%] tranches
»Emergence of recovery rate risk
— Questions about the pricing of bespoke tranches

— Use of quantitative models?
— The decline of the one factor Gaussian copula model




CDO Business context

Morgan Stanley MORGAN STANLEY RESEARCH

March 10, 2008
Structured Credit Analytics

CDX Series 9
Corr. COX vs.

Mid 1 Week NMid 1 Month  Index Detach Comr.  1Week SkewZ Corr. Skew iTRAXX Value vs. Deita Neutral Retums
Inchex Tranche Bid Ask Change Change Level Deita Com.1 Skew Change Score Rel. Value Corr Skew iTraoo 1 Weeak 1 Month 1 Year
Syr Index 185.0 185.0 250 8.0
Byr* 0-3% &7.5% 68.5% 10.4% 13.0% 185bp 27 38% -7.4% 1.19 RICH (1.10) CHEAP B.6% 0.6% 50.0%.
Syr 3-T% 731 738 138 218 3.0 B54% 25% 27% 1.07 RICH 097 FAIR -21% 3.2% 9%
Byr T-10% 405 415 75 141 18 D% 0.5% (0.31) FAIR o21 FAIR -1.2% 1.4% -4.T%
Syr 10-16% 207 214 12 73 13 14% 21% 1.15 RICH 058 FAIR 0.6% 1.2% -1.8%
Syr 15-30% 126 130 13 62 1.0 21% 1.2% (0.0} FAIR 018 FAIR 0.4% -0.3% -1.3%
Syr 30-100% 78 80 10 45 o7 0.3% -0.6% -1.6%
Tyr Index 178.0 178.0 200 820
Tyr™ 0-3% 71.0% T20% 8.0% 11.3% 178bp 20 39% 4. 2% 1.38 RICH -5.0% 1.8% 4255
Tyr 3-T% 785 TS 130 198 32 82% 23% 1.6% 1.00 FAIR -2.6% 5.7% 18.2%
Tyr T-10% 452 450 9 108 25 T 8% Q1% (0.E8) FAIR -1.8% 5.4% -2.8%
Tyr 10-15% 255 285 il 73 18 12% 1.6% (0L09) FAIR 0.5% 3.0% -2.0%
Tyr 16-30% 139 144 14 65 1.1 21% 03% (QL73) FAIR 0.3% 0.1% -1.7%
Tyr 30-100% 81 83 12 48 o7 01% 0.9% -2.1%
1T Index 174.0 174.0 180 &57.0
10yr* 0-3% T4.0% T4.8% 7.9% 99% 1T4bp 1.5 39% -5.5% 133 RICH 1.31 RICH -5.2% 1.5% 31.6%
10y 3-T% 10 S20 110 204 34 5% 18% 3.3% 313 RICH 316 RICH -1.6% 7.5% 37.4%
10y T-10% 523 533 &7 o8 25 B4% % 0.4% (0.64) FAIR (D.64) FAIR 0.9% B.5% 1.8%
0y 10-15% 300 308 el 95 18 TE% 12% 1.1% (QLED) FAIR (0.60) FAIR 1.0% 26% 3.0%
10y 15-30% 180 165 14 63 12 9ee 23% 3% (1.99) CHEAP (2.01) CHEAP 0.5% 0.0% -1.6%
10y 30-100% ) 82 10 45 o7 0.2% -1.2% 29%
HY Index 7188 7188 236 831
HY= 0-10% S92.1% 92 6% 1.6% 25% Ti9bp o7 44%% -2.4% 1.05 RICH “1.1% -0.4% 10.2%
HY 10-15% 75.3% T5.8% 2.5% 5.1% 18 A49% 5% 1.2% (QL12) FAIR =1.4% -1.4% B.O%
HY 15-28% 1,290 1,206 a1 22 23 T2% 23% 1.4% 273 RICH -1.0% -1.5% 1.6%
HY 25-35% 580 895 48 145 15 2% 199 Q2% 021) FAIR -0.6% -1.6% 5.3%
HY 35-100% 202 208 2) 3= 0.5 0.5% 0.0% 2.1%
LCDX Index 440.0 4400 78 296
LCDx 0-5% B5.6% B7.5% 3.9% -02% 440bp 16 TE% B5.2% -3.5% 3.0%
LCD»? 58% 85.9%. 67 6% 4.3% 1.0% 27 -3.6% 36%
LCDX 812% 11400 11520 300 350 35 0.0% 3.0%
LCDX 12-15% T40.0 T4B.0 -T.0 107.0 24 0.9% -1.4%
LCDX 15-100% 206.0 2100 -135 200 06 0.7% -0.8%
"Correlation of tranche with 0% attachment and the same detachment point as the benchmark tranche, implied from market prices of benchmark tranches
?Points upfront plus 500 bp running
*Points upfront plus 0 bp running
Source: Morgan Stanley




CDO Business context

®* Recoveryrates
— Market agreement of a fixed recovery rate of 40% isinadeguate

Exhibit 10 - Correlation between Recovery Rates and Annual Default Rates, 1983-2004
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— Currently amajor issuein the CDO market

— Useof state dependent stochastic recovery rateswill dramatically
changethe credit deltas




CDO Business context

® Decline of the one factor Gaussian copula model
* Credit deltasin “high correlation states’

— Close to comonotonic default dates (current market situation)
— Deltas are equal to zero or one depending on the level of spreads

» Individual effects are too pronounced
» Unrealistic gammas
»Morgan & Mortensen

s




CDO Business context

* The decline of the one factor Gaussian copula model + base
correlation
— Thisisrather a practical than atheoretical issue

* Negative tranche deltas frequently occur
— Which israther unlikely for out of the money call spreads

— Though this could actually arise in an arbitrage-free
model

— Schloegl, Mortensen and Morgan (2008)
— Especially with steep base correlations curves

— In the base correlation approach, the deltas of base
tranches are computed under different correlations

— And with thin tranchel ets
— Often due to “numerical” and interpolation issues



CDO Business context

* No clear agreement about the computation of credit deltas
In the 1F Gaussian copula model
— Sticky correlation, sticky delta?
— Computation wrt to credit default swap index, individual CDS?
* Waeird effects when pricing and risk managing bespoke
tranches
— Price dispersion due to “projection” techniques

— Negative deltas effects magnified
— Sengitivity to names out of the considered basket



Risks at hand in CDO tranches

* Default risk
— Default bond price jumps to recovery value at default time.
— Drivesthe CDO cash-flows
* Credit spread risk
— Changes in defaultable bond prices prior to default
» Dueto shiftsin credit quality or in risk premiums
— Changes in the marked to market of tranches

* |nteractions between credit spread and default risks
— Increase of credit spreads increases the probability of future defaults
— Arrival of defaults may lead to jump in credit spreads
» Contagion effects (Jarrow & Y u)
» Enron failure was informative
» Not consistent with the “conditional independence” assumption



Risks at hand in CDO tranches

* Paralle shiftsin credit spreads
> AS can be seen from the current crisis
»On March 10, 2008, the 5Y CDX |G index spread quoted at

194 bp pa

» starting from 30 bp pa on February 2007

— Seegrey figure

» thisis also associated with a surge in equity tranche

premiums
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Risks at hand in CDO tranches

® Changes in the dependence structure between default times

— Inthe Gaussian copula world, change in the correlation parametersin
the copula

— The present value of the default leg of an equity tranche decreases when
correlation increases

* Dependence parameters and credit spreads may be highly
correlated
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Figure 9. Credit spreads on the five years iTraxx index (Series 7) in bps on the left axis.
Implied correlation on the equity tranche on the right axis



Risks at hand in CDO tranches

®* The“ultimate step” : complete markets
— As many risks as hedging instruments

— News products are only designed to save transactions costs and
are used for risk management purposes

— Assumes a high liquidity of the market
* Perfect replication of payoffs by dynamically trading a
small number of « underlying assets »
— Black-Scholes type framework
— Possibly some model risk
* Thisisfurther investigated in the presentation
— Dynamic trading of CDS to replicate CDO tranche payoffs




Tree approach to hedging defaults

What are we trying to achieve?
Show that under some (stringent) assumptions the market for
CDO tranches is complete

» CDO tranches can be perfectly replicated by dynamically trading
CDS

» Exhibit the building of the unique risk-neutral measure
Display the analogue of the local volatility model of Dupire
or Derman & Kani for credit portfolio derivatives

» One to one correspondence between CDO tranche quotes and
model dynamics (continuous time Markov chain for losses)

Show the practical implementation of the model with market
data

» Deltas correspond to “sticky implied trege”



Tree approach to hedging defaults

* Main theoretical features of the complete market model

— No simultaneous defaults
— Unlike multivariate Poisson models

— Credit spreads are driven by defaults
» Contagion model

— Jumpsin credit spreads at default times
» Credit spreads are deterministic between two defaults
— Bottom-up approach
» Aggregate loss intensity is derived from individual loss
Intensities
— Correlation dynamicsis also driven by defaults
» Defaults lead to an increase in dependence



Tree approach to hedging defaults

* Without additional assumptions the model is intractable
— Homogeneous portfolio
» Only need of the CDS index
» No individual name effect
» Top-down approach
— Only need of the aggregate loss dynamics
— Markovian dynamics
» Pricing and hedging CDO tranches within a binomial tree
» Easy computation of dynamic hedging strategies
— Perfect calibration the loss dynamics from CDO tranche quotes
» Thanks to forward Kolmogorov equations
— Practical building of dynamic credit deltas
— Meaningful comparisons with practitioner’ s approaches




Tree approach to hedging defaults

We will start with two names only

Firstly in a static framework
— Look for aFirst to Default Swap
— Discuss historical and risk-neutral probabilities
Further extending the model to a dynamic framework
— Computation of prices and hedging strategies along the tree
— Pricing and hedging of tranchelets
Multiname case: homogeneous Markovian model
— Computation of risk-neutral tree for the loss
— Computation of dynamic deltas
Technical details can be found in the paper:
— “hedging default risks of CDOs in Markovian contagion models’



Tree approach to hedging defaults

¢ Some notations:

— T4, T, default times of counterparties 1 and 2,
— 7, available information at timet,

— P historical probability,
— a;,a, : (historical) default intensities:
5 Plre[tt+di|H, |=aldt, i=12

* Assumption of «local » independence between default events
— Probability of 1 and 2 defaulting altogether:
> Plre[tt+d,z,e[tt+dt|H,]=aldtxafdt in (dt)

— Local independence: simultaneous joint defaults can be neglected




Tree approach to hedging defaults

* Building up atree:
— Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)
— Under no simultaneous defaults assumption pp, ,=0
— Only three possible states: (D,ND), (ND,D), (ND,ND)
— ldentifying (historical) tree probabilities:

a;dt_ (D,ND)

P
a., dt (ND, D)
1—(a1 Zp)dt
(ND, ND)

Pop) = 0= Pono) = Poo)y T Pono) = Pp,) =% dt
Poo) = 0= Pino.o) = Pooy T Pino.o) = Pro) = @2 dt
Pinoo) =1~ Po,) ~ Pio

N




Tree approach to hedging defaults

Stylized cash flows of short term digital CDS on counterparty 1.
— a2 dt CDS 1 premium

/ 1- g dt  (D,ND)
;
a, dt —a dt (ND, D)

1- (al

—al °dt  (ND,ND)

Stylized cash flows of short term digital CDS on counterparty 2:
/ —a, Sdt  (D,ND)
adt 149t (ND,D)

1- (051

—ant (ND, ND)



Tree approach to hedging defaults

® (Cashflows of short term digital first to default swap with premium a?dt ;

/1 o dt  (D,ND)
o, dt  1- 4%t (ND,D)

1- (al 2 dt
—a2dt (ND,ND)

® (Cashflowsof holding CDS 1+ CDS2:
alpd 1- (alQ +a§)dt (D,ND)

0 — (o + a3 )dt (ND,D)

1- (alp dt
al +a2 dt (ND,ND)

* Peafect hedge of first to default swap by holding 1 CDS 1+ 1 CDS?2
— Deltawith respect to CDS 1 =1, deltawith respect to CDS2 =1



Tree approach to hedging defaults

* Absence of arbitrage opportunities imply:

— a®=a2+af

® Arbitrage free first to default swap premium

— Does not depend on historical probabilities ¢, ,a,
®* Threepossible states: (D,ND), (ND,D), (ND,ND)
®* Threetradable assets. CDS1, CDS2, risk-free asset

/fd/ 1+r (D,ND)
=)
1<% 14¢ (\D.D)
1th

1+r (ND,ND)

®* For simplicity, let usassume r =0




Tree approach to hedging defaults

o dt 1 (D,ND)

®* Three state contingent claims

P
— Example: claim contingent on state (D,ND) ~ ? 7l 0 (ND,D)
— Can be replicated by holding 5
Q . 1- (051 )dt
— 1 CDS1+ o dt risk-free asset 0 (ND, ND)
o, dt alet (D,ND) a’d 1- alet (D,ND)
P
aldt <~ % a a’dt (ND,D) + O o dit —a°dt (ND,D)
1- (o gy )t 1- (o Peg )t

a2dt (ND,ND) —a°dt (ND,ND)

— Replication price = adlt afdt_~1 (D,ND)

o dt

1— (o kot )dt
0 (ND,ND)

o, dt

0 (ND,D)




Tree approach to hedging defaults

* Similarly, the replication prices of the(ND, D) and (ND,ND) claims
afdt - 0 (D,ND) afdr~ 0 (D,ND)
ol dt /
o dt 2 1 (ND,D) 1—(a§+a§)dt %d (ND, D)
1th 1—(a1 azp)dt
0 (ND,ND) 1 (ND,ND)
/af’d!/a (D, ND)
o, dt
* Replication priceof: 7 : b (ND,D)
1th
C (ND,ND)

e Replication price = aletxa+a§dt><b+(l— (a1Q+a§)dt)C




Tree approach to hedging defaults

* Replication price obtained by computing the expected payoff
— Along arisk-neutral tree

Q
afdtxa+a§dtxb+(1—(af+a§)dt)c Z b (ND,D)

1- (al af)dt
C (ND,ND)

® Risk-neutral probabilities
— Used for computing replication prices
— Uniquely determined from short term CDS premiums
— No need of historical default probabilities




Tree approach to hedging defaults

®* Computation of deltas
— Deltawith respect to CDS 1: 0,
— Deltawith respect to CDS 2: 0,
— Deltawith respect to risk-free asset: p

» p aso equal to up-front premium

payoff CDS 1 payoff CDS 2
a= o+51><( thj+5 ( )
‘b= :)+51><( th) +5, x( afdt)
C=p+6,%(-a dt) +0,x (—agdt)

payoff CDS 1. payoif CDS 2

— Asfor thereplication price, deltas only depend upon CDS premiums



Tree approach to hedging defaults

AJdt—(D,D)
O ' -

Dynamic case: o2dtt~ (D:ND) <T—og; (D, ND)
- 0 (D,D)

= dt
1—(a aQ)dt (ND, D)

. S 20t
(ND, ND) : (D,ND)
(ND, D)

1—(7[1Q+7z§

. (ND, ND)
— Aydt CDS 2 premium after default of name 1

—  x2dt CDS 1 premium after default of name 2

— m°dt CDS 1 premium if no name defaults at period 1

— 7z7dt CDS 2 premium if no name defaults at period 1
®* Changein CDS premiums due to contagion effects

— Usudly, zl<al <kl and 7zl <al <Ay



Tree approach to hedging defaults

* Computation of prices and hedging strategies by backward
Induction
— use of the dynamic risk-neutral tree

— Start from period 2, compute price at period 1 for the three
possible nodes

— + hedge ratios in short term CDS 1,2 at period 1
— Compute price and hedge ratio in short term CDS 1,2 at time O

* Example: term structure of credit spreads
— computation of CDS 1 premium, maturity = 2

— pdt will denote the periodic premium
— Cash-flow along the nodes of the tree



Tree approach to hedging defaults

® Computations CDS on name 1, maturity = 2 19 0 (D,D)
2
o2t 1~ Pt (DND) =7 50— 0 (D.RD)
Qdt o 1- pldt (D,D)
0 a, — p,dt (ND,D){
=c<dt
1- (al ag)dt —pdt  (ND,D)

Q
—pdt (ND, ND) mdt g pdt (D,ND)
—pdt (ND,ND)
* Premium of CDS on name 1, maturity = 2, time = 0, pdt solvesfor:

0= (1_ pl)alQ +(_ p1+(1_ p1)K1Q - p1<1_ KlQ))aS

+ (_p1+(1_ pl)”lQ_ plﬂ.g_ pl(l—ﬂf—ﬂg))(l—af—ag)




Tree approach to hedging defaults

* Stylized example: default leg of a senior tranche
— Zero-recovery, maturity 2
— Aqggregate loss at time 2 can be equal to0 0,1,2
» Equity type tranche contingent on no defaults
» Mezzanine type tranche : one default
» Senior type tranche : two defaults
1 (D,D)

0 (D,ND)

1 (D,D)

A2dt

(D.ND) <o

o dt x x7dt + a7 dt x i dt

-

up-front premmm default leg

0 (D,ND)
0 (ND,D)
0 (ND,ND)

senior
> tranche
payoff




Tree approach to hedging defaults

* Stylized example: default leg of a mezzanine tranche

— Time pattern of default payments
P pay /AZQQ/O (D, D)

o 1 (D.ND) =1—o 0 (D,ND)

d q &

1 t+a2 t o KQ O (D,D) .

(1 (051 . )dt)( Q)dt o dt mezzghine

()

1
up-front premium defauilt leg 1— (al O(S)dt o 0 (ND,D) payoff
1

O (ND,ND) 1 (D,ND)

1 (ND,D)
0 (ND,ND) °

Q, . Q
1- (72'1 + 775

— Possibility of taking into account discounting effects
— Thetiming of premium payments
— Computation of dynamic deltas with respect to short or actual CDS on names 1,2




Tree approach to hedging defaults

* |ntheory, one could also derive dynamic hedging strategies
for standardized CDO tranches
— Numerical issues. large dimensional, non recombining trees
— Homogeneous Markovian assumption is very convenient

»CDS premiums at agiven timet only depend upon
the current number of defaults N(t)
— CDS premium at time 0 (no defaults) a2dt = o2dt = a° (t=0,N(0) = 0)
— CDS premium at time 1 (one default) A2dt = x2dt = a2 (t =1 N(t) =1)
— CDSpremium at time 1 (no defaults)  7z2dt = z9dt = 2 (t =1, N(t) = 0)




Tree approach to hedging defaults
(D,D)
* Treein the homogeneous case 0.0 /(;'Q/(D ND)
a, , ’

(D,D)
Y (ND, D)

1- 222(0,0)
“Q(]’O (D, ND)

(ND, ND) ,
%(ND,D)
— If we have N1 =1, one default at t=1 (ND,ND)

— The probability to haveN(2) =1, one default at t=2..
— Is 1-a?(1,1) and does not depend on the defaulted name at t=1
— N(t) iIsaMarkov process

— Dynamics of the number of defaults can be expressed through a binomial
tree




Tree approach to hedging defaults

* From name per nameto number of defaultstree /(llé/ (D,D)

N(0)=0

20.2(6,0)

1-20;°(0,0)

N(1) =1

N(1) =0

/Qy/
a.:(0,0)

211

1- 2a2(0,0)

T—a
~(1,0)

1- 2072 (1,

0)

(D,ND) =~ 1= a‘*(Ll)(D’ND)

(D,D)
Y (ND.D)
aQ (1,0)

(ND, ND) (D,ND)
%(ND D)
(ND, NI

N(2)=2 )
number
7 N(2)=1 Lof defaults
tree
N(2)=0




Tree approach to hedging defaults

® Easy extension to n names
— Predefault name intensity at timet for N(t) defaults: o (t,N(t))
— Number of defaults intensity : sum of surviving name intensities:

A(LN() =(n—=N(t)) e (t,N(t)) W N(3) =3
N(2) =2 EA=Dal(22) 5 _ 5

1AN-1)a° (1) N(2) -1 ~Da’(21) N(3)=1

(2.2)
(21)
na2(2,0)
7(2.0)

N(1) =1 (
"2 480) 2(1,0)

M=t 1-ne,’(0,0) e 1-na*(1,0) N(2)=0

N(3)=0
1-ne (2,

— 22(0,0),e¢2(10),a°(11),22(2,0),22(21).... can be easily calibrated

— on marginal distributions of N(t)by forward induction.




Tree approach to hedging defaults

® (Calibration of the tree example
— Number of names: 125

— Default-free rate: 4% A4
— 5Y credit spreads: 20 bps (=1 <48
. . 0 0 I
Recovery rate: 40% . 4'1_@" V=0 s
3% 6% 9% 12% 22%
18% 28% 36% 42% o8%
Table 8. Base correlations with respect to attachment points.
= = L] = %0
® [ossintensities with respect to the 25
200
number of defaults
. 5 o - . B Market cese
— For simplicity, assumption of time e R —
homogeneous intensities -
— Increase in intensities. contagion . 1
effects =
_ i
— Compare flat and steep base correlatiot cNTO@edILRRNIRRRYIRG
Structures Figure 6. Loss intensities for the Gaussian copula and market case examples. Number of
defaults on the x— axis.




Tree approach to hedging defaults

* Dynamics of the credit default swap index in thetree

Nb Defaults MiecKs
0 14 56 84
0 20 19 17 16
1 0 31 23 20
2 0 95 57 43
3 0 269 150 08
4 0 592 361 228
5 0 1022 723 490
6 0 1466 1193 905
7 0 1870 1680 1420
8 0 2043 2126 1945
9 0 2623 2534 2423
10 0 3035 2939 2859

Table 9. Dynamics of credit default swap index spread s,.(i,%) in basis points per annum.

— Thefirst default leads to a jump from 19 bpsto 31 bps
— The second default is associated with ajump from 31 bpsto 95 bps
— Explosive behavior associated with upward base correlation curve



Tree approach to hedging defaults

¢ \What about the credit deltas?

— In a homogeneous framework, deltas with respect to CDS are dl the
same

— Perfect dynamic replication of a CDO tranche with a credit default swap
Index and the default-free asset

— Credit deltawith respect to the credit default swap index
— =changein PV of the tranche/ change in PV of the CDS index

Nb Defaults OutSta_nding Weeks
Nominal 0 14 56 84
0 3.00% 0.541 0617 0823 0910
1 2.52% 0 0279 0510 0690
2 2.04% 0 0.072 0166 0304
3 1.56% 0 0.016 0034 0072
4 1.08% 0 0.004 0006 0.012
5 0.60% 0 0.002 0.002 0.002
6 0.12% 0 0.001 0.000 0.000

7 0.00% 0 0 0 0
Table 11. Delta of the default leg of the [0,3%] equity tranche with respect to the credit

default swap index (0, (7, k) ).




Tree approach to hedging defaults

* Dynamics of credit deltas:

Nb Defaults OutSta_nding Weeks
Nominal 0 14 56 84
0 3.00% 0.541 0617 0823 0910
1 2.52% 0 0279 0510 0.690
2 2.04% 0 0.072 0166 0304
3 1.56% 0 0.016 0034 0.072
4 1.08% 0 0.004 0006 Q012
5 0.60% 0 0.002 0002 0.002
6 0.12% 0 0.001 0.000 0.000

7 0.00% 0 0 0 0
Table 11. Delta of the default leg of the [0,3%] equity tranche with respect to the credit

default swap index (0, (1, k) ).

— Deéeltas are between 0 and 1
— Gradually decrease with the number of defaults

» Concave payoff, negative gammas
— When the number of defaultsis > 6, the tranche is exhausted
— Credit deltas increase with time

» Congstent with a decrease in time value




Tree approach to hedging defaults

* Market and tree deltas at inception
* Market deltas computed under the Gaussian copula model
» Base correlation is unchanged when shifting spreads
»"“ Sticky strike” rule
» Standard way of computing CDS index hedges in trading

desks
[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA

* Smaller equity tranche deltasfor in the tree model
»How can we explain this?




Tree approach to hedging defaults

* Smaller equity tranche deltasin the tree model (cont.)
— Default isassociated with an increase in dependence

» Contagion effects

Figure 8. Dynamics of the base correlation curve with respect to the number of defaults.
Detachment points on the x —axis. Base correlations on the y —axis.

— Increasing correlation leadsto a decreasein the PV of the
equity tranche

» Sticky implied tree deltas
— Recent market shiftsgo in favour of the contagion model




Tree approach to hedging defaults

* Thecurrent crisisisassociated with joint upward shifts
In credit spreads
— Systemic risk

* And an increasein base correlations
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Figure 9. Credit spreads on the five years iTraxx index (Series 7) in bps on the left axis.
Implied correlation on the equity tranche on the right axis

* Sticky implied tree deltas are well suited in regimes of
fear (Der man)




Tree approach to hedging defaults

What do we learn from this hedging approach?

Thanks to stringent assumptions:
— credit spreadsdriven by defaults
— homogeneity
— Markov property
It is possible to compute a dynamic hedging strategy
— Based on the CDS index
That fully replicates the CDO tranche payoffs
— Model matches market quotes of liquid tranches
— Very smple implementation
— Credit deltas are easy to under stand
|mprove the computation of default hedges
— Sinceit takesinto account credit contagion
Provide some meaningful results in the current credit crisis



