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Default risk
− Default bond price jumps to recovery value at default time.
− Drives the CDO cash-flows

Credit spread risk
− Changes in defaultable bond prices prior to default

Due to shifts in credit quality or in risk premiums
− Changes in the marked to market of tranches

Interactions between credit spread and default risks
− Increase of credit spreads increases the probability of future defaults
− Arrival of defaults may lead to jump in credit spreads

Contagion effects: Jarrow & Yu (2001)
Not consistent with the reduced-form approach

Some risks associated with CDOsSome risks associated with CDOs



Mathematical FrameworkMathematical Framework

n obligors

Default times:
− Probability space

Default indicator processes:

− Natural filtration of default times

− Ordered default times:                  

− No simultaneous defaults:

intensities
− martingales           
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Mathematical FrameworkMathematical Framework

Instantaneous digital CDS
− Traded at t

− Stylized cash-flow at t+dt:

Default free interest rate: r

Payoffs of self-financed strategies:

− predictable processes
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Mathematical FrameworkMathematical Framework

Absence of arbitrage opportunities:

As a consequence:  ,

− such that                  are the              intensities of default times

measurable, Q –integrable payoff

Integral representation theorem of point processes (Brémaud)
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Mathematical FrameworkMathematical Framework

Integral representation theorem implies completeness of the 
credit market
− Perfect replication of claims which depend only upon the 

default history

With CDS on underlying names and default-free asset
CDO tranches

− Q: unique martingale measure
− Replication price of M at time t:
− Note that the holdings of CDS only depend upon default 

history

Credit spread risk is not taken into account
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Mathematical FrameworkMathematical Framework

Need of additional assumptions to effectively compute 
dynamic hedging strategies:

− CDS spreads only depend upon the current credit status

Markov property
− CDS spreads only depend on the number of defaults

Mean-field
− All names have the same short-term credit spread 

Homogeneity
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Mathematical FrameworkMathematical Framework

number of default process

is a continuous time Q- Markov chain

− Pure death process
− Generator of the Chain

− is the intensity of the pure jump process N(t)
is also the aggregate loss intensity
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Replication price for a CDO tranche

Only depends on the number of defaults
− And of the individual characteristics of the tranche

Seniority, maturity, features of premium payments

Thanks to the “homogeneity” between names:
− All hedge ratios with respect to individual CDS are equal

− Only hedge with the CDS index + risk-free asset

Replicating hedge ratio:
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Empirical resultsEmpirical results

Calibration of loss intensities
− From marginal distributions of 

aggregate losses
− Or onto CDO tranche quotes
− Use of forward Kolmogorov equations

For the Markov chain
− Easy to solve for a pure death process

Loss intensities with respect to the 
number of defaults
− For simplicity, assumption of time 

homogeneous intensities
− Increase in intensities: contagion 

effects
− Compare flat and steep base correlation 

structures

Number of names: 125
Default-free rate: 4%
5Y credit spreads: 20 bps
Recovery rate: 40%



Empirical resultsEmpirical results

Dynamics of the credit default swap index in the Markov chain

− The first default leads to a jump from 19 bps to 31 bps
− The second default is associated with a jump from 31 bps to 95 bps
− Explosive behavior associated with upward base correlation curve



Empirical resultsEmpirical results

What about the credit deltas?
− In a homogeneous framework, deltas with respect to CDS are all the 

same
− Perfect dynamic replication of a CDO tranche with a credit default swap 

index and the default-free asset
− Credit delta with respect to the credit default swap index

− = change in PV of the tranche / change in PV of the CDS index



Dynamics of credit deltas:

− Deltas are between 0 and 1
− Gradually decrease with the number of defaults

Concave payoff, negative gammas
− When the number of defaults is > 6, the tranche is exhausted
− Credit deltas increase with time

Consistent with a decrease in time value

Empirical resultsEmpirical results



Market and theoretical deltas at inception
− Market deltas computed under the Gaussian copula model

Base correlation is unchanged when shifting spreads

“Sticky strike” rule

Standard way of computing CDS index hedges in trading desks

Smaller equity tranche deltas for in the Markov chain model

How can we explain this?

Empirical resultsEmpirical results

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA



Empirical resultsEmpirical results

Smaller equity tranche deltas in the Markov chain model
− Default is associated with an increase in dependence

Contagion effects

− Increasing correlation leads to a decrease in the PV of the equity 
tranche 

Sticky implied tree deltas
− Recent market shifts go in favour of the contagion model



Empirical resultsEmpirical results

The current crisis is associated with joint upward shifts in credit 
spreads
− Systemic risk

And an increase in base correlations

Sticky implied tree deltas are well suited in regimes of fear
− Derman: “regimes of volatility” (1999)
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Comparing with results provided by: 
− Arnsdorf and Halperin “BSLP: Markovian Bivariate Spread-Loss Model 

for Portfolio Credit Derivatives” Working Paper, JP Morgan  (2007), 
Figure 7 

− Computed in March 2007 on the iTraxx tranches
− Two dimensional Markov chain, shift in credit spreads

− Note that our results, related to default deltas, are quite similar
Equity tranche deltas are smaller in contagion models than 
Gaussian copula credit deltas



Empirical resultsEmpirical results

Cont and Kan: “Dynamic hedging of 
portfolio credit derivatives” (2008)

Spread deltas
− Gaussian copula model

− Local intensity corresponds to our 
contagion model

− BSLP corresponds to Arnsdorf and 
Halperin (2007)

− GPL: generalized Poisson loss model of 
Brigo et al. (2006)

This shows some kind of robustness

Picture becomes more complicated when 
considering other hedging criteria…

Spread deltas computed for 5Y
Europe iTraxx on 20 September 2006 



Empirical resultsEmpirical results

Back-test study on iTraxx Series 8 
equity tranche

Comparison of realized spread 
deltas on the equity tranche and 
model (implied tree) deltas

Good hedging performance 
compared with the Gaussian 
copula model
− During the credit crisis

− Discrepancy with results of Cont 
and Kan (2008)?

Source: S. Amraoui BNP Paribas



Empirical resultsEmpirical results

Cont and Kan (2008) show rather poor 
performance of “jump to default” deltas
− Even in the recent crisis period

However, unsurprisingly, the credit deltas 
(“jump to default”)  seem to be rather 
sensitive to the calibration of contagion 
parameters on quoted CDO tranches

Right pictures represent aggregate loss 
intensities
− Huge contagion effects for the first six 

defaults in Cont et al. (2008)

− Much smaller contagion effects for the 
first defaults in Laurent et al. (2007)

Cont, Minca and Savescu (2008)

Laurent, Cousin and Fermanian (2007)



Empirical resultsEmpirical results

Frey and Backhaus: “Dynamic hedging of synthetic CDO tranches with 
spread risk and default contagion” (2007)

VOD: Value on default

Much smaller deltas in the contagion model than in Gaussian copula model



Empirical resultsEmpirical results

Laurent: “A note on the risk management of 
CDO” (2007)
− provides a theoretical framework for hedging 

credit spread risk only while default risk is 
diversified at the portfolio level

− no default contagion, correlation between 
defaults are related to “correlation” between 
credit spreads

Feldhütter: “An empirical investigation of an 
intensity-based model for pricing CDO tranches”
(2008)
− comparison of hedging performance of a 

Duffie and Garleanu (2001) reduced-form 
model and one factor Gaussian copula

− Use of information at time t+1 to compute hedge 
ratios at time t

− Higher deltas for the equity tranche in the affine 
model compared with the 1F Gaussian copula 
(market deltas)



Empirical resultsEmpirical results

Consistent results with the affine model of Eckner (2007) based on 
December 2005 CDX data

− Market deltas, “intensity” model credit deltas in Eckner (2007) and 
contagion model deltas

− Goes into the opposite direction when comparing with the contagion 
model

Note that Feldhütter (2008) and Eckner (2007) are pre-crisis
And are according to a “sticky delta rule” (Derman) which is 
reflects irrational exuberance or greed
− And might be appropriate for the pre-crisis period

 Tranches [0-3%] [3-7%] [7-10%] [10-15%] [15-30%]
market deltas 18.5 5.5 1.5 0.8 0.4
AJD deltas 21.7 6.0 1.1 0.4 0.1
contagion model deltas 17.9 6.3 2.5 1.3 0.8



ConclusionConclusion

Main theoretical features of the complete market model
− No simultaneous defaults

– Unlike multivariate Poisson models
− Credit spreads are driven by defaults

Contagion model
– Jumps in credit spreads at default times

Credit spreads are deterministic between two defaults
− Bottom-up approach

Aggregate loss intensity is derived from individual loss 
intensities

− Correlation dynamics is also driven by defaults
Defaults lead to an increase in dependence



What did we learn from the previous approaches?
− Thanks to stringent assumptions: 

– credit spreads driven by defaults 
– homogeneity 
– Markov property

− It is possible to compute a dynamic hedging strategy
– Based on the CDS index

− That fully replicates the CDO tranche payoffs
– Model matches market quotes of liquid tranches
– Very simple implementation
– Credit deltas are easy to understand

− Improve the computation of default hedges
– Since it takes into account credit contagion
– Provide some meaningful results in the current credit crisis

ConclusionConclusion
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