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Some risks associated with CDOs

* Default risk
— Default bond price jumps to recovery value at default time.
— Drivesthe CDO cash-flows
* Credit spread risk
— Changes in defaultable bond prices prior to default
» Dueto shiftsin credit quality or in risk premiums
— Changes in the marked to market of tranches
* |nteractions between credit spread and default risks
— Increase of credit spreads increases the probability of future defaults
— Arrival of defaults may lead to jump in credit spreads
» Contagion effects. Jarrow & Y u (2001)
» Not consistent with the reduced-form approach



Mathematical Framework

n obligors

Default times: z,...,7,
— (Q,A P) Probability space

Default indicator processes: N (t) =1, ..i =1...
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Mathematical Framework

* |nstantaneousdigital CDS
— Traded at t { dN; () - & (t)dt

— Stylized cash-flow at t+dt: default oremium

payment payment
* Default free interest rate: r

* Payoffs of self-financed strategies:
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Mathematical Framework

-

* Absence of arbitrage opportunities: J o (t) > 0

* Asaconsequence: 31Q ~ P,
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Mathematical Framework

* |ntegral representation theorem implies completeness of the
credit market

— Perfect replication of claims which depend only upon the
default history

»With CDS on underlying names and default-free asset

»CDO tranches
— Q: uniqgue martingale measure
— Replication price of M at timet: V, = E® [Me‘r”‘t) \Ht]
— Note that the holdings of CDS only depend upon default
history

» Credit spread risk is not taken into account




Mathematical Framework

* Need of additional assumptions to effectively compute
dynamic hedging strategies.

o (t)=a(t,N(t)), i=1...,n

N(t) = > N,(t), number of defaultsat timet

i=1

— CDS spreads only depend upon the current credit status
»Markov property

— CDS spreads only depend on the number of defaults
»Mean-field

— All names have the same short-term credit spread
»Homogeneity




Mathematical Framework

* N(t)= lel{figt} number of default process

® |sacontinuoustime Q- Markov chain

~A(t,0) A(t0 0 0 O 0 0
0 -At1 AtD O 0
— Pure death process . 5
— Generator of the Chain At)=| o 0
0 0

0 —-A(t,n=-1) A(t,n-1)
0 0 0 OO0 0 0

— A(t,N(t)) istheintensity of the pure jump process N(t)
»1s aso the aggregate |oss intensity
A(E,N()) =(n—N(t))x e (t,N(t))

number of individual
non-defaulted pre-default
names intensity




Mathematical Framework

Replication price for a CDO tranche V, =V, (t, N(t))

Only depends on the number of defaults
— And of the individual characteristics of the tranche

» Seniority, maturity, features of premium payments
Thanks to the “homogeneity” between names:

— All hedge ratios with respect to individual CDS are equal
— Only hedge with the CDS index + risk-free asset

Replicating hedge ratio:

Voo (£, N (1) +1) Vo (. N(1))
VCDS I ndex (t’ N (t) + 1) _VCDS I ndex (t’ N (t))

5(t,N(t))=



Empirical results

e (Cadlibration of lossintensities

3% 6% 9% 12% 22%

— From marginal distributions of 18%  28%  36%  42%  58%
aggregate | osses Table 8. Base correlations with respect to attachment points.
— Or onto CDO tranche quotes Nufmblel‘fOf names: 125
: D -free rate: 49
— Use of forward Kolmogorov equations BEUIEHETER e A7k

_ 5Y credit spreads: 20 bps
» For the Markov chain Recovery rate: 40%

— Easy to solve for a pure death process
® Lossintensities with respect to the -
number of defaults 2

— For smplicity, assumption of time 75 _
homogeneous intensities E——

— Increase in intensities. contagion
effects

— Compare flat and steep base correlation

grUCtureS Figure 6. Loss intensities for the Gaussian copula and market case examples. Number of
defaults on the x— axis.




Empirical results

® Dynamics of the credit default swap index in the Markov chain

Nb Defaults MiecKs
0 14 56 84
0 20 19 17 16
1 0 31 23 20
2 0 95 57 43
3 0 269 150 08
4 0 592 361 228
5 0 1022 723 490
6 0 1466 1193 905
7 0 1870 1680 1420
8 0 2043 2126 1945
9 0 2623 2534 2423
10 0 3035 2939 2859

Table 9. Dynamics of credit default swap index spread s,.(i,%) in basis points per annum.

— Thefirst default leads to a jump from 19 bpsto 31 bps
— The second default is associated with ajump from 31 bpsto 95 bps
— EXxplosive behavior associated with upward base correlation curve



Empirical results

® \What about the credit deltas?
In a homogeneous framework, deltas with respect to CDS are dll the

same

Perfect dynamic replication of a CDO tranche with a credit default swap
Index and the default-free asset

Credit delta with respect to the credit default swap index

= change in PV of the tranche/ change in PV of the CDS index

Nb Defaults

0

AN b W=

7

OutStanding Weeks

Nominal 0 14 56 84
3.00% 0.941 0617 0823 0910
2.52% 0 0279 0510 0690
2.04% 0 0.072 0166 0304
1.56% 0 0.016 0.034 0.072
1.08% 0 0.004 0.006 0.012
0.60% 0 0.002 0.002 0.002
0.12% 0 0.001 0.000  0.000
0.00% 0 0 0 0

Table 11. Delta of the default leg of the [0,3%] equity tranche with respect to the credit

default swap index (0, (7, k) ).



Empirical results

* Dynamics of credit deltas:

Nb Defaults OutSta_nding Weeks
Nominal 0 14 56 84
0 3.00% 0.541 0617 0823 0910
1 2.52% 0 0279 0510 0.690
2 2.04% 0 0.072 0166 0304
3 1.56% 0 0.016 0034 0.072
4 1.08% 0 0.004 0006 Q012
5 0.60% 0 0.002 0002 0.002
6 0.12% 0 0.001 0.000 0.000

7 0.00% 0 0 0 0
Table 11. Delta of the default leg of the [0,3%] equity tranche with respect to the credit

default swap index (0, (1, k) ).

— Deéeltas are between 0 and 1
— Gradually decrease with the number of defaults

» Concave payoff, negative gammas
— When the number of defaultsis > 6, the tranche is exhausted
— Credit deltas increase with time

» Cong stent with a decrease in time value




Empirical results

* Market and theoretical deltas at inception

— Market deltas computed under the Gaussian copula model

» Base correlation is unchanged when shifting spreads
» “Sticky strike” rule
» Standard way of computing CDS index hedges in trading desks

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA

* Smaller equity tranche deltas for in the Markov chain model

» How can we explain this?




Empirical results

* Smaller equity tranche deltas in the Markov chain model
— Default is associated with an increase in dependence

» Contagion effects

———————————————————————————————————————

Figure 8. Dynamics of the base correlation curve with respect to the number of defaults.
Detachment points on the x —axis. Base correlations on the y—axis.

— Increasing correlation leads to a decrease in the PV of the equity
tranche

» Sticky implied tree deltas
— Recent market shifts go in favour of the contagion model




Empirical results

®* Thecurrent crisisis associated with joint upward shifts in credit
Spreads

— Systemic risk
* And anincrease in base correlations
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Figure 9. Credit spreads on the five years 1Traxx index (Series 7) in bps on the left axis.
Implied correlation on the equity tranche on the right axis

® Sticky implied tree deltas are well suited in regimes of fear
— Derman: “regimes of volatility” (1999)




Empirical results

® Comparing with results provided by:
— Arnsdorf and Halperin “BS_P: Markovian Bivariate Soread-Loss Model
for Portfolio Credit Derivatives’ Working Paper, J°® Morgan (2007),

Figure 7
[03%] [356%] [6-9%] [3-12%] [1222%]
market delias 265 45 1.26 0.65 0.25
model deltas 219 4.81 1.64 0.79 .33

— Computed in March 2007 on the iTraxx tranches
— Two dimensional Markov chain, shift in credit spreads

[0-3%] [36%] [6-9%] [3-12%] [1222%]
market deltas 27 4.5 1.25 0b 0.25
model deltas 215 4 63 1.63 09 0.6

— Note that our results, related to default deltas, are quite ssimilar

» Equity tranche deltas are smaller in contagion models than
Gaussian copula credit deltas



Empirical results

Cont and Kan: “Dynamic hedging of
portfolio credit derivatives’ (2008)
Spread deltas

— Gaussian copula model

— Local intensity corresponds to our
contagion model

— BSLP corresponds to Arnsdorf and
Halperin (2007)

— GPL: generalized Poisson loss model of
Brigo et al. (2006)

This shows some kind of robustness

Picture becomes more complicated when
considering other hedging criteria...
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Empirical results

® Back-test study oniTraxx Series 8
equity tranche

® Comparison of realized spread
deltas on the equity tranche and
model (implied tree) deltas

® Good hedging performance
compared with the Gaussian
copula model
— Duringthecredit crisis

— Discrepancy with results of Cont
and Kan (2008)?
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Empirical results

® Cont and Kan (2008) show rather poor
performance of “jump to default” deltas

— Eveninthe recent crisis period

. . |
®* However, unsurprisingly, the credit deltas S Seex e
(“jump to default”) seem to be rather e i A S

sensitive to the calibration of contagion

Cont, Minca and Savescu (2008)
parameters on quoted CDO tranches

* Right pictures represent aggregate loss m:
i nter]g. ti eS :; B Market case
. . . 5 B Gaussian copula B
— Huge contagion effects for the first six 0
defaultsin Cont et al. (2008) - Il
— Much smaller contagion effects for the ERRCE RETEEANARARA DS
. . “igure 6. Loss intensities for the Gaussian copula and market case examples. Number of
first defaultsin Laurent et al. (2007) e o -t e

Laurent, Cousin and Fermanian (2007)




Empirical results

* Frey and Backhaus: “Dynamic hedging of synthetic CDO tranches with
spread risk and default contagion” (2007)

Tranche [0,3] [3,6] [6,9] [9,12] [12,22]

Spread 26 % 84 bp 24 bp 14 bp 11 bp
Tranche Correlation 17.30% 322% 993 % 1581 % 27.46%

Gauss Cop. A 023 006  0.03 0.07

VOD: Value on default

VOD in the Markov model VOD in the Copula model
0, 3] 1.002
3, 6] 0.138 0.171
6, 9] 0.058 0.023
19, 12] 0.039 0.008
[12, 22] 0.107 0.010

Much smaller deltas in the contagion model than in Gaussian copula model




Empirical results

Actual and model-implied price changes in the equity franche

Laurent: “A note on the risk management of
CDQO” (2007)

— provides atheoretical framework for hedging
credit spread risk only while default risk is
diversified at the portfolio level

— no default contagion, correlation between
defaults are related to “ correlation” between
credit spreads

Feldhdtter: “An empirical investigation of an
Intensity-based model for pricing CDO tranches’
(2008)

— comparison of hedging performance of a
Duffie and Garleanu (2001) reduced-form
model and one factor Gaussian copula

— Useof information at time t+1 to compute hedge
ratios at timet

— Higher deltas for the equity tranche in the affine
model compared with the 1F Gaussian copula
(market deltas)
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Empirical results

* Consistent results with the affine model of Eckner (2007) based on
December 2005 CDX data

Tranches [0-3%)] [3-7%)] [7-10%] [10-15%] [15-30%]
market deltas 18.5 55 1.5 0.8 0.4
AJD deltas 21.7 6.0 1.1 0.4 0.1
contagion model deltas 17.9 6.3 2.5 1.3 0.8

— Market deltas, “intensity” model credit deltasin Eckner (2007) and
contagion model deltas

— Goes into the opposite direction when comparing with the contagion
model

* Note that Feldhitter (2008) and Eckner (2007) are pre-crisis

®* And are according to a“sticky deltarule’” (Derman) whichis
reflects irrational exuberance or greed
— And might be appropriate for the pre-crisis period



Conclusion

* Main theoretical features of the complete market model

— No simultaneous defaults
— Unlike multivariate Poisson models

— Credit spreads are driven by defaults
» Contagion model

— Jumpsin credit spreads at default times
» Credit spreads are deterministic between two defaults
— Bottom-up approach
» Aggregate loss intensity is derived from individual loss
Intensities
— Correlation dynamicsis also driven by defaults
» Defaults lead to an increase in dependence



Conclusion

* What did we learn from the previous approaches?

— Thanks to stringent assumptions:
— credit spreads driven by defaults
— homogeneity
— Markov property
— It ispossible to compute a dynamic hedging strategy
— Based on the CDS index
— That fully replicates the CDO tranche payoffs
— Model matches market quotes of liquid tranches
— Very ssmple implementation
— Credit deltas are easy to understand
— Improve the computation of default hedges
— Since it takes into account credit contagion
— Provide some meaningful resultsin the current credit crisis
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