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CDO Business and modeling context
− Risks at hand in synthetic CDOs
− Decline of the one factor Gaussian copula model for risk 

management purposes?
− Recent correlation crisis
− Unsatisfactory credit deltas for CDO tranches?
− Relating credit deltas to structural models: “break-even correlation”

“Tree approach” to hedging defaults
− From theoretical ideas
− To practical implementation of hedging strategies

Empirical work
− Robustness of the approach?
− Contagion models, reduced-form models

CDO of subprimes and SIVs

OverviewOverview



Default risk
− Default bond price jumps to recovery value at default time.
− Drives the CDO cash-flows

Credit spread risk
− Changes in defaultable bond prices prior to default

Due to shifts in credit quality or in risk premiums
− Changes in the marked to market of tranches

Interactions between credit spread and default risks
− Increase of credit spreads increases the probability of future defaults
− Arrival of defaults may lead to jump in credit spreads

Contagion effects: Jarrow & Yu (2001)
Not consistent with the reduced-form approach

CDO business and modeling contextCDO business and modeling context
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Contagion effects and historical data
− Das, Duffie, Kapadia and Saita : “Common failings: how 

corporate defaults are correlated” (2007)
Tends to show that there are contagion (or “frailty”) effects on top of macroeconomic 
factors to explain the clustering of defaults

Case studies: Enron, Parmalat show mixed evidence

− Jarrow, Guo and Lin: “Distressed debt prices and recovery 
rate estimation” (2008)

Question the notion of “economic date” which is usually before the legal 
default date (or “default event”)

Jumps in spreads related to default and contagion effects should be considered 
at the “economic default date”

This may change the picture about the significance of contagion
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Parallel shifts in credit spreads
− As can be seen from the current crisis
− On March 10, 2008, the 5Y CDX IG index spread quoted at 194 

bp pa
− starting from 30 bp pa on February 2007

See grey figure
− this is also associated with a surge in equity tranche premiums
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Idiosyncratic shift of a credit spread of a given name
Correlation crisis in May 2005 due to Ford and GM 
downgrades
Increase in the heterogeneity of the reference credit portfolio
Increase in equity tranche premiums
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Changes in the dependence structure between default times
− In the Gaussian copula world, change in the correlation parameters in 

the copula
− The present value of the default leg of an equity tranche decreases when 

correlation increases

Dependence parameters and credit spreads may be highly 
correlated
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Implied base correlation 
fluctuates through time
Correlation skew: 
− implied correlation usually 

increases with detachment 
point

− Reflecting fat tails in loss 
distributions

− Cross-sectional effects

CDX base correlations
From C. Finger (2008)
RiskMetrics Group
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One factor Gaussian copula remains the benchmark for 
pricing and risk managing synthetic CDOs
− A very short reminder

− independent standard Gaussian variables

− Default times

− risk-neutral marginal distribution function of default time i

− Provided by calibration onto credit default swap (CDS) quotes

Given some recovery rate assumption
− Analytical techniques for pricing tranches, large pool approximations, 

uniqueness of base correlations…

21i iV V Vρ ρ= + −

iF

iF
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CDS hedge ratios are computed by bumping the marginal 
credit curves
− In 1F Gaussian copula framework
− Focus on credit spread risk
− individual name effects
− Bottom-up approach
− Smooth effects
− Pre-crisis…

Poor theoretical properties
− Does not lead to a replication of CDO tranche payoffs
− Not a hedge against defaults…
− Unclear issues with respect to the management of correlation risks

From “I will survive” (2003), RISK
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We are still within a financial turmoil
− Lots of restructuring and risk management of trading books
− Collapse of highly leveraged products (CPDO)
− February and March 2008 crisis on iTraxx and CDX markets

Surge in credit spreads
Extremely high correlations
Trading of [60-100%] tranches
Emergence of recovery rate risk

− Questions about the pricing of bespoke tranches
− Use of quantitative models?
− The decline of the one factor Gaussian copula model
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MS provided implied correlations for senior tranches above 100%



CDO business and modeling contextCDO business and modeling context

Recovery rates
− Market agreement of a fixed recovery rate of 40% is inadequate

− Currently a major issue in the CDO market
− Use of state dependent stochastic recovery rates will dramatically 

change the credit deltas
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Decline of the one factor Gaussian copula 
model

Credit deltas in “high correlation states”
− Morgan & Mortensen: “CDO Hedging 

Anomalies in the Base Correlation 
Approach”, Lehman Brothers (2007)

− Close to comonotonic default dates (current 
market situation)

− Deltas are equal to zero or one depending on 
the level of spreads

Individual effects are too pronounced

Unrealistic gammas
From Burtschell, Gregory & Laurent
Journal of Credit Risk (2007)
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The decline of the one factor Gaussian copula model + base 
correlation
− This is rather a practical than a theoretical issue

Negative tranche deltas frequently occur
− Which is rather unlikely for out of the money call spreads

– Though this could actually arise in an arbitrage-free model
– Schloegl, Mortensen & Morgan, Lehman Brothers WP (2008)

− Especially with steep base correlations curves
– In the base correlation approach, the deltas of base tranches are 

computed under different correlations
− And with thin tranchelets

– Often due to “numerical” and interpolation issues
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No clear agreement about the computation of credit deltas 
in the 1F Gaussian copula model
− Sticky correlation, sticky delta?

− Computation with respect to credit default swap index, individual 
CDS?

Weird effects when pricing and risk managing bespoke 
tranches
− Price dispersion due to “projection” techniques

− Negative deltas effects magnified

− Sensitivity to names out of the considered basket
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Amongst all these issues, some good news might 
eventually occur for the one factor Gaussian copula
− “break-even” correlation: Fermanian and Vigneron (2008)
− Prior to default, perfect replication of a CDO tranche when using 

Gaussian copula deltas,
− Provided that the Gaussian copula correlation is equal to the 

spread correlation

How can we explain this?
− Hull, Predescu and White: “The Valuation of Correlation-

Dependent Credit Derivatives Using a Structural Model” (2005)
− Cousin and Laurent: “Comparison results for homogeneous credit 

portfolios” (2008)
− Houdain and Guegan: “hedging tranche index products: 

illustration of the model dependency” (2006)
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Hull et al. (2005) show that multivariate 
structural models provide almost the same 
CDO tranche quotes as the 1F Gaussian 
copula
− First hitting times of some barriers by 

correlated Brownian motions
Cousin and Laurent (2008) explain this by the 
nearness of conditional default probabilities 
which determine CDO tranche quotes
This should extend to credit deltas
The above multivariate structural model is 
associated with replicating deltas
But lack of tail dependence between assets:
− use of multivariate NIG processes
− Houdain and Guegan (2006) actually use NIG 

type copulas

Cousin & Laurent (2008)



The “ultimate step” : complete markets
− As many risks as hedging instruments
− News products are only designed to save transactions costs and 

are used for risk management purposes
− Assumes a high liquidity of the market

Perfect replication of payoffs by dynamically trading a 
small number of « underlying assets »
− Black-Scholes type framework
− Possibly some model risk

This is further investigated in the presentation
− Dynamic trading of CDS to replicate CDO tranche payoff

Tree approach to hedging defaultsTree approach to hedging defaults



What are we trying to achieve?

Show that under some (stringent) assumptions the market for CDO 
tranches is complete

CDO tranches can be perfectly replicated by dynamically trading CDS

Exhibit the building of the unique risk-neutral measure

Display the analogue of the local volatility model of Dupire (1994) or 
Derman & Kani (1994) for credit portfolio derivatives

One to one correspondence between CDO tranche quotes and model 
dynamics (continuous time Markov chain for losses)

Show the practical implementation of the model with market data

Deltas correspond to “sticky implied tree”

Tree approach to hedging defaultsTree approach to hedging defaults
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Main theoretical features of the complete market model
− No simultaneous defaults

– Unlike multivariate Poisson models
− Credit spreads are driven by defaults

Contagion model
– Jumps in credit spreads at default times

Credit spreads are deterministic between two defaults
− Bottom-up approach

Aggregate loss intensity is derived from individual loss 
intensities

− Correlation dynamics is also driven by defaults
Defaults lead to an increase in dependence
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Without additional assumptions the model is intractable
− Homogeneous portfolio

Only need of the CDS index
No individual name effect
Top-down approach

– Only need of the aggregate loss dynamics
− Markovian dynamics

Pricing and hedging CDO tranches within a binomial tree
Easy computation of dynamic hedging strategies

− Perfect calibration the loss dynamics from CDO tranche quotes
Thanks to forward Kolmogorov equations

− Practical building of dynamic credit deltas
− Meaningful comparisons with practitioner’s approaches



We will start with two names only
Firstly in a static framework
− Look for a First to Default Swap
− Discuss historical and risk-neutral probabilities

Further extending the model to a dynamic framework
− Computation of prices and hedging strategies along the tree
− Pricing and hedging of tranchelets

Multiname case: homogeneous Markovian model
− Computation of risk-neutral tree for the loss
− Computation of dynamic deltas

Technical details can be found in the paper: 
− “hedging default risks of CDOs in Markovian contagion models”

Tree approach to hedging defaultsTree approach to hedging defaults



Some notations :
− τ1, τ2 default times of counterparties 1 and 2, 
− Ht available information at time t,

− P historical probability,

− : (historical)  default intensities:

Assumption of « local » independence between default events
− Probability of 1 and 2 defaulting altogether:

− Local independence: simultaneous joint defaults can be neglected

[ [, ,  1,2P
i t iP t t dt H dt iτ α∈ + = =⎡ ⎤⎣ ⎦

[ [ [ [ ( )2
1 2 1 2, , ,  in P P

tP t t dt t t dt H dt dt dtτ τ α α∈ + ∈ + = ×⎡ ⎤⎣ ⎦
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Building up a tree:
− Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)
− Under no simultaneous defaults assumption p(D,D)=0
− Only three possible states: (D,ND), (ND,D), (ND,ND)
− Identifying (historical) tree probabilities:

( , )D ND

( , )ND D

( , )ND ND
( )1 21 P P dtα α− +

2
Pdtα

1
Pdtα

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1, , , , ,.

2, , , , .,

, ,. .,

0

0

1

P
D D D ND D D D ND D

P
D D ND D D D ND D D

ND ND D D

p p p p p dt

p p p p p dt

p p p

α

α

⎧ = ⇒ = + = =
⎪⎪ = ⇒ = + = =⎨
⎪

= − −⎪⎩

Tree approach to hedging defaultsTree approach to hedging defaults



Stylized cash flows of  short term digital CDS on counterparty 1:
− CDS 1 premium

Stylized cash flows of  short term digital CDS on counterparty 2:

( , )D ND

( , )ND D

( , )ND ND
( )1 21 P P dtα α− +

2
Pdtα

1
Pdtα 11 Qdtα−

1
Qdtα−

1
Qdtα−

( , )D ND

( , )ND D

( , )ND ND
( )1 21 P P dtα α− +

2
Pdtα

1
Pdtα 2

Qdtα−

21 Qdtα−

2
Qdtα−

1
Qdtα

0

0

Tree approach to hedging defaultsTree approach to hedging defaults



Cash flows of short term digital first to default swap with premium            :

Cash flows of holding CDS 1 + CDS 2:

Perfect hedge of first to default swap by holding 1 CDS 1 + 1 CDS 2
− Delta with respect to CDS 1 = 1, delta with respect to CDS 2 = 1
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Absence of arbitrage opportunities imply:

−

Arbitrage free first to default swap premium

− Does not depend on historical probabilities  

Three possible states: (D,ND), (ND,D), (ND,ND)

Three tradable assets: CDS1, CDS2, risk-free asset

For simplicity, let us assume 

1 2,P Pα α
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Three state contingent claims
− Example: claim contingent on state
− Can be replicated by holding
− 1  CDS 1 +            risk-free asset 

− Replication price =   
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Similarly, the replication prices of the               and      claims

Replication price of: 

Replication price =
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Replication price obtained by computing the expected payoff
− Along a risk-neutral tree

Risk-neutral probabilities
− Used for computing replication prices
− Uniquely determined from short term CDS premiums
− No need of historical default probabilities
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Computation of deltas
− Delta with respect to CDS 1:
− Delta with respect to CDS 2:
− Delta with respect to risk-free asset: p

p also equal to up-front premium

− As for the replication price, deltas only depend upon CDS premiums
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Dynamic case:

− CDS 2 premium after default of name 1
− CDS 1 premium after default of name 2
− CDS 1 premium if no name defaults at period 1
− CDS 2 premium if no name defaults at period 1

Change in CDS premiums due to contagion effects
− Usually,                            and 
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Computation of prices and hedging strategies by backward 
induction
− use of the dynamic risk-neutral tree

− Start from period 2, compute price at period 1 for the three 
possible nodes

− + hedge ratios in short term CDS 1,2 at period 1

− Compute price and hedge ratio in short term CDS 1,2 at time 0

Example: term structure of credit spreads
− computation of CDS 1 premium, maturity = 2

− will denote the periodic premium

− Cash-flow along the nodes of the tree
1p dt
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Computations CDS on name 1, maturity = 2

Premium of CDS on name 1, maturity = 2, time = 0,         solves for:

0
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Stylized example: default leg of a senior tranche
− Zero-recovery, maturity 2
− Aggregate loss at time 2 can be equal to 0,1,2

Equity type tranche contingent on no defaults
Mezzanine type tranche : one default
Senior type tranche : two defaults
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Stylized example: default leg of a mezzanine tranche
− Time pattern of default payments

− Possibility of taking into account discounting effects
− The timing of premium payments
− Computation of dynamic deltas with respect to short or actual CDS on names 1,2
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In theory, one could also derive dynamic hedging strategies 

for standardized CDO tranches

− Numerical issues: large dimensional, non recombining trees

− Homogeneous Markovian assumption is very convenient

CDS premiums at a given time t only depend upon 

the current number of defaults

− CDS premium at time 0 (no defaults)

− CDS premium at time 1 (one default)

− CDS premium at time 1 (no defaults)
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Tree in the homogeneous case

− If we have             , one default at t=1
− The probability to have             , one default at t=2…
− Is                     and does not depend on the defaulted name at t=1
− is a Markov process
− Dynamics of the number of defaults can be expressed through a binomial 

tree
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From name per name to number of defaults tree ( , )D D
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Easy extension to n names
− Predefault name intensity at time t for         defaults:
− Number of defaults intensity : sum of surviving name intensities:

− can be easily calibrated

− on marginal distributions of by forward induction.
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Empirical resultsEmpirical results

Calibration of the tree example
− Number of names: 125
− Default-free rate: 4%
− 5Y credit spreads: 20 bps
− Recovery rate: 40%

Loss intensities with respect to the 
number of defaults
− For simplicity, assumption of time 

homogeneous intensities
− Increase in intensities: contagion 

effects
− Compare flat and steep base correlation 

structures



Empirical resultsEmpirical results

Dynamics of the credit default swap index in the tree

− The first default leads to a jump from 19 bps to 31 bps
− The second default is associated with a jump from 31 bps to 95 bps
− Explosive behavior associated with upward base correlation curve



Empirical resultsEmpirical results

What about the credit deltas?
− In a homogeneous framework, deltas with respect to CDS are all the 

same
− Perfect dynamic replication of a CDO tranche with a credit default swap 

index and the default-free asset
− Credit delta with respect to the credit default swap index

− = change in PV of the tranche / change in PV of the CDS index



Dynamics of credit deltas:

− Deltas are between 0 and 1
− Gradually decrease with the number of defaults

Concave payoff, negative gammas
− When the number of defaults is > 6, the tranche is exhausted
− Credit deltas increase with time

Consistent with a decrease in time value

Empirical resultsEmpirical results



Market and tree deltas at inception
Market deltas computed under the Gaussian copula model

Base correlation is unchanged when shifting spreads
“Sticky strike” rule
Standard way of computing CDS index hedges in trading 

desks

Smaller equity tranche deltas for in the tree model
How can we explain this?

Empirical resultsEmpirical results

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA
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Smaller equity tranche deltas in the tree model (cont.)
− Default is associated with an increase in dependence

Contagion effects

− Increasing correlation leads to a decrease in the PV of the 
equity tranche 

Sticky implied tree deltas
− Recent market shifts go in favour of the contagion model
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The current crisis is associated with joint upward shifts in credit 
spreads
− Systemic risk

And an increase in base correlations

Sticky implied tree deltas are well suited in regimes of fear
− Derman: “regimes of volatility” (1999)
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Comparing with results provided by: 
− Arnsdorf and Halperin “BSLP: Markovian Bivariate Spread-Loss Model 

for Portfolio Credit Derivatives” Working Paper, JP Morgan  (2007), 
Figure 7 

− Computed in March 2007 on the iTraxx tranches
− Two dimensional Markov chain, shift in credit spreads

− Note that our results, related to default deltas, are quite similar
Equity tranche deltas are smaller in contagion models than 
Gaussian copula credit deltas
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Cont and Kan: “Dynamic hedging of 
portfolio credit derivatives” (2008)

Spread deltas
− Gaussian copula model

− Local intensity corresponds to our 
contagion model

− BSLP corresponds to Arnsdorf and 
Halperin (2007)

− GPL: generalized Poisson loss model of 
Brigo et al. (2006)

This shows some kind of robustness

Picture becomes more complicated when 
considering other hedging criteria…

Spread deltas computed for 5Y
Europe iTraxx on 20 September 2006 
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Back-test study on iTraxx Series 8 
equity tranche

Comparison of realized spread 
deltas on the equity tranche and 
model (implied tree) deltas

Good hedging performance 
compared with the Gaussian 
copula model
− During the credit crisis

− Discrepancy with results of Cont 
and Kan (2008)?

Source: S. Amraoui BNP Paribas
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Cont and Kan (2008) show rather poor 
performance of “jump to default” deltas
− Even the recent crisis period

However, unsurprisingly, the credit deltas 
(“jump to default”)  seem to be rather 
sensitive to the calibration of contagion 
parameters on quoted CDO tranches

Right pictures represent aggregate loss 
intensities
− Huge contagion effects for the first six 

defaults in Cont et al. (2008)

− Much smaller contagion effects for the 
first defaults in Laurent et al. (2007)

Cont, Minca and Savescu (2008)

Laurent, Cousin and Fermanian (2007)
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Frey and Backhaus: “Dynamic hedging of synthetic CDO tranches with 
spread risk and default contagion” (2007)

VOD: Value on default

Much smaller deltas in the contagion model than in Gaussian copula model
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Laurent: “A note on the risk management of 
CDO” (2007)
− provides a theoretical framework for hedging 

credit spread risk only while default risk is 
diversified at the portfolio level

− no default contagion, correlation between 
defaults are related to “correlation” between 
credit spreads

Feldhütter: “An empirical investigation of an 
intensity-based model for pricing CDO tranches”
(2008)
− comparison of hedging performance of a 

Duffie and Garleanu (2001) reduced-form 
model and one factor Gaussian copula

− Use of information at time t+1 to compute hedge 
ratios at time t

− Higher deltas for the equity tranche in the affine 
model compared with the 1F Gaussian copula 
(market deltas)
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Consistent results with the affine model of Eckner (2007) based on 
December 2005 CDX data

− Market deltas, “intensity” model credit deltas in Eckner (2007) and 
contagion model deltas

− Goes into the opposite direction when comparing with the contagion 
model

Note that Feldhütter (2008) and Eckner (2007) are pre-crisis
And are according to a “sticky delta rule” (Derman) which is 
reflects irrational exuberance or greed
− And might be appropriate for the pre-crisis period

 Tranches [0-3%] [3-7%] [7-10%] [10-15%] [15-30%]
market deltas 18.5 5.5 1.5 0.8 0.4
AJD deltas 21.7 6.0 1.1 0.4 0.1
contagion model deltas 17.9 6.3 2.5 1.3 0.8



Empirical results: other work in progressEmpirical results: other work in progress

Individual credit deltas in the above Markov chain (or tree) models

Giesecke, Halperin: forthcoming

− Use of “random thinning” to compute individual name deltas

Discrimination of credit deltas might improve hedging efficiency

as compared with hedging with the credit default swap index only

− Credit deltas of names with high spreads are likely to be higher when 

considering an equity tranche

Improvement of hedging efficiency should be related to the 

dispersion between spreads of names in the underlying portfolio

Empirical studies remain to be conducted…



What do we learn from the previous approaches?
− Thanks to stringent assumptions: 

– credit spreads driven by defaults 
– homogeneity 
– Markov property

− It is possible to compute a dynamic hedging strategy
– Based on the CDS index

− That fully replicates the CDO tranche payoffs
– Model matches market quotes of liquid tranches
– Very simple implementation
– Credit deltas are easy to understand

− Improve the computation of default hedges
– Since it takes into account credit contagion
– Provide some meaningful results in the current credit crisis

Empirical resultsEmpirical results
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What we still need to learn (selected items)?
− Contagion models seem to show lack of robustness 

– Calibration of contagion parameters?
− Do not properly deal with heterogeneity

See May 2005 idiosyncratic crisis due to the downgrading of GMAC
“idiosyncratic Gamma” is not properly dealt with

− May not suitable in all market conditions 
– see previous results on reduced-form models

− Reduced form models may still be of interest: Feldhütter (2008)
– What is the correct regime?

− Firm value models and therefore copula models may still be of interest
Could provide a relevant “complete markets” framework
Further need of empirical research in that direction
Take into account tail dependence for asset returns



CDO of Subprimes and SIVsCDO of Subprimes and SIVs

CDO of subprimes, RMBS (residential 
mortgage backed securities)
− Obvious issues related to fraud and 

due diligence on mortgages
− Legal issues in the US with respect to 

lender’s protection
At some point in time, the 
lender can only claim for the 
underlying house and not for 
the borrower’s income

As compared with synthetic STCDOs
on corporate issuers, there are usually 
extra-protection
− Overcollateralization
− Non pass-through structure: part of the 

interest income is retained in the SPV
− Which is fair enough, but…

CLTV: combined loan to value



CDO of Subprimes and SIVsCDO of Subprimes and SIVs

CDO of subprimes are actually CDO squared:
− Crouhy and Turnbull: “The Subprime Credit Crisis of 07” (2008)
− Ashcraft and Schuermann: “Understanding the Securitization of 

Subprime Mortgage Credit” (2008)
The mini-tranches, usually rated BBB or A have already well-
diversified idiosyncratic risk
The housing market in the US is the common factor

Since the attachment points of the mini-tranches were 
rather similar and related to the same underlying risk
Defaults of the mini-tranches became almost simultaneous
− Simultaneous defaults rather than contagion effects
− Comonotonicity: as in Basel II, measures of risk are additive
− The rating of the most senior tranches had to be the same as the

ratings of the constituents (say A or BBB) instead of AAA



CDO of Subprimes and SIVsCDO of Subprimes and SIVs

One common factor: housing market Collapse of CDOs of subprimes and
failure of rating agencies



CDO of Subprimes and SIVsCDO of Subprimes and SIVs

A SIV is actually a synthetic bank
− Long-term illiquid and difficult to value assets such as RMBS
− Short-term funding by issuing commercial paper, usually with the best rating…
− Huge and obvious liquidity issues

But SIVs were not submitted to bank regulation
Issues, especially with SIVs sponsored by banks
− Off-balance sheet agreements to guarantee SIVs liquidity
− Explicit or implicit is still unclear

“Partnerships” in case of Enron?
− Off-balance sheet commitments should be guaranteed with the capital of the sponsor
− Late application of Basel II in the US

Controversial issue
− To what extend, Fed and department of Treasury were involved?



CDO of Subprimes and SIVsCDO of Subprimes and SIVs

Eventually, the collapse of SIVs plus “reintermediation”
within the balance sheet of the sponsors led to a fear of 
systemic risk
Usual mechanisms in bank crises
− Increase of short-term spreads
− Credit crunch in the longer part of the interbank lending market
− Increased by the opacity of the assets and the dissemination of 

risks throughout the world (dynamic money funds)
− Collapse of some financial intermediaries
− Central banks as lenders of last resort: providing liquidity 

guaranteed by illiquid securitized assets

Eventually, contagion effects similar to those discussed 
above in synthetic CDOs


