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Overview

CDO Business and modeling context
— Risks at hand in synthetic CDOs
— Decline of the one factor Gaussian copula model for risk
management purposes?
— Recent correlation crisis
— Unsatisfactory credit deltas for CDO tranches?
— Relating credit deltas to structural models: “break-even correlation”

“Tree approach” to hedging defaults

— From theoretical ideas

— To practical implementation of hedging strategies
Empirical work

— Robustness of the approach?

— Contagion models, reduced-form models

CDO of subprimesand SIVs



CDO business and modeling context

* Default risk
— Default bond price jumps to recovery value at default time.
— Drivesthe CDO cash-flows
* Credit spread risk
— Changes in defaultable bond prices prior to default
» Dueto shiftsin credit quality or in risk premiums
— Changes in the marked to market of tranches
* |nteractions between credit spread and default risks
— Increase of credit spreads increases the probability of future defaults
— Arrival of defaults may lead to jump in credit spreads
» Contagion effects. Jarrow & Y u (2001)
» Not consistent with the reduced-form approach



CDO business and modeling context

® Contagion effects and historical data

— Das, Duffie, Kapadiaand Saita : “Common failings. how
corporate defaults are correlated” (2007)

» Tends to show that there are contagion (or “frailty”) effects on top of macroeconomic
factors to explain the clustering of defaults

» Case studies: Enron, Parmalat show mixed evidence

— Jarrow, Guo and Lin: “Distressed debt prices and recovery

rate estimation” (2008)

» Question the notion of “economic date” which is usually before the legal
default date (or “default event™)

» Jumps in spreads related to default and contagion effects should be considered
at the “economic default date”

» This may change the picture about the significance of contagion



CDO business and modeling context

* Parallel shiftsin credit spreads
— Ascan be seen from the current crisis
— (b)n March 10, 2008, the 5Y CDX IG index spread quoted at 194
P Pa
— starting from 30 bp pa on February 2007
» See grey figure
— thisisalso associated with a surge in equity tranche premiums
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CDO business and modeling context

* |diosyncratic shift of acredit spread of a given name
» Correlation crisisin May 2005 due to Ford and GM

downgrades

» Increase in the heterogeneity of the reference credit portfolio
» Increase in equity tranche premiums

Chart 1: GM/Ford bond spreads
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CDO business and modeling context

® Changes in the dependence structure between default times

— Inthe Gaussian copula world, change in the correlation parametersin
the copula

— The present value of the default leg of an equity tranche decreases when
correlation increases

* Dependence parameters and credit spreads may be highly
correlated
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Figure 9. Credit spreads on the five years iTraxx index (Series 7) in bps on the left axis.
Implied correlation on the equity tranche on the right axis



CDO business and modeling context

100

Implied base correlation
fluctuates through time .
Correlation skew:

— implied correlation usually
Increases with detachment

Base correlation (9%

point
— Reflecting fat tailsin loss 20}
distributions
— Cross-sectional effects :

CDX base correlations
From C. Finger (2008)
RiskMetrics Group



CDO business and modeling context

* One factor Gaussian copula remains the benchmark for
pricing and risk managing synthetic CDOs
— A very short reminder

— V. V;, i=1,...,n independent standard Gaussian variables
V. = pV +1-pV,

— Defaulttimes ;= F; (®(V3))

— F risk-neutral marginal distribution function of default timei

— Provided by calibration onto credit default swap (CDS) quotes
» Given some recovery rate assumption

— Analytical techniques for pricing tranches, large pool approximations,
uniqueness of base correlations. ..




CDO business and modeling context

CDS hedge ratios are computed by bumping the marginal
credit curves 4. CDO tranche deltas

— In 1F Gaussian copulaframework 7,

— Focus on credit spread risk = -_—T

— individual name effects ; ol ,, Senlor

— Bottom-up approach 3 20 pmonmemom——E

— Smooth effects 5 | | | |

— Precrisis... > P ceaspresatn
Poor theoretical properti es From “I will survive” (2003), RISK

— Does not lead to areplication of CDO tranche payoffs

— Not a hedge against defaults...

— Unclear issues with respect to the management of correlation risks



CDO business and modeling context

* We are still within afinancia turmoil
— Lotsof restructuring and risk management of trading books
— Collapse of highly leveraged products (CPDO)
— February and March 2008 crisison iTraxx and CDX markets

» Surge in credit spreads
» Extremely high correlations
» Trading of [60-100%] tranches
»Emergence of recovery rate risk
— Questions about the pricing of bespoke tranches

— Use of quantitative models?
— The decline of the one factor Gaussian copula model




CDO business and modeling context

Morgan Stanley MORGAN STANLEY RESEARCH

March 10, 2008
Structured Credit Analytics

- - -
CDX and iTraxx — Correlation Analysis and Delta Neutral Return
CDX Series 9
Corr. CDX wvs.
Mid 1 Week  Nid 1 Month  Index Skew Z Corr. Skew ITRANX Value vs. Delta Neutral Retums
Index Tranche Bid Ask Change Change  Lewvel Score Rel. Value Corr Skew iTrasox 1 Weelk: 1 Monti 1 Year
Syr Index 185.0 1850 250 &2.0
E'l" 0-3% B7.5% B58.5% 10.4% 130% 185bp 1.19 RICH (1.10) CHEAP -5.6% 0.6% 50.0%
Syr 3% 731 738 138 219 1.07 RICH (0f=rg FAIR -2 1% 3.2% 9.0%
Eyr T-10% 405 415 75 141 (0.31) FAIR 021 FAIR -1.2% 1.4% -4.7%.
Syr 10-15% 207 214 12 73 1.15 RICH 0se FAIR 0.6% 1.2% -1.8%
Syr 15-30°% 126 130 13 a2 (0.01) FAIR 18 FAIR 0.4% -0.3% -1.3%
Syr 30-100% T8 80 10 45 0.3% 06% -1.6%
Tyr Index 178.0 178.0 20.0 B820
Ty 0-3% T1.0%6 T20% 8.0% 11.3% 178bp 138 RICH -5.0% 1.8% 42 9%
Tyr 3-T% 785 795 130 193 1.00 FAIR -2.6% 5.7% 18.2%
Tyr T-10% 452 460 79 106 (0.56) FAIR -1.8% 5.4% -28%
Tyr 10-15% 255 265 21 73 (0.09) FAIR 0.5% 3.0% 209
Tyr 15-30°% 139 144 14 65 (0.73) FAIR 0.3% 1% -1.7%
Tyr 30-100% 81 83 12 48 0.1% -0.9% 21%
A0yT Indesx: 174.0 174.0 18.0 ar.0
10yr* 0-3% T4.0% Ta48% 7.50% 99% 1T4bp 123 RICH 131 RICH 5.2% 1.5% 31.6%
A0yr 3-T% 210 220 110 204 213 RICH 316 RICH -1.6% 7.5% 37.4%
10yr T-10% 523 533 &7 = (0.64) FAIR (0.64) FAIR 0.5% B.5% 1.8%
10yr 10-15% 300 308 = =3 (0.60) FAIR (0uE0) FAIR 1.0% 26% 30%
10yT 165-300%6 150 155 14 83 (1.2 CHEAP (2101) CHEAP 0.5% Q0% -1.6%
10yT 30-100% e B2 10 45 0.2% -1.2% -2.9%
HY Index: 7188 7188 236 831
HY 0-10% 92 1% 9265% 1.6% 25% T19bp o7 44% -24% 1.05 RICH -1.1% -0.4% 10.2%
HY 10-15% 75.3% 75.8% 2.5% 6.1% 18 4506 5% 1.2% (0.12) FAIR -1.4% -1.4% B.0%
HY 15-265% 1,280 1,305 a1 222 23 2% 23% 1.4% 273 RICH -1.0%% -1.5% 1.6%
HY 26-35% 680 695 48 145 1.5 W% 19% 0:2% (0.21) FAIR -0.6% -1.6% -6.3%
HY 351000 20e 208 (2} =2 o6 0.5% Q.0% 21%
LCDX Index 440.0 440.0 78 296
LCcme 0-5% BE.E% BY 8% 3% -02% 440 bp 16 T8% H2% -3.5% 30%6
LCcoDe 5-8% B86.9% B7.6%. 4.3% 1.00% 27 -3.6% 3.6%
LCDX B12% 11400 11520 300 350 as 0.0% 30%
LCDX 12-15°% T400 7480 7.0 107.0 24 0.9% -1.4%
LoD 15-100% 206.0 2100 -13.5 200 a6 0.7% -0.8%
"Correlation of tranche with 0% attachment and the same detachment point as the benchmark tranche, implied frorn market prices of benchmark tranches
2pgints upfront plus 500 bp running
*Points upfront plus 0 bp running
Source: Morgan Stanley
MS ided implied lati f ' hes ab 100%
provided implied correlations for senior tranches above 100%




CDO business and modeling context

®* Recoveryrates

— Market agreement of a fixed recovery rate of 40% isinadeguate

Exhibit 10 - Correlation between Recovery Rates and Annual Default Rates, 1983-2004
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Recovery Rate = 0.52 - 6.9° Default Rate
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Annual Default Rate

— Currently amajor issuein the CDO market

— Useof state dependent stochastic recovery rateswill dramatically

changethe credit deltas



CDO business and modeling context

® Decline of the one factor Gaussian copula
model

® Credit deltasin “high correlation states’

— Morgan & Mortensen: “CDO Hedging
Anomaliesin the Base Correlation
Approach”, Lehman Brothers (2007)

— Close to comonotonic default dates (current
market situation)

— Deltas are equal to zero or one depending on
the level of spreads

» Individual effects are too pronounced

» Unrealistic gammas
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From Burtschell, Gregory & Laurent

Journal of Credit Risk (2007)




CDO business and modeling context

* The decline of the one factor Gaussian copula model + base
correlation
— Thisisrather a practical than atheoretical issue

* Negative tranche deltas frequently occur
— Which israther unlikely for out of the money call spreads
— Though this could actually arise in an arbitrage-free model
— Schloegl, Mortensen & Morgan, Lehman Brothers WP (2008)
— Especially with steep base correlations curves

— In the base correlation approach, the deltas of base tranches are
computed under different correlations

— And with thin tranchelets
— Often due to “numerical” and interpolation issues




CDO business and modeling context

* No clear agreement about the computation of credit deltas
In the 1F Gaussian copula model
— Sticky correlation, sticky delta?
— Computation with respect to credit default swap index, individual
CDS?
* Waeird effects when pricing and risk managing bespoke
tranches
— Price dispersion due to “projection” techniques
— Negative deltas effects magnified
— Sengitivity to names out of the considered basket



CDO business and modeling context

* Amongst all these issues, some good news might
eventually occur for the one factor Gaussian copula
— “break-even” correlation: Fermanian and Vigneron (2008)

— Prior to default, perfect replication of a CDO tranche when using
Gaussian copula deltas,

— Provided that the Gaussian copula correlation is equal to the
spread correlation
* How can we explain this?

— Hull, Predescu and White: “The Valuation of Correlation-
Dependent Credit Derivatives Using a Sructural Model” (2005)

— Cousin and Laurent: “Comparison results for homogeneous credit
portfolios’ (2008)

— Houdain and Guegan: “hedging tranche index products:
Ilustration of the model dependency” (2006)




CDO business and modeling context

Hull et al. (2005) show that multivariate
structural models provide almost the same
CDO tranche quotes as the 1F Gaussian
copula

— First hitting times of some barriers by
correlated Brownian motions

Cousin and Laurent (2008) explain this by the
nearness of conditional default probabilities
which determine CDO tranche quotes

This should extend to credit deltas

The above multivariate structural mode! is

associated with replicating deltas

But lack of tail dependence between assets.
— use of multivariate NIG processes

— Houdain and Guegan (2006) actually use NIG
type copulas

Distributions of Conditionnal Default Probabilities
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Tree approach to hedging defaults

®* The“ultimate step” : complete markets
— As many risks as hedging instruments

— News products are only designed to save transactions costs and
are used for risk management purposes

— Assumes a high liquidity of the market
* Perfect replication of payoffs by dynamically trading a
small number of « underlying assets »
— Black-Scholes type framework
— Possibly some model risk
* Thisisfurther investigated in the presentation
— Dynamic trading of CDS to replicate CDO tranche payoff




Tree approach to hedging defaults

* What are we trying to achieve?

® Show that under some (stringent) assumptions the market for CDO
tranches is complete

» CDO tranches can be perfectly replicated by dynamically trading CDS
» Exhibit the building of the unique risk-neutral measure

* Display the analogue of the local volatility model of Dupire (1994) or
Derman & Kani (1994) for credit portfolio derivatives

» One to one correspondence between CDO tranche quotes and model
dynamics (continuous time Markov chain for |0sses)

® Show the practical implementation of the model with market data

» Deltas correspond to “sticky implied tree”




Tree approach to hedging defaults

* Main theoretical features of the complete market model

— No simultaneous defaults
— Unlike multivariate Poisson models

— Credit spreads are driven by defaults
» Contagion model

— Jumpsin credit spreads at default times
» Credit spreads are deterministic between two defaults
— Bottom-up approach
» Aggregate loss intensity is derived from individual loss
Intensities
— Correlation dynamicsis also driven by defaults
» Defaults lead to an increase in dependence



Tree approach to hedging defaults

* Without additional assumptions the model is intractable
— Homogeneous portfolio
» Only need of the CDS index
» No individual name effect
» Top-down approach
— Only need of the aggregate loss dynamics
— Markovian dynamics
» Pricing and hedging CDO tranches within a binomial tree
» Easy computation of dynamic hedging strategies
— Perfect calibration the loss dynamics from CDO tranche quotes
» Thanks to forward Kolmogorov equations
— Practical building of dynamic credit deltas
— Meaningful comparisons with practitioner’ s approaches




Tree approach to hedging defaults

We will start with two names only

Firstly in a static framework
— Look for aFirst to Default Swap
— Discuss historical and risk-neutral probabilities
Further extending the model to a dynamic framework
— Computation of prices and hedging strategies along the tree
— Pricing and hedging of tranchelets
Multiname case: homogeneous Markovian model
— Computation of risk-neutral tree for the loss
— Computation of dynamic deltas
Technical details can be found in the paper:
— “hedging default risks of CDOs in Markovian contagion models’



Tree approach to hedging defaults

¢ Some notations:

— T4, T, default times of counterparties 1 and 2,
— 7, available information at timet,

— P historical probability,
— a;,a, : (historical) default intensities:
5 Plre[tt+di|H, |=aldt, i=12

* Assumption of «local » independence between default events
— Probability of 1 and 2 defaulting altogether:
> Plre[tt+d,z,e[tt+dt|H,]=aldtxafdt in (dt)

— Local independence: simultaneous joint defaults can be neglected




Tree approach to hedging defaults

* Building up atree:
— Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)
— Under no simultaneous defaults assumption pp, ,=0
— Only three possible states: (D,ND), (ND,D), (ND,ND)
— ldentifying (historical) tree probabilities:

a;dt_ (D,ND)

P
a., dt (ND, D)
1—(a1 Zp)dt
(ND, ND)

Pop) = 0= Pono) = Poo)y T Pono) = Pp,) =% dt
Poo) = 0= Pino.o) = Pooy T Pino.o) = Pro) = @2 dt
Pinoo) =1~ Po,) ~ Pio

N




Tree approach to hedging defaults

Stylized cash flows of short term digital CDS on counterparty 1.
— a2 dt CDS 1 premium

/ 1- g dt  (D,ND)
;
a, dt —a dt (ND, D)

1- (al

—al °dt  (ND,ND)

Stylized cash flows of short term digital CDS on counterparty 2:
/ —a, Sdt  (D,ND)
adt 149t (ND,D)

1- (051

—ant (ND, ND)



Tree approach to hedging defaults

® (Cashflows of short term digital first to default swap with premium a?dt ;

/1 o dt  (D,ND)
o, dt  1- 4%t (ND,D)

1- (al 2 dt
—a2dt (ND,ND)

® (Cashflowsof holding CDS 1+ CDS2:
alpd 1- (alQ +a§)dt (D,ND)

0 — (o + a3 )dt (ND,D)

1- (alp dt
al +a2 dt (ND,ND)

* Peafect hedge of first to default swap by holding 1 CDS 1+ 1 CDS?2
— Deltawith respect to CDS 1 =1, deltawith respect to CDS2 =1



Tree approach to hedging defaults

* Absence of arbitrage opportunities imply:

— a®=a2+af

® Arbitrage free first to default swap premium

— Does not depend on historical probabilities ¢, ,a,
®* Threepossible states: (D,ND), (ND,D), (ND,ND)
®* Threetradable assets. CDS1, CDS2, risk-free asset

/fd/ 1+r (D,ND)
=)
1<% 14¢ (\D.D)
1th

1+r (ND,ND)

®* For simplicity, let usassume r =0




Tree approach to hedging defaults

o dt 1 (D,ND)

®* Three state contingent claims

P
— Example: claim contingent on state (D,ND) ~ ? 7l 0 (ND,D)
— Can be replicated by holding 5
Q . 1- (051 )dt
— 1 CDS1+ o dt risk-free asset 0 (ND, ND)
o, dt alet (D,ND) a’d 1- alet (D,ND)
P
aldt <~ % a a’dt (ND,D) + O o dit —a°dt (ND,D)
1- (o gy )t 1- (o Peg )t

a2dt (ND,ND) —a°dt (ND,ND)

— Replication price = adlt afdt_~1 (D,ND)

o dt

1— (o kot )dt
0 (ND,ND)

o, dt

0 (ND,D)




Tree approach to hedging defaults

* Similarly, the replication prices of the(ND, D) and (ND,ND) claims
afdt - 0 (D,ND) afdr~ 0 (D,ND)
ol dt /
o dt 2 1 (ND,D) 1—(a§+a§)dt %d (ND, D)
1th 1—(a1 azp)dt
0 (ND,ND) 1 (ND,ND)
/af’d!/a (D, ND)
o, dt
* Replication priceof: 7 : b (ND,D)
1th
C (ND,ND)

e Replication price = aletxa+a§dt><b+(l— (a1Q+a§)dt)C




Tree approach to hedging defaults

* Replication price obtained by computing the expected payoff
— Along arisk-neutral tree

Q
afdtxa+a§dtxb+(1—(af+a§)dt)c Z b (ND,D)

1- (al af)dt
C (ND,ND)

® Risk-neutral probabilities
— Used for computing replication prices
— Uniquely determined from short term CDS premiums
— No need of historical default probabilities




Tree approach to hedging defaults

®* Computation of deltas
— Deltawith respect to CDS 1: 0,
— Deltawith respect to CDS 2: 0,
— Deltawith respect to risk-free asset: p

» p aso equal to up-front premium

payoff CDS 1 payoff CDS 2
a= o+51><( thj+5 ( )
‘b= :)+51><( th) +5, x( afdt)
C=p+6,%(-a dt) +0,x (—agdt)

payoff CDS 1. payoif CDS 2

— Asfor thereplication price, deltas only depend upon CDS premiums



Tree approach to hedging defaults

AJdt—(D,D)
O ' -

Dynamic case: o2dtt~ (D:ND) <T—og; (D, ND)
- 0 (D,D)

= dt
1—(a aQ)dt (ND, D)

. S 20t
(ND, ND) : (D,ND)
(ND, D)

1—(7[1Q+7z§

. (ND, ND)
— Aydt CDS 2 premium after default of name 1

—  x2dt CDS 1 premium after default of name 2

— m°dt CDS 1 premium if no name defaults at period 1

— 7z7dt CDS 2 premium if no name defaults at period 1
®* Changein CDS premiums due to contagion effects

— Usudly, zl<al <kl and 7zl <al <Ay



Tree approach to hedging defaults

* Computation of prices and hedging strategies by backward
Induction
— use of the dynamic risk-neutral tree

— Start from period 2, compute price at period 1 for the three
possible nodes

— + hedge ratios in short term CDS 1,2 at period 1
— Compute price and hedge ratio in short term CDS 1,2 at time O

* Example: term structure of credit spreads
— computation of CDS 1 premium, maturity = 2

— pdt will denote the periodic premium
— Cash-flow along the nodes of the tree



Tree approach to hedging defaults

® Computations CDS on name 1, maturity = 2 19 0 (D,D)
2
o2t 1~ Pt (DND) =7 50— 0 (D.RD)
Qdt o 1- pldt (D,D)
0 a, — p,dt (ND,D){
=c<dt
1- (al ag)dt —pdt  (ND,D)

Q
—pdt (ND, ND) mdt g pdt (D,ND)
—pdt (ND,ND)
* Premium of CDS on name 1, maturity = 2, time = 0, pdt solvesfor:

0= (1_ pl)alQ +(_ p1+(1_ p1)K1Q - p1<1_ KlQ))aS

+ (_p1+(1_ pl)”lQ_ plﬂ.g_ pl(l—ﬂf—ﬂg))(l—af—ag)




Tree approach to hedging defaults

* Stylized example: default leg of a senior tranche
— Zero-recovery, maturity 2
— Aqggregate loss at time 2 can be equal to0 0,1,2
» Equity type tranche contingent on no defaults
» Mezzanine type tranche : one default
» Senior type tranche : two defaults
1 (D,D)

0 (D,ND)

1 (D,D)

A2dt

(D.ND) <o

o dt x x7dt + a7 dt x i dt

-

up-front premmm default leg

0 (D,ND)
0 (ND,D)
0 (ND,ND)

senior
> tranche
payoff




Tree approach to hedging defaults

* Stylized example: default leg of a mezzanine tranche

— Time pattern of default payments
P pay /AZQQ/O (D, D)

o 1 (D.ND) =1—o 0 (D,ND)

d q &

1 t+a2 t o KQ O (D,D) .

(1 (051 . )dt)( Q)dt o dt mezzghine

()

1
up-front premium defauilt leg 1— (al O(S)dt o 0 (ND,D) payoff
1

O (ND,ND) 1 (D,ND)

1 (ND,D)
0 (ND,ND) °

Q, . Q
1- (72'1 + 775

— Possibility of taking into account discounting effects
— Thetiming of premium payments
— Computation of dynamic deltas with respect to short or actual CDS on names 1,2




Tree approach to hedging defaults

* |ntheory, one could also derive dynamic hedging strategies
for standardized CDO tranches
— Numerical issues. large dimensional, non recombining trees

— Homogeneous Markovian assumption is very convenient

»CDS premiums at agiven timet only depend upon
the current number of defaults N(t)
— CDS premium at time 0 (no defaults) aldt = 20t = a° (t =0,N(0) = o)
— CDSpremium at time 1 (one default) A2dt = xP2dt = a2 (t =1, N(t) =1)
— CDSpremium at time 1 (no defaults) 7°dt = z7dt = 22 (t =1, N(t) = 0)




Tree approach to hedging defaults
(D,D)
* Treein the homogeneous case 0.0 /(;'Q/(D ND)
a, , ’

(D,D)
Y (ND, D)

1- 222(0,0)
“Q(]’O (D, ND)

(ND, ND) ,
%(ND,D)
— If we have N1 =1, one default at t=1 (ND,ND)

— The probability to haveN(2) =1, one default at t=2..
— Is 1-a?(1,1) and does not depend on the defaulted name at t=1
— N(t) iIsaMarkov process

— Dynamics of the number of defaults can be expressed through a binomial
tree




Tree approach to hedging defaults

* From name per nameto number of defaultstree /(llé/ (D,D)

N(0)=0

20.2(6,0)

1-20;°(0,0)

N(1) =1

N(1) =0

/Qy/
a.:(0,0)

211

1- 2a2(0,0)

T—a
~(1,0)

1- 2072 (1,

0)

(D,ND) =~ 1= a‘*(Ll)(D’ND)

(D,D)
Y (ND.D)
aQ (1,0)

(ND, ND) (D,ND)
%(ND D)
(ND, NI

N(2)=2 )
number
7 N(2)=1 Lof defaults
tree
N(2)=0




Tree approach to hedging defaults

® Easy extension to n names
— Predefault name intensity at timet for N(t) defaults: o (t,N(t))
— Number of defaults intensity : sum of surviving name intensities:

A(LN() =(n—=N(t)) e (t,N(t)) W N(3) =3
N(2) =2 EA=Dal(22) 5 _ 5

1AN-1)a° (1) N(2) -1 ~Da’(21) N(3)=1

(2.2)
(21)
na2(2,0)
7(2.0)

N(1) =1 (
"2 480) 2(1,0)

M=t 1-ne,’(0,0) e 1-na*(1,0) N(2)=0

N(3)=0
1-ne (2,

— 22(0,0),e¢2(10),a°(11),22(2,0),22(21).... can be easily calibrated

— on marginal distributions of N(t)by forward induction.




® (Calibration of the tree example

Empirical results

Number of names: 125
Default-free rate: 4%

5Y credit spreads. 20 bps
Recovery rate: 40%

3% 6% 9% 12%

22%

18% 28% 36% 42%

58%

Table 8. Base correlations with respect to attachment points.

L oss intensities with respect to the
number of defaults

— For simplicity, assumption of time

homogeneous intensities

— Increase in intensities. contagion

— Compare flat and steep base correlation

effects

structures

N@3)=3

NQ3)=2

N@3)=1

N()=1 N(2)=1
0
f: 1

N(0)=0 N(1)=0 N(2)=0 N(3)=0
s —gR, - 44, 2) =4k, e
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175
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o B Gaussian copula

100

75 f
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0l

ca Yoo dFTOYHYILIYHITER

Figure 6. Loss intensities for the Gaussian copula and market case examples. Number of
defaults on the x— axis.



Empirical results

* Dynamics of the credit default swap index in thetree

Nb Defaults MiecKs
0 14 56 84
0 20 19 17 16
1 0 31 23 20
2 0 95 57 43
3 0 269 150 08
4 0 592 361 228
5 0 1022 723 490
6 0 1466 1193 905
7 0 1870 1680 1420
8 0 2043 2126 1945
9 0 2623 2534 2423
10 0 3035 2939 2859

Table 9. Dynamics of credit default swap index spread s,.(i,%) in basis points per annum.

— Thefirst default leads to a jump from 19 bpsto 31 bps
— The second default is associated with ajump from 31 bpsto 95 bps
— Explosive behavior associated with upward base correlation curve



Empirical results

® \What about the credit deltas?
In a homogeneous framework, deltas with respect to CDS are dll the

same

Perfect dynamic replication of a CDO tranche with a credit default swap
Index and the default-free asset

Credit delta with respect to the credit default swap index

= change in PV of the tranche/ change in PV of the CDS index

Nb Defaults

0

AN b W=

7

OutStanding Weeks

Nominal 0 14 56 84
3.00% 0.941 0617 0823 0910
2.52% 0 0279 0510 0690
2.04% 0 0.072 0166 0304
1.56% 0 0.016 0.034 0.072
1.08% 0 0.004 0.006 0.012
0.60% 0 0.002 0.002 0.002
0.12% 0 0.001 0.000  0.000
0.00% 0 0 0 0

Table 11. Delta of the default leg of the [0,3%] equity tranche with respect to the credit

default swap index (0, (7, k) ).



Empirical results

* Dynamics of credit deltas:

Nb Defaults OutSta_nding Weeks
Nominal 0 14 56 84
0 3.00% 0.541 0617 0823 0910
1 2.52% 0 0279 0510 0.690
2 2.04% 0 0.072 0166 0304
3 1.56% 0 0.016 0034 0.072
4 1.08% 0 0.004 0006 Q012
5 0.60% 0 0.002 0002 0.002
6 0.12% 0 0.001 0.000 0.000

7 0.00% 0 0 0 0
Table 11. Delta of the default leg of the [0,3%] equity tranche with respect to the credit

default swap index (0, (1, k) ).

— Deéeltas are between 0 and 1
— Gradually decrease with the number of defaults

» Concave payoff, negative gammas
— When the number of defaultsis > 6, the tranche is exhausted
— Credit deltas increase with time

» Congstent with a decrease in time value




Empirical results

Market and tree deltas at inception
Market deltas computed under the Gaussian copula model
» Base correlation is unchanged when shifting spreads
»"“ Sticky strike” rule
» Standard way of computing CDS index hedges in trading

desks
[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA

Smaller equity tranche deltas for in the tree model
»How can we explain this?



Empirical results

* Smaller equity tranche deltasin the tree model (cont.)
— Default isassociated with an increase in dependence

» Contagion effects

Figure 8. Dynamics of the base correlation curve with respect to the number of defaults.
Detachment points on the x —axis. Base correlations on the y —axis.

— Increasing correlation leadsto a decreasein the PV of the
equity tranche

» Sticky implied tree deltas
— Recent market shiftsgo in favour of the contagion model




Empirical results

®* Thecurrent crisisis associated with joint upward shiftsin credit
spreads

— Systemic risk
* And anincrease in base correlations

20 Fad = ¥ T T T g T T ! T T T

$ & ¢ & F 8 & d ¢ S S g s g8

o ; § £ 8 § & & 8
Pr P S P T

Figure 9. Credit spreads on the five years 1Traxx index (Series 7) in bps on the left axis.
Implied correlation on the equity tranche on the right axis

® Sticky implied tree deltas are well suited in regimes of fear
— Derman: “regimes of volatility” (1999)




Empirical results

® Comparing with results provided by:
— Arnsdorf and Halperin “BS_P: Markovian Bivariate Soread-Loss Model
for Portfolio Credit Derivatives’ Working Paper, J°P Morgan (2007),

Figure 7
[03%] [356%] [6-9%] [3-12%] [1222%]
market delias 265 45 1.26 0.65 0.25
model deltas 219 4.81 1.64 0.79 .33

— Computed in March 2007 on the iTraxx tranches
— Two dimensional Markov chain, shift in credit spreads

[0-3%] [36%] [6-9%] [3-12%] [1222%]
market deltas 27 4.5 1.25 0b 0.25
model deltas 215 4 63 1.63 09 0.6

— Note that our results, related to default deltas, are quite similar

» Equity tranche deltas are smaller in contagion models than
Gaussian copula credit deltas



Empirical results

Cont and Kan: “Dynamic hedging of
portfolio credit derivatives’ (2008)
Spread deltas

— Gaussian copula model

— Local intensity corresponds to our
contagion model

— BSLP corresponds to Arnsdorf and
Halperin (2007)

— GPL: generalized Poisson loss model of
Brigo et al. (2006)

This shows some kind of robustness

Tranche | Gauss Local BSLP GPL
0-3 | 2448 2450 U479 2448
3-6 | hhd h4h B30 hM
6-0 | L7018 180 179
0-12 | 087 08 08 08
12-2 0% 03 02 0%
2-1001 008 008 009 008

Spread deltas computed for 5Y

Picture becomes more complicated when Europe iTraxx on 20 September 2006

considering other hedging criteria...




Empirical results

® Back-test study oniTraxx Series 8
equity tranche

® Comparison of realized spread
deltas on the equity tranche and
model (implied tree) deltas

® Good hedging performance
compared with the Gaussian
copula model
— Duringthecredit crisis

— Discrepancy with results of Cont
and Kan (2008)?

35.00

30.00

—=—Model delta [0-3]

Realised delta [0-3]

25.00

20.00

1500 —=

10.00

5.00

0.00
20-Sep-07

T
09-Nov-07

T T T
29-Dec-07 17-Feb-08 07-Apr-08

27-May-08

Source: S. Amraoui BNP Paribas




Empirical results

® Cont and Kan (2008) show rather poor
performance of “jump to default” deltas

— Even the recent crisis period

. . |
®* However, unsurprisingly, the credit deltas S Seex e
(“jump to default™) seem to be rather e i A S

sensitive to the calibration of contagion

Cont, Minca and Savescu (2008)
parameters on quoted CDO tranches

* Right pictures represent aggregate loss m:
Intensities e ——
. . . e B Gaussian copula

— Huge contagion effects for the first six 0

defaultsin Cont et al. (2008) - Il

— Much smaller contagion effects for the R P NIeRANAARGHA BB

. . igure 6. Loss intensities for the Gaussian copula and market case examples, Number of
first defaultsin Laurent et al. (2007) g ™ ot - 351 e

Laurent, Cousin and Fermanian (2007)




Empirical results

* Frey and Backhaus: “Dynamic hedging of synthetic CDO tranches with
spread risk and default contagion” (2007)

Tranche [0,3] [3,6] [6,9] [9,12] [12,22]

Spread 26 % 84 bp 24 bp 14 bp 11 bp
Tranche Correlation 17.30% 322% 993 % 1581 % 27.46%

Gauss Cop. A 023 006  0.03 0.07

VOD: Value on default

VOD in the Markov model VOD in the Copula model
0, 3] 1.002
3, 6] 0.138 0.171
6, 9] 0.058 0.023
19, 12] 0.039 0.008
[12, 22] 0.107 0.010

Much smaller deltas in the contagion model than in Gaussian copula model




Empirical results

Actual and model-implied price changes in the equity franche

Laurent: “A note on the risk management of
CDQO” (2007)

— provides atheoretical framework for hedging
credit spread risk only while default risk is
diversified at the portfolio level

— no default contagion, correlation between
defaults are related to “ correlation” between
credit spreads

Feldhdtter: “An empirical investigation of an
Intensity-based model for pricing CDO tranches’
(2008)

— comparison of hedging performance of a
Duffie and Garleanu (2001) reduced-form
model and one factor Gaussian copula

— Useof information at time t+1 to compute hedge
ratios at timet

— Higher deltas for the equity tranche in the affine
model compared with the 1F Gaussian copula
(market deltas)
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Empirical results

* Consistent results with the affine model of Eckner (2007) based on
December 2005 CDX data

Tranches [0-3%)] [3-7%)] [7-10%] [10-15%] [15-30%]
market deltas 18.5 55 1.5 0.8 0.4
AJD deltas 21.7 6.0 1.1 0.4 0.1
contagion model deltas 17.9 6.3 2.5 1.3 0.8

— Market deltas, “intensity” model credit deltasin Eckner (2007) and
contagion model deltas

— Goes into the opposite direction when comparing with the contagion
model

* Note that Feldhitter (2008) and Eckner (2007) are pre-crisis

®* And are according to a“sticky deltarule’” (Derman) whichis
reflects irrational exuberance or greed
— And might be appropriate for the pre-crisis period



Empirical results: other work in progress

* |ndividual credit deltas in the above Markov chain (or tree) models

» Giesecke, Halperin: forthcoming

— Use of “random thinning” to compute individual name deltas
* Discrimination of credit deltas might improve hedging efficiency

as compared with hedging with the credit default swap index only

— Credit deltas of names with high spreads are likely to be higher when
considering an equity tranche

» Improvement of hedging efficiency should be related to the
dispersion between spreads of names in the underlying portfolio

» Empirical studies remain to be conducted...




Empirical results

* What do we learn from the previous approaches?

— Thanks to stringent assumptions:;
— credit spreads driven by defaults
— homogeneity
— Markov property
— |t ispossible to compute a dynamic hedging strategy
— Based on the CDS index
— That fully replicates the CDO tranche payoffs
— Model matches market quotes of liquid tranches
— Very ssmple implementation
— Credit deltas are easy to understand
— Improve the computation of default hedges
— Since it takes into account credit contagion
— Provide some meaningful results in the current credit crisis




Empirical results

* What we still need to learn (selected items)?

— Contagion models seem to show lack of robustness
— Calibration of contagion parameters?
— Do not properly deal with heterogeneity
» See May 2005 idiosyncratic crisis due to the downgrading of GMAC
> “Idiosyncratic Gamma” is not properly dealt with
— May not suitable in all market conditions
— see previous results on reduced-form models
— Reduced form models may still be of interest: Feldhttter (2008)
— What is the correct regime?
— Firm value models and therefore copula models may still be of interest
» Could provide arelevant “complete markets’ framework

» Further need of empirical research in that direction
» Take into account tail dependence for asset returns




CDO of Subprimesand SIVs

® CDO of subprimes, RMBS (residential
mortgage backed securities)

— Obviousissuesrelated to fraud and
due diligence on mortgages

— Legal issuesin the US with respect to
lender’ s protection
» At some point in time, the
lender can only claim for the
underlying house and not for
the borrower’ sincome

® Ascompared with synthetic STCDOs
on corporate issuers, there are usually
extra-protection

— Overcollateralization

— Non pass-through structure: part of the
Interest income is retained in the SPV

— Which isfair enough, but...

‘ “Risk Layeting”
Alt-A and Subprime pools

Mortgages with “low-doc” or “no-doc” & CLTV >95%

300,000 16%
450,000
e 14%
400,000
12%
380,000
8
300,000 0%
250,000 8%
200,000 ”
150,000
4%
100,000
%
50,000
0%
1998 1999 2000 2001 2002 2003 2004 2005 20i0é

===Dumbers ===Percentages

Soutce: Calculations from LoanPerformance by Chris Mayer, Katen Pence, & Shane Sherlund, Fedetal Reserve Board

CLTV: combined loan to value



CDO of Subprimesand SIVs

* CDO of subprimes are actually CDO squared.
— Crouhy and Turnbull: “The Subprime Credit Crisis of 07" (2008)

— Asnhcraft and Schuermann: “Understanding the Securitization of
Subprime Mortgage Credit” (2008)

» The mini-tranches, usually rated BBB or A have already well-
diversified idiosyncratic risk
» The housing market in the US is the common factor
* Since the attachment points of the mini-tranches were
rather ssimilar and related to the same underlying risk

* Defaults of the mini-tranches became almost simultaneous
— Simultaneous defaults rather than contagion effects
— Comonotonicity: asin Basel |1, measures of risk are additive

— Therating of the most senior tranches had to be the same as the
ratings of the constituents (say A or BBB) instead of AAA




CDO of Subprimesand SIVs

US HOUSE PRICE TRENDS
% increase/decrease year-on-year
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One common factor: housing market

CURRENT INDEX VALUE OF
MORTGAGE BONDS, 2007=100

Implied value of morigage-backed
bonds izsued in Jan 2007
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SOURCE: Economist

Collapse of CDOs of subprimes and
failure of rating agencies



CDO of Subprimesand SIVs

* A SV isactualy asynthetic bank

— Long-term illiquid and difficult to value assets such as RMBS
— Short-term funding by issuing commercia paper, usually with the best rating...
— Huge and obvious liquidity issues

* But SIVswere not submitted to bank regulation

® |ssues, especially with SIVs sponsored by banks
— Off-balance sheet agreements to guarantee SIVs liquidity
— Explicit or implicit is still unclear
> “Partnerships’ in case of Enron?
— Off-balance sheet commitments should be guaranteed with the capital of the sponsor
— Late application of Basel 1l inthe US
» Controversial issue
— Towhat extend, Fed and department of Treasury were involved?




CDO of Subprimesand SIVs

* Eventually, the collapse of SIVs plus “reintermediation”
within the balance sheet of the sponsors led to afear of
systemic risk

* Usua mechanismsin bank crises

Increase of short-term spreads
Credit crunch in the longer part of the interbank lending market

Increased by the opacity of the assets and the dissemination of
risks throughout the world (dynamic money funds)

Collapse of some financial intermediaries

Central banks as lenders of |ast resort: providing liquidity
guaranteed by illiquid securitized assets

* Eventually, contagion effects similar to those discussed
above in synthetic CDOs



