

Comparative analysis of CDO pricing models

ICBI Risk Management 2005 Geneva 8 December 2005

Jean-Paul Laurent
ISFA, University of Lyon, Scientific Consultant BNP Paribas
laurent.jeanpaul@free.fr, http://laurent.jeanpaul.free.fr

Joint work with X. Burtschell & J. Gregory

A comparative analysis of CDO pricing models
Beyond the Gaussian copula: stochastic and local correlation
Available on www.defaultrisk.com

Comparative analysis of CDO pricing models

- 1 Factor based copulas
 - Collective & individual models of credit losses
 - Semi-explicit pricing
- 2 One factor Gaussian copula
 - Ordering of risks, Base correlation
 - correlation sensitivities
 - Stochastic recovery rates
- 3 Model dependence / choice of copula
 - Student *t*, double *t*, Clayton, Marshall-Olkin, Stochastic correlation
 - Distribution of conditional default probabilities
- 4 Beyond the Gaussian copula
 - Stochastic correlation and state dependent correlation
 - Marginal and local correlation

- CDO valuation, credit risk assessment
 - Only need of loss distributions for different time horizons
 - Aggregate loss at time t on a given portfolio: L(t)
 - Marginal loss distribution for time horizon t

$$l \to F_{L(t)}(l) = Q(L(t) \le l)$$

■ VaR and quantile based risk measures for risk assessment

$$\int F_{L(t)}^{-1}(\alpha)v(\alpha)d\alpha$$

Pricing of CDOs only involve options on aggregate loss

$$E^{\mathcal{Q}}\Big[\Big(L(t)-K\Big)^{\!\scriptscriptstyle +}\Big]$$

• *K* attachment – detachment points

- Modelling approaches
 - Direct modelling of L(t): collective model
 - Dealing with heterogeneous portfolios
 - non stationary, non Markovian
 - Aggregation of portfolios, bespoke portfolios?
 - Risk management of correlation risk?
 - Modelling of default indicators of names: <u>individual model</u>

$$L(t) = \sum_{i=1}^{n} LGD_i 1_{\tau_i \le t}$$

- Numerical approaches
 - e.g. smoothing of base correlation of liquid tranches

- Individual model / factor based copulas
 - Allows to deal with non homogeneous portfolios
 - Arbitrage free prices
 - non standard attachment –detachment points
 - Non standard maturities
 - Consistent pricing of bespoke, CDO², zero-coupon CDOs
 - Computations
 - Semi-explicit pricing, computation of Greeks, LHP
 - *But...*
 - Poor dynamics of aggregate losses (forward starting CDOs)
 - Risk management, credit deltas, theta effects
 - Calibration onto liquid tranches (matching the skew)

- Factor approaches to joint default times distributions:
 - *V: low dimensional factor*
 - Conditionally on V, default times are independent.
 - Conditional default and survival probabilities:

$$p_t^{i\mid V} = Q\left(\tau_i \le t \mid V\right), \quad q_t^{i\mid V} = Q\left(\tau_i > t \mid V\right).$$

- Why factor models ?
 - *Tackle with large dimensions (i-Traxx, CDX)*
- Need of tractable dependence between defaults:
 - Parsimonious modelling
 - Semi-explicit computations for CDO tranches
 - Large portfolio approximations

- Semi-explicit pricing for CDO tranches
 - Laurent & Gregory [2003]
 - Default payments are based on the accumulated losses on the pool of credits:

$$L(t) = \sum_{i=1}^{n} LGD_i 1_{\{\tau_i \le t\}}, LGD_i = N_i (1 - \delta_i)$$

 Tranche premiums only involve call options on the accumulated losses

$$E\bigg[\Big(L(t)-K\Big)^{+}\bigg]$$

• This is equivalent to knowing the distribution of L(t)

- Characteristic function: $\varphi_{L(t)}(u) = E\left[e^{iuL(t)}\right]$
 - *By conditioning upon V and using conditional independence:*

$$\varphi_{L(t)}(u) = E\left[\prod_{1 \leq j \leq n} \left(1 - p_t^{j|V} + p_t^{j|V} \varphi_{1-\delta_j}(uN_j)\right)\right]$$

- Distribution of L(t) can be obtained by FFT
 - Similar approaches: recursion, inversion of Laplace transforms
- Only need of conditional default probabilities $p_t^{i|V}$
- $p_t^{i|V}$ losses on a large homogeneous portfolio
 - Approximation techniques for pricing CDOs

Comparative analysis of CDO pricing models

- 2 One factor Gaussian copula
 - Ordering of risks, Base correlation
 - correlation sensitivities
 - Stochastic recovery rates
- 3 Model dependence/Choice of copula
 - Student *t*, double *t*, Clayton, Marshall-Olkin, Stochastic correlation
 - Distribution of conditional default probabilities
- 4 Beyond the Gaussian copula
 - Stochastic correlation and state dependent correlation
 - Marginal and local correlation

- One factor Gaussian copula:
 - $V, \bar{V}_i, i = 1, ..., n$ independent Gaussian,

$$V_i = \rho_i V + \sqrt{1 - \rho_i^2} \bar{V}_i$$

- Default times: $\tau_i = F_i^{-1}(\Phi(V_i))$
- ullet F_i marginal distribution function of default times
- Conditional default probabilities:

$$p_t^{i|V} = \Phi\left(\frac{-\rho_i V + \Phi^{-1}(F_i(t))}{\sqrt{1 - \rho_i^2}}\right)$$

- \blacksquare Equity tranche premiums are decreasing wrt P
 - General result (use of <u>stochastic orders</u> theory)
 - Equity tranche premium is <u>always</u> decreasing with correlation parameter
 - Guarantees <u>uniqueness</u> of « base correlation »
 - Monotonicity properties extend to Student t, Clayton and Marshall-Olkin copulas

1

- $\rho = 100\%$
 - Equity tranche premiums decrease with correlation
 - Does $\rho = 100\%$ correspond to some lower bound?
 - $\rho = 100\%$ corresponds to « comonotonic » default dates:
 - $\rho = 100\%$ is a <u>model free</u> lower bound for the equity tranche premium
- - Does $\rho = 0\%$ correspond to the higher bound on the equity tranche premium?
 - $\rho = 0\%$ corresponds to the independence case between default dates
 - The answer is no, negative dependence can occur
 - Base correlation does not always exists

- Pair-wise correlations
 - Pair-wise correlation sensitivities for CDO tranches
 - Can be computed analytically
 - See Gregory & Laurent, « In the Core of Correlation », Risk
 - Higher correlation sensitivities for riskier names (senior tranche)

Intra Inter sector correlations

- *i, name, s(i) sector*
- $W_{s(i)}$ factor for sector s(i)
- W global factor
- Allows for ratings agencies correlation matrices
- Analytical computations still available for CDOs
- Increasing intra or intersector correlations decrease equity tranche premiums
- Does not explain the skew

$$V_{i} = \rho_{s(i)} W_{s(i)} + \sqrt{1 - \rho_{s(i)}^{2}} \overline{V_{i}}$$

$$W_{s(i)} = \lambda_{s(i)}W + \sqrt{1 - \lambda_{s(i)}^2} \overline{W}_{s(i)}$$

- Correlation between default dates and recovery rates
 - Correlation smile implied from the correlated recovery rates
 - Not as important as what is found in the market

Stochastic correlation copula

- $V, \bar{V}_i, i = 1, ..., n$ independent Gaussian variables
- $B_i = 1$ correlation ρ , $B_i = 0$ correlation β

$$V_{i} = B_{i} \left(\rho V + \sqrt{1 - \rho^{2}} \overline{V_{i}} \right) + \left(1 - B_{i} \right) \left(\beta V + \sqrt{1 - \beta^{2}} \overline{V_{i}} \right)$$

$$\tau_i = F_i^{-1}(\Phi(V_i))$$

$$p_{t}^{i|V} = p\Phi\left(\frac{-\rho V + \Phi^{-1}(F_{i}(t))}{\sqrt{1-\rho^{2}}}\right) + (1-p)\Phi\left(\frac{-\beta V + \Phi^{-1}(F_{i}(t))}{\sqrt{1-\beta^{2}}}\right)$$

Student t copula

$$\begin{cases} X_{i} = \rho V + \sqrt{1 - \rho^{2}} \overline{V_{i}} \\ V_{i} = \sqrt{W} \times X_{i} \\ \tau_{i} = F_{i}^{-1} \left(t_{v} \left(V_{i} \right) \right) \end{cases}$$

- $V, \overline{V_i}$ independent Gaussian variables
- $\frac{v}{W}$ follows a χ_v^2 distribution
- Conditional default probabilities (two factor model)

$$p_{t}^{i|V,W} = \Phi\left(\frac{-\rho V + W^{-1/2}t_{v}^{-1}(F_{i}(t))}{\sqrt{1-\rho^{2}}}\right)$$

Clayton copula

$$V_i = \psi\left(-\frac{\ln U_i}{V}\right) \qquad \tau_i = F_i^{-1}(V_i) \qquad \psi(s) = (1+s)^{-1/\theta}$$

- V: Gamma distribution with parameter θ
- $U_1,...,U_n$ independent uniform variables
- Conditional default probabilities (one factor model)

$$p_t^{i|V} = \exp\left(V\left(1 - F_i(t)^{-\theta}\right)\right)$$

■ Double *t* model (Hull & White)

$$V_{i} = \rho_{i} \left(\frac{v - 2}{v} \right)^{1/2} V + \sqrt{1 - \rho_{i}^{2}} \left(\frac{\overline{v} - 2}{\overline{v}} \right)^{1/2} \overline{V}_{i}$$

- $V, \overline{V_i}$ are independent Student t variables
 - with ν and $\overline{\nu}$ degrees of freedom

$$\tau_{i} = F_{i}^{-1} \left(H_{i} \left(V_{i} \right) \right)$$

• where H_i is the distribution function of V_i

$$p_{t}^{i|V} = t_{\overline{v}} \left(\frac{\overline{v}}{\overline{v} - 2} \right)^{1/2} \frac{H_{i}^{-1}(F_{i}(t)) - \rho_{i} \left(\frac{v - 2}{v} \right)^{1/2} V}{\sqrt{1 - \rho_{i}^{2}}} \right)$$

- Shock models (multivariate exponential copulas)
 - Marshall-Olkin copulas
- Modelling of default dates: $V_i = \min(V, \overline{V_i})$
 - $V, \overline{V_i}$ exponential with parameters $\alpha, 1-\alpha$
 - Default dates $\tau_i = S_i^{-1} \left(\exp \min \left(V, \overline{V_i} \right) \right)$
 - S_i marginal survival function
 - Conditionally on V, τ_i are independent.
- Conditional default probabilities

$$q_t^{i|V} = 1_{V > -\ln S_i(t)} S_i(t)^{1-\alpha}$$

- Calibration procedure
 - One parameter copulas
 - Fit Clayton, Student t, double t, Marshall Olkin parameters onto CDO equity tranches
 - Computed under one factor Gaussian model
 - Reprice mezzanine and senior CDO tranches
 - Given the fitted parameter
 - Look for departures from the Gaussian copula
 - Look for ability to explain the correlation skew

- CDO margins (bps pa)
 - With respect to correlation
 - Gaussian copula
 - Attachment points: 3%, 10%
 - 100 names
 - Unit nominal
 - Credit spreads 100 bps
 - 5 years maturity

	equity	mezzanine	senior
0%	5341	560	0.03
10%	3779	632	4.6
30%	2298	612	20
50%	1491	539	36
70%	937	443	52
100%	167	167	91

~ ~

ρ	0%	10%	30%	50%	70%	100%
Gaussian	560	633	612	539	443	167
Clayton	560	637	628	560	464	167
Student (6)			637	550	447	167
Student (12)			621	543	445	167
t(4)-t(4)	560	527	435	369	313	167
t(5)-t(4)	560	545	454	385	323	167
t(4)-t(5)	560	538	451	385	326	167
t(3)-t(4)	560	495	397	339	316	167
t(4)-t(3)	560	508	406	342	291	167
MO	560	284	144	125	134	167

Table 6: mezzanine tranche (bps pa)

ρ	0%	10%	30%	50%	70%	100%
Gaussian	0.03	4.6	20	36	52	91
Clayton	0.03	4.0	18	33	50	91
Student (6)			17	34	51	91
Student (12)			19	35	52	91
t(4)-t(4)	0.03	11	30	45	60	91
t(5)-t(4)	0.03	10	29	45	59	91
t(4)-t(5)	0.03	10	29	44	59	91
t(3)-t(4)	0.03	12	32	47	71	91
t(4)-t(3)	0.03	12	32	47	61	91
MO	0.03	25	49	62	73	91

Table 7: senior tranche (bps pa)

Gaussian, Clayton and Student t CDO premiums are close

- Why do Clayton and Gaussian copulas provide same premiums?
 - Loss distributions depend on the distribution of conditional default probabilities

$$p_t^{i|V} = \exp\left(V\left(1 - F_i(t)^{-\theta}\right)\right) \qquad p_t^{i|V} = \Phi\left(\frac{-\rho V + \Phi}{\sqrt{1 - \theta}}\right)$$

- Distribution of conditional default probabilities are close for Gaussian
 - and Clayton

implied compound correlation

4

4 Beyond the Gaussian copula

Stochastic correlation

• Latent variables
$$V_i = \tilde{\rho}_i V + \sqrt{1 - \tilde{\rho}_i^2} \overline{V}_i, \quad i = 1, ..., n$$

$$\tilde{\rho}_i = (1 - B_s)(1 - B_i)\rho + B_s$$

 $\tilde{\rho}_i$, stochastic correlation,

$$Q(B_s = 1) = q_s$$
), systemic state,

$$Q(B_i = 1) = q$$
, idiosyncratic state

Conditional default probabilities

$$p_t^{|V,B_s=0} = (1-q)\Phi\left(\frac{\Phi^{-1}(F(t))-\rho V}{\sqrt{1-\rho^2}}\right) + qF(t), F(t) \text{ default probability}$$

$$p_t^{|V,B_s|=1} = 1_{V \le \Phi^{-1}(F(t))}$$
, comonotonic

4

- Stochastic correlation $\tilde{\rho}_i = (1 B_s)(1 B_i)\rho + B_s$
 - Semi-analytical techniques for pricing CDOs available
 - Large portfolio approximation can be derived
 - Allows for Monte Carlo
- State dependent correlation $V_i = m_i(V)V + \sigma_i(V)\overline{V_i}, i = 1,...,n$
 - Local correlation $V_i = -\rho(V)V + \sqrt{1 \rho^2(V)}\overline{V_i}$
 - Turc et al
 - Random factor loadings $V_i = m + (l1_{V < e} + h1_{V \ge e})V + \nu \overline{V_i}$
 - Andersen & Sidenius

- Distribution functions of conditional default probabilities
 - stochastic correlation vs RFL

- With respect to level of aggregate losses
- Also correspond to loss distributions on large portfolios

- Marginal compound correlation
 - Compound correlation of a $[\alpha, \alpha]$ tranche
 - Digital call on aggregate loss
 - obtained from conditional default probability distribution
 - Need to solve a second order equation
 - zero, one or two marginal compound correlations

- Marginal compound correlations:
 - With respect to attachment detachment point

- Stochastic correlation vs RFL
- zero marginal compound correlation at the expected loss

Local correlation

- obtained from conditional default probability distribution
- Fixed point algorithm
- Local correlation at step one: rescaled marginal compound correlation
- Same issues of uniqueness and existence as marginal compound correlation

Local correlation associated with RFL (as a function of the factor)

- Jump at threshold 2, low correlation level 5%, high correlation level 85%
- Possibly two local correlations

- Local correlation associated with stochastic correlation model
 - With respect to factor V

- Correlations of 1 for high-low values of V (comonotonic state)
- Possibly two local correlations leading to the same prices
- As for RFL, rather irregular pattern

- Analysis of dependence through factor models
 - Usefulness of stochastic orders
 - Correlation sensitivities, base correlations
- Matching the correlation skew
 - Conditional default probability distributions are the drivers
- Beyond the Gaussian copula
 - Stochastic, local & marginal compound correlation
- Further work
 - Matching term structure of correlation skews
 - Integrating factor copulas and intensity approaches