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Abstract 

 
We describe a hedging strategy of CDO tranches based upon dynamic trading of the corresponding 
credit default swap index. We rely upon a homogeneous Markovian contagion framework, where only 
single defaults occur. In our framework, a CDO tranche can be perfectly replicated by dynamically 
trading the credit default swap index and a risk-free asset. Default intensities of the names only depend 
upon the number of defaults and are calibrated onto an input loss surface. Numerical implementation 
can be carried out fairly easily thanks to a recombining tree describing the dynamics of the aggregate 
loss. Both continuous time market and its discrete approximation are complete. The computed credit 
deltas can be seen as a credit default hedge and may also be used as a benchmark to be compared with 
the market credit deltas. Though the model is quite simple, it provides some meaningful results which 
are discussed in detail. We study the robustness of the hedging strategies with respect to recovery rate 
and examine how input loss distributions drive the credit deltas. Using market inputs, we find that the 
deltas of the equity tranche are lower than those computed in the standard base correlation framework. 
This is related to the dynamics of dependence between defaults. We can think of our model as a 
“sticky implied tree” while the hedge ratios computed by market participants correspond to “sticky 
strike” deltas, following the terminology of Derman (1999). 
 
Keywords: CDOs, hedging, complete markets, contagion model, Markov chain, recombining 
tree. 
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Introduction 
 
When dealing with CDO tranches, the market approach to the derivation of credit default 
swap deltas consists in bumping the credit curves of the names and computing the ratios of 
changes in present value of the CDO tranches and the hedging credit default swaps. This 
involves a pricing engine for CDO tranches, usually some mixture of copula and base 
correlation approaches, leading to some “market deltas”. The only rationale of this modus 
operandi is local hedging with respect to credit spread risks, provided that the trading books 
are marked-to-market with the same pricing engine. Even when dealing with small changes in 
credit spreads, there is no guarantee that this would lead to appropriate hedging strategies, 
especially to cover large spread widenings and possibly defaults. For instance one can think 
of changes in base correlation correlated with changes in credit spreads. A number of CDO 
hedging anomalies in the base correlation approach are reported in Morgan and Mortensen 
(2007). Moreover, the standard approach is not associated with a replicating theory, thus 
inducing the possibility of unexplained drifts and time decay effects in the present value of 
hedged portfolios (see Petrelli et al. (2007)). 
 
Unfortunately, the trading desks cannot rely on a sound theory to determine replicating prices 
of CDO tranches. This is partly due to the dimensionality issue, partly to the stacking of credit 
spread and default risks. Laurent (2006) considers the case of multivariate intensities in a 
conditionally independent framework and shows that for large portfolios where default risks 
are well diversified, one can concentrate on the hedging of credit spread risks and control the 
hedging errors. In this approach, the key assumption is the absence of contagion effects which 
implies that credit spreads of survival names do not jump at default times, or equivalently that 
defaults are not informative. Whether one should rely on this assumption is to be considered 
with caution as discussed in Das et al. (2007). Anecdotal evidence such as the failures of 
Delphi, Enron, Parmalat and WorldCom shows mixed results. 
 
In this paper, we take an alternative route, concentrating on default risks, credit spreads and 
dependence dynamics being driven by the arrival of defaults. We will calculate so-called 
“credit deltas”, that are the present value impacts of some default event on a given CDO 
tranche, divided by the present value impact of the hedging instrument (here the underlying 
index) under the same scenario3. Contagion models were introduced to the credit field by 
Davis and Lo (2001), Jarrow and Yu (2001) and further studied by Yu (2007). Schönbucher 
and Schubert (2001) show that copula models exhibit some contagion effects and relate jumps 
of credit spreads at default times to the partial derivatives of the copula. This is also the 
framework used by Bielecki, Jeanblanc and Rutkowski (2007) to address the hedging issue. A 
similar but somehow more tractable approach has been considered by Frey and Backhaus 
(2007a), since the latter paper considers some Markovian models of contagion. In a copula 
model, the contagion effects are computed from the dependence structure of default times, 
while in contagion models the intensity dynamics are the inputs from which the dependence 
structure of default times is derived. In both approaches, credit spreads shifts occur only at 
default times. Thanks to this quite simplistic assumption, and provided that no simultaneous 

                                                 
3 Let us stress that the computed exposure at default is not equal to the usual “value on default” or 
iOmega. In our model, the arrival of default is associated with a shift in credit spreads and in base 
correlations due to contagion effects, while the value on default is usually computed under the 
assumption of constant spreads and correlations. 
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defaults occurs, it can be shown that the CDO market is complete, i.e. CDO tranche cash-
flows can be fully replicated by dynamically trading individual credit spread swaps or, in 
some cases, by trading the credit default swap index.  
 
Lately, Frey and Backhaus (2007b) have considered the hedging of CDO tranches in a 
Markov chain credit risk model allowing for spread and contagion risk. In this framework, 
when the hedging instruments are credit default swaps with a given maturity, the market is 
incomplete. In order to derive dynamic hedging strategies, Frey and Backhaus (2007b) use 
risk minimization techniques. In a multivariate Poisson model, Elouerkhaoui (2006) also 
addresses the hedging problem thanks to the risk minimization approach. As can be seen from 
the previous papers, practical implementation can be cumbersome, especially when dealing 
the hedging ratios at different points in time and different states. 
 
As far as applications are concerned, calibration of the credit dynamics to market inputs is 
critical. Calibration of Markov chain models similar to ours have recently been considered by 
a number of authors including van der Voort (2006), Schönbucher (2006), Arnsdorf and 
Halperin (2007), de Koch and Kraft (2007), Epple et al. (2007), Lopatin and Misirpashaev 
(2007), Herbertsson (2007a, 2007b), Cont and Minca (2008). The aim of the previous papers 
is to construct arbitrage-free, consistent with some market inputs, Markovian models of 
aggregate losses, possibly in incomplete markets, without detailing the feasibility and 
implementation of replication strategies. Regarding the hedging issues, a nice feature of our 
specification is that the market inputs completely determine the credit dynamics, thanks to the 
forward Kolmogorov equations. This parallels the approach of Dupire (1994) in the equity 
derivatives context. Thanks to this feature and the completeness of the market, one can 
unambiguously derive dynamic hedging strategies of CDO tranches. This can be seen as a 
benchmark for the study of more sophisticated, model or criteria dependent, hedging 
strategies. 

 
For the paper to be self-contained, we recall in Section 1 the mathematics behind the perfect 
replicating strategy. The main tool there is a martingale representation theorem for 
multivariate point processes. In Section 2, we restrict ourselves to the case of homogeneous 
portfolios with Markovian intensities which results in a dramatic dimensionality reduction for 
the (risk-neutral) valuation of CDO tranches and the hedging of such tranches as well. We 
find out that the aggregate loss is associated with a pure birth process, which is now well 
documented in the credit literature. In line with several new papers, Section 3 provides some 
calibration procedures of such contagion models based on the marginal distributions of the 
number of defaults. Section 4 details the computation of replicating strategies of CDO 
tranches with respect to the credit default swap index, through a recombining tree on the 
aggregate loss. We analyze the dependency of the hedging strategy upon the chosen recovery 
rate. We eventually discuss how hedging strategies are related to dependence assumptions in 
Gaussian copula and base correlation frameworks.  
 
1 Theoretical framework 
 
1.1 Default times 
 
Throughout the paper, we will consider n obligors and a random vector of default times 
( )1, , nτ τ…  defined on a probability space ( ), ,A PΩ . We denote by { }11( ) 1 , ,tN t τ ≤= …  
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{ }( ) 1
nn tN t τ ≤=  the default indicator processes and by ( ), ( ),i t iH N s s tσ= ≤ , 1, ,i n= … , 

,1

n

t i ti
H H

=
= ∨ . ( )t t

H +∈\
 is the natural filtration associated with the default times.  

 
We denote by 1, , nτ τ…  the ordered default times and assume that no simultaneous defaults 
can occur, i.e. 1 nτ τ< <… , .P a s− . This assumption is important with respect to the 
completeness of the market. As shown below, it allows to dynamically hedge basket default 
swaps and CDOs with n credit default swaps4. 
 
We moreover assume that there exist some ( ), tP H  intensities for the counting processes 

( )iN t , 1, ,i n= … , i.e. there exist some (non negative) tH – predictable processes 1 , ,P P
nα α… , 

such that 
0

( ) ( )
t

P
i it N t s dsα→ − ∫  are ( ), tP H  martingales. 

1.2 Market assumptions 
 
For the sake of simplicity, let us assume for a while that instantaneous digital default swaps 
are traded on the names. An instantaneous digital credit default swap on name i  traded at t, 
provides a payoff equal to ( ) ( )i idN t t dtα−  at t dt+ . ( )idN t  is the payment on the default leg 
and ( )i t dtα  is the (short term) premium on the default swap. Note that considering such 
instantaneous digital default swaps rather than actually traded credit default swaps is not a 
limitation of our purpose. This can rather be seen as a convenient choice of basis from a 
theoretical point of view. Of course, we will compute credit deltas with respect to traded 
credit default swaps in the applications below5. 
 
Since we deal with the filtration generated by default times, the credit default swap premiums 
are deterministic between two default events. Therefore, we restrain ourselves to a market 
where only default risks occurs and credit spreads themselves are driven by the occurrence of 
defaults. In our simple setting, there is no specific credit spread risk. This corresponds to the 
framework of Bielecki et al. (2007). 
 
For simplicity, we further assume that (continuously compounded) default-free interest rates 
are constant and equal to r . Given some initial investment 0V  and some tH – predictable 
processes ( ) ( )1 , , nδ δi … i  associated with some self-financed trading strategy in instantaneous 
digital credit default swaps, we attain at time T the payoff 

( ) ( )( )
0

1 0

( ) ( )
Tn

rT r T s
i i i

i

V e s e dN s s dsδ α−

=

+ −∑∫ . By definition, ( )i sδ  is the nominal amount of 

instantaneous digital credit default swap on name i  held at time s . This induces a net cash-
flow of ( )( ) ( ) ( )i i is dN s s dsδ α× −  at time s ds+ , which has to be invested in the default-free 
savings account up to time T . 

                                                 
4 In the general case where multiple defaults could occur, we have to consider possibly 2n  states, and 
we would require non standard credit default swaps with default payments conditionally on all sets of 
multiple defaults to hedge CDO tranches. 
5 Note that the instantaneous credit default swaps are not exposed to spread risk but only to default 
risk. 
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1.3 Hedging and martingale representation theorem 
 
From the absence of arbitrage opportunities, 1, , nα α…  are non negative tH – predictable 

processes. From the same reason, { } { }
. .

( ) 0 ( ) 0
P a s

P
i it tα α

−

> = > . Under mild regularity 
assumptions, there exists a probability Q  equivalent to P such that the instantaneous credit 
default swap premiums 1, , nα α…  are the ( ), tQ H  intensities associated with the default times 
(see Brémaud, chapter VI)6. Therefore, from now on, the premiums will be denoted 

1 , ,Q Q
nα α…  and we will work under the probability Q . 

 
Let us consider some TH  – measurable Q  – integrable payoff M . Since M  depends upon 
the default indicators of the names up to time T , this encompasses the cases of CDO tranches 
and basket default swaps, provided that recovery rates are deterministic. Thanks to the 
integral representation theorem of point process martingales (see Brémaud, chapter III), there 
exists some tH - predictable processes 1, , nθ θ…  such that: 

 [ ] ( )
1 0

( ) ( ) ( )
Tn

Q Q
i i i

i
M E M s dN s s dsθ α

=

= + −∑∫ . 

As a consequence, we can replicate M  with the initial investment Q rTE Me−⎡ ⎤⎣ ⎦  and the 
trading strategy based on instantaneous digital credit default swaps defined by 

( )( ) ( ) r T s
i is s eδ θ − −=  for 0 s T≤ ≤  and 1, ,i n= … . Let us remark that the replication price at 

time t, is provided by ( )Q r T t
t tV E Me H− −⎡ ⎤= ⎣ ⎦

7. 
 
While the use of the representation theorem guarantees that, in our framework, any basket 
default swap can be perfectly hedged with respect to default risks, it does not provide a 
practical way of constructing hedging strategies. As is the case with interest rate or equity 
derivatives, exhibiting hedging strategies involves some Markovian assumptions (see 
Subsection 2.3 and Section 4). 
 
2 Homogeneous Markovian contagion models 
                                                 
6 Let us remark that the assumption of no simultaneous defaults also holds for Q . 

7 Let us notice that ( )
1

( ) ( ) ( )
Tn

Q Q
t i i i

i t

M E M H s dN s s dsθ α
=

= + −⎡ ⎤⎣ ⎦ ∑∫ . As a consequence, we 

readily get ( )( )

1
( ) ( ) ( )

Tn
r T t Q

t i i i
i t

M V e s dN s s dsθ α−

=

= + −∑∫  which provides the time t  replication 

price of M . Let us also remark that for a small time interval dt , 

( )
1

( ) ( ) ( )
n

rdt Q
t dt t i i i

i
V V e t dN t t dtδ α+

=

≈ + −∑  which is consistent with market practice and regular 

rebalancing of the replicating portfolio. An investor who wants to be compensated at time t  
against the price fluctuations of M  during a small period dt  has to invest tV  in the risk-free 
asset and take positions 1, , nδ δ…  in the n  instantaneous digital credit default swaps. Let us 
recall that there is no initial charge to enter in a credit default swap position.  
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2.1 Intensity specification 
 
In the contagion approach, one starts from a specification of the risk-neutral pre-default 
intensities 1 , ,Q Q

nα α… 8. In the previous section framework, the risk-neutral default intensities 
depend upon the complete history of defaults. More simplistically, it is often assumed that 
they depend only upon the current credit status, i.e. the default indicators; thus 

{ }( ),  1, ,Q
i t i nα ∈ …  is a deterministic function of 1( ), , ( )nN t N t… . In this paper, we will 

further remain in this Markovian framework, i.e. the pre-default intensities will take the form 
( )1, ( ), , ( )Q

i nt N t N tα … 9. Popular examples are the models of Kusuoka (1999), Jarrow and Yu 
(2001), Yu (2007), where the intensities are affine functions of the default indicators. The 
connection between contagion models and Markov chains is described in the book of Lando 
(2004) and was further discussed in Herbertsson (2007a). 
 
Another practical issue is related to name heterogeneity. Modelling all possible interactions 
amongst names leads to a huge number of contagion parameters and high dimensional 
problems, thus to numerical issues. For this practical purpose, we will further restrict to 
models where all the names share the same risk-neutral intensity10. This can be viewed as a 
reasonable assumption for CDO tranches on large indices, although this is obviously an issue 
with equity tranches for which idiosyncratic risk is an important feature. Since pre-default 
risk-neutral default intensities, 1 , ,Q Q

nα α…  are equal, we will further denote these individual 
pre-default intensities by Qαi .  
 
For further tractability, we will further rely on a strong name homogeneity assumption, that 
individual pre-default intensities only depend upon the number of defaults. Let us denote by 

1
( ) ( )

n

i
i

N t N t
=

= ∑  the number of defaults at time t  within the pool of assets. Pre-default 

intensities thus take the form ( ), ( )Q t N tαi
11. This is related to mean-field approaches (see 

Frey and Backhaus (2007a)). As for parametric specifications, we can think of some additive 
effects, i.e. the pre-default name intensities take the form ( ) ( )Q t N tα α β= +i  for some 
constants ,α β  as mentioned in Frey and Backhaus (2007a), corresponding to the “linear 
counterparty risk model”12, or multiplicative effects in the spirit of Davis and Lo (2001), i.e. 
the pre-default intensities take the form ( )( )Q N ttα α β= ×i . Of course, we could think of a non-

                                                 
8 After default of name i , the intensity is equal to zero: ( ) 0Q

i tα =  on { }it τ≥ . 
9 This Markovian assumption may be questionable, since the contagion effect of a default event may 
vanish as time goes by. The Hawkes process, that was used in the credit field by Giesecke and 
Goldberg (2006), Errais et al. (2007), provides such an example of a more complex time dependence. 
Other specifications with the same aim are discussed in Lopatin and Misirpashaev (2007). 
10 This means that the pre-default intensities have the same functional dependence to the default 
indicators.  
11 Let us remark that on { }i tτ > , ( ) ( )j

j i

N t N t
≠

= ∑ , so that the pre-default intensity of name i , actually 

only depends on the credit status of the other names. 
12 Ding et al. (2006) consider the case where the intensity of the loss process is linear in the number of 
defaults. Then, the loss distribution is negative binomial. 
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parametric model. Later on, we provide a calibration procedure of such unconstrained 
intensities onto market inputs. 
 
For simplicity, we will further assume a constant recovery rate equal to R  and a constant 
exposure among the underlying names. The aggregate fractional loss at time t  is given by: 

( ) ( )( ) 1 N tL t R
n

= − . As a consequence of the no simultaneous defaults assumption, the 

intensity of ( )L t  or of ( )N t  is simply the sum of the individual default intensities and is itself 
only a function of the number of defaults process. Let us denote by ( ), ( )t N tλ  the risk-neutral 
loss intensity. It is related to the individual pre-default risk-intensities by:  

( ) ( )( , ( )) ( ) , ( )Qt N t n N t t N tλ α= − × i . 
We are thus typically in a bottom-up approach, where one starts with the specification of 
name intensities and thus derives the dynamics of the aggregate loss. 
 
2.2 Risk-neutral pricing 
 
Let us remark that in a Markovian homogeneous contagion model, the process ( )N t  is a 
Markov chain (under the risk-neutral probability Q ), and more precisely a pure birth process, 
according to Karlin and Taylor (1975) terminology13, since only single defaults can occur14. 
The generator of the chain, ( )tΛ  is quite simple:  
 

( ,0) ( ,0) 0 0 0 0 0
0 ( ,1) ( ,1) 0 0
0 0

( ) 0 0
0 0
0 ( , 1) ( , 1)
0 0 0 0 0 0 0

t t
t t

t

t n t n

λ λ
λ λ

λ λ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟Λ = ⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎝ ⎠

i i
i

i
 

 
Such a simple model of the number of defaults dynamics was considered by Schönbucher 
(2006) where it is called the “one-step representation of the loss distribution”. Our paper can 
be seen as a bottom-up view of the previous model, where the risk-neutral prices can actually 
be viewed as replicating prices. As an example of this approach, let us consider the replication 
price of a European payoff with payment date T , such as a “zero-coupon tranchelet”, paying 

{ }( )1 N T k=  at time T  for some { }0,1, ,k n∈ … . Let us denote by 

( ) ( )( ), ( ) ( ) ( )r T tV t N t e Q N T k N t− −= =  the time t replication price and by ( , )V t i  the price 
vector whose components are ( ,0), ( ,1), , ( , )V t V t V t n…  for 0 t T≤ ≤ . We can thus relate the 
price vector ( , )V t i  to the terminal payoff, using the transition matrix ( , )Q t T  between dates t  
and T : 

                                                 
13 According to Feller’s terminology, we should speak of a pure death process. Since, we later refer to 
Karlin and Taylor (1975), we prefer their terminology. 
14 Regarding the assumption of no simultaneous defaults, we also refer to Putyatin et al. (2005), Brigo 
et al. (2007), Walker (2007b). Allowing for multiple defaults could actually ease the calibration onto 
senior CDO tranche quotes. 
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( )( , ) ( , ) ( , )r T tV t e Q t T V T− −=i i , 
where ( )( , ( )) ( )kV T N T N Tδ= . The transition matrix solves for the Kolmogorov backward 

and forward equations ( , ) ( ) ( , )Q t T t Q t T
t

∂
= −Λ

∂
, ( , ) ( , ) ( )Q t T Q t T T

T
∂

= Λ
∂

. In the time 

homogeneous case, i.e. when the generator is a constant ( )tΛ = Λ , the transition matrix can 
be written in exponential form ( )( , ) exp ( )Q t T T t= − Λ 15.  
 
These ideas have been put in practice by van der Voort (2006), Herbertsson and Rootzén 
(2006), Arnsdorf and Halperin (2007), de Koch and Kraft (2007), Epple et al. (2007), 
Herbertsson (2007a) and Lopatin and Misirpashaev (2007). These papers focus on the pricing 
of credit derivatives, while our concern here is the feasibility and implementation of 
replicating strategies. 
 
2.3 Computation of credit deltas 
 
We recall that the credit delta with respect to name i  is the amount of hedging instruments 
(the index here, but possibly a i -th credit default swap) that should be bought to be protected 
against a sudden default of name i . A nice feature of homogeneous contagion models is that 
the credit deltas are the same for all (the non-defaulted) names, which results in a dramatic 
dimensionality reduction.  
 
Let us consider a European16 type payoff and denote its replication price at time t by ( , )V t i . 
In order to compute the credit deltas, let us remark that, by Ito’s lemma,  

( ) ( ) ( ) ( )( ), ( )
, ( ) , ( ) 1 , ( ) ( )

V t N t
dV t N t dt V t N t V t N t dN t

t
∂

= + + −
∂

. 

( ) ( ), ( ) 1 , ( )V t N t V t N t+ −  is associated with the jump in the price process when a default 
occurs in the credit portfolio, i.e. ( ) 1dN t = . Thanks to the name homogeneity, 

( )

1
( ) ( )

n N t

i
i

dN t dN t
−

=

= ∑ 17 and, since )))(,(( )( tNtVe tTr −− is a −Q martingale,  

( ) ( ) ( ) ( )( ) ( ), ( )
, ( ) , ( ) 1 , ( ) , ( )

V t N t
t N t V t N t V t N t rV t N t

t
λ

∂
+ × + − =

∂
, 

we end up with: 

( ) ( ) ( ) ( )( ) ( )( )
( )

1
, ( ) , ( ) , ( ) 1 , ( ) ( ) , ( )

n N t
Q

i
i

dV t N t rV t N t dt V t N t V t N t dN t t N t dtα
−

=

= + + − × −∑ i . 

As a consequence the credit deltas with respect to the individual instantaneous default swaps 
are equal to:  

                                                 
15 Since ( ), ( )rte V t N t− ×  is a ( ), tQ H  martingale and using Ito-Doeblin’s formula, it can be seen that 
V  solves for the backward Kolmogorov equations: 

( ) ( ) ( ) ( )( ) ( ), ( )
, ( ) , ( ) 1 , ( ) , ( )

V t N t
t N t V t N t V t N t rV t N t

t
λ

∂
+ × + − =

∂
. 

16 At this stage, for notational simplicity, we assume that there are no intermediate payments. This 
corresponds for instance to the case of zero-coupon CDO tranches with up-front premiums. The more 
general case is considered in Section 4. 
17 The last ( )N t  names have defaulted. 
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( ) ( )( ) ( )( )( ) , ( ) 1 , ( ) 1 ( )r T t
i it e V t N t V t N t N tδ − −= + − × − , 

for 0 t T≤ ≤  and 1, ,i n= … . 
 

Let us denote by ( ) ( )( , ) 1 ( )r T t Q
I

N TV t k e E N t k
n

− − ⎡ ⎤= − =⎢ ⎥⎣ ⎦
 the time t  price of the equally 

weighted portfolio involving defaultable discount bonds and set 

( ) ( ) ( )
( ) ( )

, ( ) 1 , ( )
, ( )

, ( ) 1 , ( )I
I I

V t N t V t N t
t N t

V t N t V t N t
δ

+ −
=

+ −
. It can readily be seen that: 

 
( ) ( ) ( ) ( )( ) ( ) ( ), ( ) , ( ) , ( ) , ( ) , ( ) , ( )I I I IdV t N t r V t N t t N t V t N t dt t N t dV t N tδ δ= × − + . 

 
As a consequence, we can perfectly hedge a European type payoff, say a zero-coupon CDO 
tranche, using only the index portfolio and the risk-free asset18. The hedge ratio, with respect 

to the index portfolio is actually equal to ( ) ( ) ( )
( ) ( )

, ( ) 1 , ( )
, ( )

, ( ) 1 , ( )I
I I

V t N t V t N t
t N t

V t N t V t N t
δ

+ −
=

+ −
. The 

previous hedging strategy is feasible provided that ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ ≠ . The usual 

case corresponds to some positive dependence, thus ( ) ( ) ( ),0 ,1 , 1Q Q Qt t t nα α α≤ ≤ ≤ −i i i" . 

Therefore ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ < 19. The decrease in the index portfolio value is the 
consequence of a direct default effect (one name defaults) and an indirect effect related to a 
positive shift in the credit spreads associated with the non-defaulted names. 
 
The idea of building a hedging strategy based on the change in value at default times was 
introduced in Arvanitis and Laurent (1999). The rigorous construction of a dynamic hedging 
strategy in a univariate case can be found in Blanchet-Scalliet and Jeanblanc (2004). Our 
result can be seen as a natural extension to the multivariate case, provided that we deal with 
Markovian homogeneous models: we simply need to deal with the number of defaults ( )N t  
and the index portfolio ( ), ( )IV t N t  instead of a single default indicator ( )iN t  and the 
corresponding defaultable discount bond price. 
 
Though this is not further needed in the computation of dynamic hedging strategies, we can 
actually build a bridge between the above Markov chain approach for the aggregate loss and 
well-known models involving credit migrations (see Appendix A). 
 
3 Calibration of loss intensities 
 
Another nice feature of the homogeneous Markovian contagion model is that the loss 
dynamics or equivalently the default intensities can be determined from market inputs such as 
CDO tranche premiums. Since the risk neutral dynamics are unambiguously derived from 

                                                 
18 As above, in order to ease the exposition, we neglect at this stage actual payoff features such as 
premium payments, amortization schemes, and so on. This is detailed in Section 4. 
19 In the case where ( ) ( ) ( ),0 ,1 , 1Q Q Qt t t nα α α= = = −i i i" , there are no contagion effects and default 
dates are independent. We still have ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ <  since ( ), ( )IV t N t  is linear in the 
number of surviving names. 
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market inputs, so will be for dynamic hedging strategies of CDO tranches. This greatly 
facilitates empirical studies, since the replicating figures do not depend upon unobserved and 
difficult to calibrate parameters. 
 
The construction of the implied Markov chain for the aggregate loss parallels the one made by 
Dupire (1994) to construct a local volatility model from call option prices. Derman and Kani 
(1994), Rubinstein (1994) used similar ideas to build up implied trees. Laurent and Leisen 
(2000) have shown how an implied Markov chain can be derived from a discrete set of option 
prices. In these approaches, the calibration of the implied dynamics on market inputs involves 
forward Kolmogorov equations. For a complete set of CDO tranche premiums or equivalently 
for a complete set of number of default distributions, Schönbucher (2006) provided the 
construction of the loss intensities. For the paper to be self-contained, we detail and comment 
this in the Appendix B. Lopatin and Misirpashaev (2007), Cont and Minca (2008) also detail 
the similarities between the Dupire’s approach and the building of the one step Markov chain 
of Schönbucher (2006). 
 
In practical applications, we can only rely on a discrete set of loss distributions corresponding 
to liquid CDO tranche maturities. In the examples below, we will calibrate the loss intensities 
given a single calibration date T . For simplicity, we will be given the number of defaults 
probabilities ( , ),  0,1, ,p T k k n= … 20. Now and in the sequel, we assume that the loss 
intensities are time homogeneous: the intensities do not depend on time but only on the 
number of realized defaults. We further denote by ( , )k t kλ λ=  for 0 t T≤ ≤ , the loss intensity 
for 0,1, , 1k n= −… 21. The computation of the loss intensities kλ  from the number of defaults 
probabilities is quite similar to Epple et al. (2007). For the paper to be self-contained, it is 
detailed in the Appendix C. 
 
An alternative calibrating approach can be found in Herbertsson (2007a) or in Arnsdorf and 
Halperin (2007). In Herbertsson (2007a), the name intensities ( ), ( )Q t N tαi  are time 
homogeneous, piecewise linear in the number of defaults (the node points are given by 
standard detachment points) and they are fitted to spread quotes by a least square numerical 
procedure. Arnsdorf and Halperin (2007) propose a piecewise constant parameterization of 
name intensities (which are referred to as “contagion factors”) in time. When intensities are 
piecewise linear in the number of defaults too, they use a “multi-dimensional solver” to 
calibrate onto the observed tranche prices22. In the same vein, Frey and Backhaus (2007a, 
2007b) introduce a parametric form for the function ( , )t kλ , a variant of the “convex 
counterparty risk model”, and fit the parameters to some tranche spreads. Lopatin and 
Misirpashaev (2007) express the loss intensity ( , )t kλ  as a polynomial function of an 
auxiliary variable involving the number of defaults. 
                                                 
20 Clearly, this involves more information that one could directly access through the quotes of liquid 
CDO tranches, especially with respect to small and large number of defaults. As for the computation 
of the number of default probabilities from quoted CDO tranche premiums, we refer to Krekel and 
Partenheimer (2006), Galiani et al. (2006), Meyer-Dautrich and Wagner (2007), Parcell and Wood 
(2007), Walker (2007a) and Torresetti et al. (2007). Practical issues related to the calibration inputs 
are also discussed in van der Voort (2006). 
21 Therefore, the pre-default name intensity is such that ( ) ( ), ( )

( )
N tQ t N t

n N t
λ

α =
−i . Let us recall that 

( , ) 0t nλ = . 
22 In both approaches, there are as many unknown parameters as available market quotes. 
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4 Computation of credit deltas through a recombining tree 
 
4.1 Building up a tree 
 
We now address the computation of CDO tranche deltas with respect to the credit default 
swap index of the same maturity. As for the hedging instrument, the premium is set at the 
inception of the deal and remains fixed which corresponds to market conventions. We do not 
take into account roll dates every six months and trade the same index series up to maturity. 
Switching from one hedging instrument to another could be dealt with very easily in our 
framework and closer to market practice but we thought that using the same underlying across 
the tree would simplify the exposition23. 
 

The (fractional) loss at time t  is given by ( )( ) (1 ) N tL t R
n

= − . Let us consider a tranche with 

attachment point a  and detachment point b , 0 1a b≤ ≤ ≤ . Up to some minor adjustment for 
the premium leg (see below), the credit default swap index is a [ ]0,1  tranche. We denote by 
( )( )O N t  the outstanding nominal on a tranche. It is equal to b a−  if ( )L t a< , to ( )b L t−  if 

( )a L t b≤ <  and to 0  if ( )L t b≥ . 
 
Let us recall that, for a European type payoff the price vector fulfils 

( ' )( , ) ( , ') ( ', )r t tV t e Q t t V t− −=i i  for 0 't t T≤ ≤ ≤ . The transition matrix can be expressed as 
( ) ( ), ' exp ( ' )Q t t t t= Λ −  where Λ  is the generator matrix associated with the number of 

defaults process. Note that, in the time homogeneous framework discussed in the previous 
section, the generator matrix does not depend on time.  
 
For practical implementation, we will be given a set of node dates 0 0, , , ,

si nt t t T= =… … . For 
simplicity, we will further consider a constant time step 1 0 1i it t t t −Δ = − = = − =" " ; this 
assumption can easily be relaxed. The most simple discrete time approximation one can think 
of is ( ) ( ) ( )1 1,i i i i iQ t t Id t t t+ ++ Λ × −� , which leads to ( )1( ) 1 ( )i i kQ N t k N t k λ+ = + = Δ�  and 

( )1( ) ( ) 1i i kQ N t k N t k λ+ = = − Δ� . For large kλ , the transition probabilities can become 

negative. Thus, we will rather use ( )1( ) 1 ( ) 1 k
i iQ N t k N t k e λ− Δ
+ = + = −�  and 

( )1( ) ( ) k
i iQ N t k N t k e λ− Δ
+ = = � . 

 
Under the previous approximation the number of defaults process can be described through a 
recombining tree as in van der Voort (2006). One could clearly think of using continuous 
Markov chain techniques24, but the tree implementation is quite intuitive from a financial 
point of view as it corresponds to the implied binomial tree of Derman and Kani (1994). 
Convergence of the discrete time Markov chain to its continuous limit is a rather standard 
issue and will not be detailed here. 
 

                                                 
23 Actually, the credit deltas at inception are the same whatever the choice.  
24 For such approaches, we refer to Herbertsson (2007a) and Moler and Van Loan (2003) regarding the 
numerical issues. 
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Figure 1. Number of defaults tree 

 
4.2 Computation of hedge ratios for CDO tranches 
 
Let us denote by ( , )d i k  the value at time it  when ( )iN t k=  of the default payment leg of the 
CDO tranche25. The default payment at time 1it +  is equal to ( ) ( )1( ) ( )i iO N t O N t +− . Thus, 

( , )d i k  is given by the following recurrence equation: 

( ) ( )( )( , ) 1 ( 1, 1) ( ) ( 1) ( 1, )k krd i k e e d i k O k O k e d i kλ λ− Δ − Δ− Δ= − × + + + − + + + . 

 
Let us now deal with a (unitary) premium leg. We denote the regular premium payment dates 
by 1, , pT T…  and for simplicity we assume that: { } { }1 0, , , ,

sp nT T t t⊂… … . Let us consider some 

date 1it +  and set l  such that 1 1l i lT t T+ +< ≤ . Whatever 1it + , there is an accrued premium 

payment of ( ) ( )( ) ( )1 1( ) ( )i i i lO N t O N t t T+ +− × − . If 1 1i lt T+ += , i.e. 1it +  is a regular premium 

payment date, there is an extra premium cash-flow at time 1it +  of ( ) ( )1 1( )l l lO N T T T+ +× − . 
Thus, if 1it +  is a regular premium payment date, the total premium payment is equal to 
( ) ( )1( )i l lO N t T T+× − . 

 
Let us denote by ( , )r i k  the value at time it  when ( )iN t k=  of the unitary premium leg26. If 

{ }1 1, ,i pt T T+ ∈ … , ( , )r i k  is provided by: 

( ) ( )( )1( , ) ( ) 1 ( 1, 1) ( 1, )k kr
l lr i k e O k T T e r i k e r i kλ λ− Δ − Δ− Δ
+= × − + − × + + + +  

If { }1 1, ,i pt T T+ ∉ … , then: 

( ) ( ) ( )( )( )1( , ) 1 ( 1, 1) ( ) ( 1) ( 1, )k kr
i lr i k e e r i k O k O k t T e r i kλ λ− Δ − Δ− Δ
+= − × + + + − + × − + + . 

 

                                                 
25 We consider the value of the default leg immediately after it . Thus, we do not consider a possible 
default payment at it  in the calculation of ( , )d i k . 
26 As for the default leg, we consider the value of the premium leg immediately after it . Thus, we do 
not take into account a possible premium payment at it  in the calculation of ( , )r i k  either. 



13 

The CDO tranche premium is equal to (0,0)
(0,0)

ds
r

= . The value of the CDO tranche (buy 

protection case) at time it  when ( )iN t k=  is given by ( , ) ( , ) ( , )CDOV i k d i k sr i k= − . The 
equity tranche needs to be dealt with slightly differently since its spread is set to 500bps = . 
However, the value of the CDO equity tranche is still given by ( , ) ( , )d i k sr i k− . 
 
As for the credit default swap index, we will denote by ( , )ISr i k  and ( , )ISd i k  the values of the 
premium and default legs. We define the credit default swap index spread at time it  when 

( )iN t k=  by ( , ) ( , ) ( , )IS IS ISs i k r i k d i k× = 27. The up-front premium of the credit default swap 
index, bought at inception, at node ( ),i k  is given by ( , ) ( , ) (0,0) ( , )IS IS IS ISV i k d i k s r i k= − × . 
The default leg of the credit default swap index is computed as a standard default leg of a 
[ ]0,100%  CDO tranche. Thus, in the recursion equation giving ( , )ISd i k  we write the 

outstanding nominal for k  defaults as (1 )( ) 1 k RO k
n
−

= − , where R  is the recovery rate and 

n  the number of names. According to standard market rules, the premium leg of the credit 
default swap index needs a slight adaptation since the premium payments are based only upon 
the number of non-defaulted names and do not take into account recovery rates. As a 
consequence, the outstanding nominal to be used in the recursion equations providing ( , )ISr i k  

is such that ( ) 1 kO k
n

= − . 

 
As usual in binomial trees, ( , )i kδ  is the ratio of the difference of the option value (at time 

1it + ) in the upper state ( 1k +  defaults) and lower state ( k  defaults) and the corresponding 
difference for the underlying asset. In our case, both the CDO tranche and the credit default 
swap index are “dividend-baring”. For instance, when the number of defaults switches from 
k  to 1k + , the default leg of the CDO tranche is associated with a default payment of 

( ) ( 1)O k O k− + . Similarly, given the above discussion, when the number of defaults switches 
for k  to 1k + , the premium leg of the CDO tranche is associated with an accrued premium 
payment of { } ( ) ( )

1 1
1, ,

1 ( ) ( 1)
i p

i lt T T
s O k O k t T

+
+∉

− × − + × −
…

28. Thus, when a default occurs the 

change in value of the CDO tranche is the outcome of a capital gain of 
( ) ( )1, 1 1,CDO CDOV i k V i k+ + − +  and of a cash-flow of 

( ) { } ( )( )1 1
1, ,

( ) ( 1) 1 1
i p

i lt T T
O k O k s t T

+
+∉

− + × − × × −
…

.  

 
The credit delta of the CDO tranche at node ( ),i k  with respect to the credit default swap 
index is thus given by: 

                                                 
27 This is an approximation of the index spread since, according to market rules, the first premium 
payment is reduced. 
28 If { }1 1, ,i pt T T+ ∈ … , the premium payment is the same whether the number of defaults is equal to k  

or 1k + . So, it does not appear in the computation of the credit delta. 
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( ) ( ) ( ) { } ( )( )
( ) ( ) { } ( )

1 1

1 1

1, ,

1, ,

1, 1 1, ( ) ( 1) 1 1
( , ) 1 11, 1 1, (0,0) 1

i p

i p

CDO CDO i lt T T

IS IS IS i lt T T

V i k V i k O k O k s t T
i k RV i k V i k s t T

n n

δ +

+

+∉

+∉

+ + − + + − + × − × × −
= −+ + − + + − × × × −

…

…

. 

 
Let us remark that using the previous credit deltas leads to a perfect replication of a CDO 
tranche within the tree, which is feasible since the approximating discrete market is complete.  
 
In the next section, we compute CDO tranche credit deltas with respect to credit default swap 
index in two steps. We first calibrate loss intensities from a one factor Gaussian copula loss 
distribution. It allows us to examine how the recovery rate assumption and the correlation 
between defaults impact credit deltas. We then calibrate loss intensities from a loss 
distribution associated with a market base correlation structure and we compare our “default 
risk” deltas with some “credit spread” deltas computed on a basis of a bump of credit default 
swap index spread. We investigate in particular spread deltas computed from the standard 
market approach and spread deltas recently obtained by Arnsdorf and Halperin (2007) and 
Eckner (2007). 
 
4.3 Model calibrated on a loss distribution associated with a Gaussian copula 
 
In this numerical illustration, the loss intensities kλ  are computed from a loss distribution 
generated from a one factor Gaussian copula. The correlation parameter is equal to 

30%ρ = 29, the credit spreads are all equal to 20 basis points per annum, the recovery rate is 
such that 40%R =  and the maturity is 5T =  years. The number of names is 125n = . Figure 
2 shows the number of defaults distribution. 
 

0%
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40%
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 
Figure 2. Number of defaults distribution. Number of defaults on the x – axis. 

                                                 
29 ρ  is the correlation between default events in a one factor homogeneous Gaussian copula model 
where the time t  conditional default probability (the probability that a name defaults before t  given 

the latent factor V ) is defined by ( )1

1
t

t

V p
p

ρ
ρ

−⎛ ⎞− +Φ
= Φ⎜ ⎟⎜ ⎟−⎝ ⎠

� , where Φ  is the cumulative standard 

Gaussian density and tp  is the time t  marginal default probability. In former versions of the paper, ρ  

was associated with a conditional default probability defined by ( )1

21
t

t

V p
p

ρ

ρ

−⎛ ⎞− +Φ
⎜ ⎟= Φ
⎜ ⎟−⎝ ⎠

� . 
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Loss intensities kλ  are calibrated as previously discussed up to 49k =  defaults. Under the 
Gaussian copula assumption, the default probabilities (5, )p k  are insignificant for 49k > 30. 
To avoid numerical difficulties, we computed the corresponding kλ  by linear extrapolation31.  
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Figure 3. Loss intensities , 0, ,49k kλ = … . 

 
As can be seen from Figure 3, loss intensities change almost linearly with respect to the 
number of defaults. Let us also remark that such rather linear behaviour of loss intensities can 
be found in Lopatin and Misirpashaev (2007). Our results can also be related to the analysis 
of Ding et al. (2006) who deal with a dynamic model where the loss intensity is actually 
linear in the number of defaults. 
 

0 14 56 84
0 20 18 14 13
1 0 70 54 46
2 0 148 112 93
3 0 243 182 150
4 0 350 261 215
5 0 466 347 285
6 0 589 437 359
7 0 719 531 436
8 0 856 630 516
9 0 997 732 598
10 0 1142 839 683

WeeksNb Defaults

 
Table 1. Dynamics of credit default swap index spread ( , )ISs i k  in basis points per annum. 

 
Table 1 shows the dynamics of the credit default swap index spreads ( , )ISs i k  along the nodes 
of the tree. The continuously compounded default free rate is 3%r =  and the time step is 

                                                 
30 4

50
(5, ) 3 10

k
p k −

≥

×∑ � , 5(5,50) 3.2 10p −×� , 12(5,125) 4 10p −×�  

31 We checked that various choices of loss intensities for high number of defaults had no effect on the 
computation of deltas. Let us stress that this applies for the Gaussian copula case since the loss 
distribution has thin tails. For the market case example, we proceeded differently. 
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1
365

Δ = . It can be seen that default arrivals are associated with rather large jumps of credit 

spreads. For instance, if a (first) default occurs after a quarter, the credit default swap index 
spread jumps from 18 bps to 70 bps. An extra default by this time leads to an index spread of 
148 bps. 
 
The credit deltas with respect to the credit default swap index ( , )i kδ  have been computed for 
the[ ]0,3%  and the [ ]3,6%  CDO tranches (see Tables 2 and 3). As for the equity tranche, it 
can be seen that the credit deltas are positive and decrease up to zero. This is not surprising 
given that a buy protection equity tranche involves a short put position over the aggregate loss 
with a 3% strike. This is associated with positive deltas, negative gammas and thus decreasing 
deltas. When the number of defaults is above 6, the equity tranche is exhausted and the deltas 
obviously are equal to zero.  
 

0 14 56 84
0 3.00% 0.538 0.591 0.755 0.859
1 2.52% 0 0.238 0.381 0.508
2 2.04% 0 0.074 0.137 0.212
3 1.56% 0 0.026 0.044 0.070
4 1.08% 0 0.011 0.017 0.024
5 0.60% 0 0.005 0.007 0.009
6 0.12% 0 0.001 0.001 0.001
7 0.00% 0 0 0 0

WeeksOutStanding 
NominalNb Defaults

 
Table 2. Deltas of the [ ]0,3%  equity tranche with respect to the credit default swap index. 

 

0 14 56 84
0 3.00% 0.255 0.254 0.219 0.171
1 3.00% 0 0.280 0.349 0.357
2 3.00% 0 0.167 0.294 0.389
3 3.00% 0 0.068 0.158 0.265
4 3.00% 0 0.026 0.065 0.128
5 3.00% 0 0.014 0.027 0.053
6 3.00% 0 0.010 0.016 0.025
7 2.64% 0 0.008 0.011 0.015
8 2.16% 0 0.006 0.008 0.010
9 1.68% 0 0.004 0.005 0.007
10 1.20% 0 0.003 0.003 0.004
11 0.72% 0 0.002 0.002 0.002
12 0.24% 0 0.001 0.001 0.001
13 0.00% 0 0 0 0

Nb Defaults OutStanding 
Nominal

Weeks

 
Table 3. Deltas of the [ ]3,6%  tranche with respect to the credit default swap index. 

 
At inception, the credit delta of the equity tranche is equal to 54% whilst it is only equal to 
25% for the [ ]3,6%  tranche which is deeper out of the money (see Table 3). Moreover, the 

[ ]3,6%  CDO tranche involves a call spread position over the aggregate loss. As a 
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consequence the credit deltas are positive and firstly increase (positive gamma effect) and 
then decrease (negative gamma) up to zero as soon as the tranche is fully amortized. 
 
Given the recovery rate assumption of 40%, the outstanding nominal of the [ ]3,6%  is equal 
to 3% for six defaults and to 2.64% for seven defaults. One might thus think that at the sixth 
default the [ ]3,6%  should behave almost like an equity tranche. However, as can be seen 
from Table 3, the credit delta of the equity tranche is much lower: around 1% instead of 50% . 
This is due to dramatic shifts in credit spreads when moving from the no-defaults to the six 
defaults state (see Table 1). In the latter case, the expected loss on the tranche is much larger, 
which is consistent with smaller deltas given the call spread payoff. 
 
4.4 Sensitivity of hedging strategies to the recovery rate assumption 
 
The previous deltas have been computed under the assumption that the recovery rate was 
equal to 40% which is a standard but somehow arbitrary assumption. We further investigate 
the dependence of the dynamic hedging strategy with respect to the choice of recovery rate. 
For our robustness study to be meaningful, we will modify recovery rates but keep the loss 
surface (or equivalently the CDO tranche premiums) unchanged. This implies a change in the 
number of defaults distribution. The procedure is detailed in Appendix D. 
 

10% 20% 30% 40% 50%
[0-3%] 0.554 0.547 0.542 0.538 0.528
[3-6%] 0.251 0.254 0.254 0.255 0.257
[6-9%] 0.129 0.130 0.130 0.131 0.131

Recovery RatesTranches

 
Table 4. Deltas at inception for different recovery rates. 

 
Table 4 shows the credit deltas at the initial date for various CDO tranches under different 
recovery assumptions. Fortunately, the recovery rate assumption has a small effect on the 
computed credit deltas.  
 
4.5 Dependence of hedging strategies upon the correlation parameter 
 
Let us recall that the recombining tree is calibrated on a loss distribution over a given time 
horizon. The shape of the loss distribution depends critically upon the correlation parameter 
which was set up to now to 30%ρ = . Decreasing the dependence between default events 
leads to a thinner right-tail of the loss distribution and smaller contagion effects. We detail 
here the effects of varying the correlation parameter on the hedging strategies.  
 
For simplicity, we firstly focus the analysis on the equity tranche and shift the correlation 
parameter from 30% to 10%. It can be seen from Tables 2 and 5 that the credit deltas are 
much higher in the latter case. After 14 weeks, prior to the first default, the credit delta is 
equal to 59% for a 30% correlation and to 96% when the correlation parameter is equal to 
10%.  
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0 14 42 84
0 3.00% 0.931 0.960 1.009 1.058
1 2.52% 0 0.694 0.785 0.910
2 2.04% 0 0.394 0.485 0.645
3 1.56% 0 0.179 0.233 0.352
4 1.08% 0 0.072 0.092 0.145
5 0.60% 0 0.027 0.032 0.046
6 0.12% 0 0.004 0.005 0.007
7 0.00% 0 0 0 0

Nb Defaults OutStanding 
Nominal

Weeks

 
Table 5. Deltas of the [ ]0,3%  equity tranche with respect to the credit default swap index, 10%ρ = 32. 
 
To further investigate how changes in correlation levels alter credit deltas, we computed the 
market value of the default leg of the equity tranche at a 14 weeks horizon as a function of the 
number of defaults under different correlation assumptions (see Figure 4). The market value 
of the default leg, on the y  – axis, is computed as the sum of expected discounted cash-flows 
posterior to this 14 weeks horizon date and the accumulated defaults cash-flows paid before33. 
We also plotted the accumulated losses which represent the intrinsic value of the equity 
tranche default leg. Unsurprisingly, we recognize some typical concave patterns associated 
with a short put option payoff.  
 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0 1 2 3 4 5 6 7 8 9 10 11 12

losses

correlation 0%

correlation 10%

correlation 20%

correlation 30%

correlation 40%

 
Figure 4. Market value of equity default leg under different correlation assumptions. 

Number of defaults on the x  – axis. 
 
As can be seen from Figure 4, prior to the first default, the value of the default leg of the 
equity tranche decreases as the correlation parameter increases from 0% to 40%. However, 
after the first default the ordering of default leg values is reversed. This can be easily 
understood since larger correlations are associated with larger jumps in credit spreads at 

                                                 
32Let us remark that credit deltas can be above one in the no default case. This is due to the 
amortization scheme of the premium leg. We detail in the next section the impact of the premium leg 
on credit deltas.  
33 For simplicity, we neglected the compounding effects over this short period. 
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default arrivals and thus larger changes in the expected discounted cash-flows associated with 
the default leg of the equity tranche34. 
 
Therefore, varying the correlation parameter is associated with two opposite mechanisms:  
 

- The first one is related to a typical negative vanna effect35. Increasing correlation 
lowers loss “volatility” and leads to smaller expected losses on the equity tranche. In a 
standard option pricing framework, this should lead to an increase in the credit delta of 
the short put position on the loss.  

- This is superseded by the shifts due to contagion effects. Increasing correlation is 
associated with bigger contagion effects and thus larger jumps in credit spreads at the 
arrival of defaults. This, in turn leads to a larger jump in the market value of the credit 
index default swap. Let us recall that the default leg of the equity tranche exhibits a 
concave payoff and thus a negative gamma. As a consequence the credit delta, i.e. the 
ratio between the change in value of the option and the change in value of the 
underlying, decreases. 

 
4.6 Taking into account a base correlation structure 
 
Up to now, the probabilities of number of defaults were computed thanks to a Gaussian 
copula and a single correlation parameter. In this example, we use a steep upward sloping 
base correlation curve for the iTraxx, typical of June 2007, as an input to derive the 
distribution of the probabilities of number of defaults (see Table 6). The maturity is still equal 
to 5 years, the recovery rate to 40% and the credit spreads to 20 bps. The default-free rate is 
now equal to 4%. 

 
3% 6% 9% 12% 22%

18% 28% 36% 42% 58%  
Table 6. Base correlations with respect to attachment points. 

 
Rather than spline interpolation of base correlations, we used a parametric model of the 5 year 
loss distribution to fit the market quotes and compute the probabilities of the number of 
defaults. This produces arbitrage free and smooth distributions that ease the calculation of the 
loss intensities36. Figure 5 shows the number of defaults distribution. This is rather different 
from the 30% flat correlation Gaussian copula case both for small and large losses. For 
instance, the probability of no defaults dropped from 48.7% to 19.5% while the probability of 
a single default rose from 18.2% to 36.5%. Let us stress that these figures are for illustrative 
purpose. The market does not provide direct information on first losses and thus the shape of 
the left tail of the loss distribution is a controversial issue. As for the right-tail, we have 

                                                 
34 Let us remark that the larger the correlation the larger the change in market value of the default leg 
of the equity tranche at the arrival of the first default. Indeed, in a high correlation framework, this 
default means relatively higher default likelihood for the surviving names. This is not inconsistent 
with the previous results showing a decrease in credit deltas when the correlation parameter increases. 
The credit delta is the ratio of the change in value in the equity tranche and of the change in value in 
the credit default swap index. For a larger correlation parameter, the change in value in the credit 
default swap index is also larger due to magnified contagion effects. 
35 We recall that in option pricing, the vanna is the sensitivity of the delta to a unit change in volatility. 
36 We also computed the number of defaults distribution using entropic calibration. Although we could 
still compute loss intensities, the pattern with respect to the number of defaults was not monotonic. 
Depending on market inputs, direct calibration onto CDO tranche quotes can lead to shaky figures. 
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3

50
(5, ) 1.4 10

k
p k −

≥

×∑ �  and 6(5,50) 3.3 10p −×� , 3(5,125) 1.38 10p −×� . The cumulative 

probabilities of large number of defaults are larger, compared with the Gaussian copula case. 
The probability of the names defaulting altogether is also quite large, corresponding to some 
kind of Armageddon risk. Once again these figures need to be considered with caution, 
corresponding to high senior and super-senior tranche premiums and disputable assumptions 
about the probability of all names defaulting. 
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Figure 5. Number of defaults distribution. Number of defaults on the x – axis. 

 
Figure 6 shows the loss intensities calibrated onto market inputs compared with the loss 
intensities based on Gaussian copula inputs up to 39 defaults37. As can be seen, the loss 
intensity increases much quicker with the number of defaults as compared with the Gaussian 
copula approach. The average relative change in the loss intensities is equal to 19% when it is 
equal to 16% when computed under the Gaussian copula assumption. Unsurprisingly, a steep 
base correlation curve is associated with fatter upper tails of the loss distribution and 
magnified contagion effects. 
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Figure 6. Loss intensities for the Gaussian copula and market case examples. Number of defaults on 

the x – axis. 
 

                                                 
37 Contrary to the Gaussian copula example, we computed the complete set of loss intensities using the 
procedure described in Appendix C. 
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Table 7 shows the dynamics of the credit default swap index spreads ( , )ISs i k  along the nodes 

of the tree. As for tree implementation, the time step is still 1
365

Δ = . Let us remark that up to 

12 defaults, loss intensities calibrated from market inputs are on the whole smaller than in the 
Gaussian copula case. Then, the contagion effect is smaller in the 30% correlation Gaussian 
copula in low default states and greater for high default states. Unsurprisingly, market quotes 
lead to smaller index spreads up to 2 defaults at 14 weeks (see Tables 1 and 7). This is also 
coherent with Figure 7 where the conditional expected losses in the two approaches cross 
each other at the third default. However, as mentioned above, this detailed pattern has to be 
considered with caution, since it involves the probabilities of 0, 1 and 2 defaults which are not 
directly observed in the market. After 2 defaults, credit spreads become definitely larger when 
calibrated from market inputs. 
 

0 14 56 84
0 20 19 17 16
1 0 31 23 20
2 0 95 57 43
3 0 269 150 98
4 0 592 361 228
5 0 1022 723 490
6 0 1466 1193 905
7 0 1870 1680 1420
8 0 2243 2126 1945
9 0 2623 2534 2423
10 0 3035 2939 2859

Nb Defaults Weeks

 
Table 7. Dynamics of credit default swap index spread ( , )ISs i k  in basis points per annum. 
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Figure 7. Expected losses on the credit portfolio after 14 weeks over a five year horizon ( y  – axis) 

with respect to the number of defaults ( x  – axis) using market and Gaussian copula inputs. 
 
Thanks to Figure 7 we can investigate the credit spread dynamics when using market inputs. 
We plotted the conditional (with respect to the number of defaults) expected loss 

( ) ( )E L T N t⎡ ⎤⎣ ⎦  for 5T =  years and 14t = weeks for the previous market inputs and for the 
30% flat correlation Gaussian copula case. The conditional expected loss is expressed as a 
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percentage of the nominal of the portfolio38. We also plotted the accumulated losses on the 
portfolio. The expected losses are greater than the accumulated losses due to positive 
contagion effects. There are some dramatic differences between the Gaussian copula and the 
market inputs examples. In the Gaussian copula case, the expected loss is almost linear with 
respect to the number of defaults in a wide range (say up to 15 defaults). The pattern is quite 
different when using market inputs with huge non linear effects. This shows large contagion 
effects after a few defaults as can also be seen from Table 7 and Figure 6. This rather 
explosive behaviour was also observed by Herbertsson (2007b), Tables 3 and 4 and by Cont 
and Minca (2008), Figures 1 and 3. In Lopatin and Misirpashaev (2007), the contagion effects 
are also magnified when using market data, compared with Gaussian copula inputs. 
 
Table 8 shows the dynamic deltas associated with the equity tranche. We notice that the credit 
deltas drop quite quickly to zero with the occurrence of defaults. This is not surprising given 
the surge in credit spreads and dependencies after the first default (see Figure 7): after only a 
few defaults the equity tranche is virtually exhausted. 
 

0 14 56 84
0 3.00% 0.645 0.731 0.953 1.038
1 2.52% 0 0.329 0.584 0.777
2 2.04% 0 0.091 0.197 0.351
3 1.56% 0 0.023 0.045 0.090
4 1.08% 0 0.008 0.011 0.018
5 0.60% 0 0.004 0.003 0.004
6 0.12% 0 0.001 0.001 0.001
7 0.00% 0 0 0 0

WeeksOutStanding 
NominalNb Defaults

 
Table 8. Delta of the [ ]0,3%  equity tranche with respect to the credit default swap index. 

 
It is noteworthy that the credit deltas ( , )i kδ  can be decomposed into a default leg delta 

( , )d i kδ  and a premium leg delta ( , )r i kδ  as follows: ( , ) ( , ) ( , )d ri k i k s i kδ δ δ= −  with: 
 

( ) ( )
( ) ( ) { } ( )

1 1
1, ,

1, 1 1, ( ) ( 1)
( , ) 1 11, 1 1, (0,0) 1

i p

d

IS IS IS i lt T T

d i k d i k O k O k
i k RV i k V i k s t T

n n

δ

+
+∉

+ + − + + − +
= −

+ + − + + − × × × −…

, 

and: 
 

( ) ( ) ( ) { } ( )

( ) ( ) { } ( )
1 1

1 1

1, ,

1, ,

1, 1 1, ( ) ( 1) 1
( , ) 1 11, 1 1, (0,0) 1

i p

i p

i lt T T
r

IS IS IS i lt T T

r i k r i k O k O k t T
i k RV i k V i k s t T

n n

δ +

+

+∉

+∉

+ + − + + − + × −
= −

+ + − + + − × × × −

…

…
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Tables 9 and 10 detail the credit deltas associated with the default and premium legs of the 
equity tranche. As can be seen from Table 8, credit deltas for the equity tranche may be 
slightly above one when no default has occurred. Table 10 shows that this is due to the 
amortization scheme of the premium leg which is associated with significant negative deltas. 
Let us recall that premium payments are based on the outstanding nominal. Arrival of defaults 
thus reduces the commitment to pay. Furthermore, the increase in credit spreads due to 
contagion effects involves a decrease in the expected outstanding nominal. When considering 

                                                 
38 Thus, given a recovery rate of 40%, the maximum expected loss is equal to 60%. 
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the default leg only, we are led to credit deltas that actually remain within the standard 0%-
100% range. The default leg delta of the equity tranche with respect to the credit default swap 
index is initially equal to 54.1%. Let us also remark that credit deltas of the default leg 
gradually increase with time which is consistent with a decrease in time value. 
 

0 14 56 84
0 3.00% 0.541 0.617 0.823 0.910
1 2.52% 0 0.279 0.510 0.690
2 2.04% 0 0.072 0.166 0.304
3 1.56% 0 0.016 0.034 0.072
4 1.08% 0 0.004 0.006 0.012
5 0.60% 0 0.002 0.002 0.002
6 0.12% 0 0.001 0.000 0.000
7 0.00% 0 0 0 0

Nb Defaults OutStanding 
Nominal

Weeks

 
Table 9. Delta of the default leg of the [ ]0,3%  equity tranche with respect to the credit default swap 

index ( ( , )d i kδ ).  
 

0 14 56 84
0 3.00% -0.104 -0.113 -0.130 -0.128
1 2.52% 0 -0.050 -0.074 -0.087
2 2.04% 0 -0.018 -0.031 -0.047
3 1.56% 0 -0.007 -0.011 -0.018
4 1.08% 0 -0.004 -0.004 -0.006
5 0.60% 0 -0.002 -0.002 -0.002
6 0.12% 0 -0.001 0.000 0.000
7 0.00% 0 0 0 0

Nb Defaults OutStanding 
Nominal

Weeks

 
Table 10. Deltas of the premium leg of the [ ]0,3%  equity tranche with respect to the credit default 

swap index ( ( , )rs i kδ ). 
 
We further examine the credit deltas of the different tranches at inception. These are 
compared with the deltas as computed by market participants under the previous base 
correlation structure assumption (see Table 11). These market deltas are calculated by 
bumping the credit curves by 1 basis point and computing the changes in present value of the 
tranches and of the credit default swap index. Once the credit curves are bumped, the 
moneyness varies, but the market practice is to keep constant the base correlations when 
recalculating the CDO tranches. This corresponds to the so-called “sticky strike” rule. The 
delta is the ratio of the change in present value of the tranche to the change in present value of 
the credit default swap index divided by the tranche’s nominal. For example, a credit delta of 
an equity tranche previously equal to one would now lead to a figure of 33.33.  
 

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 0.6  

Table 11. Market delta spreads and model deltas (a default event) at inception. 
 
First of all we can see that the outlines are roughly the same, which is already noticeable since 
the two approaches are completely different. Then, we can remark that the model deltas are 
smaller for the equity tranche as compared with the market deltas, while there are larger for 
the other tranches.  
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These discrepancies can be understood from the dynamics of the dependence between 
defaults embedded in the Markovian contagion model. Figure 8 shows the base correlation 
curves at a 14 weeks horizon, when the number of defaults is equal to zero, one or two. We 
can see that the arrival of the first defaults is associated with parallel shifts in the base 
correlation curves. This increase in dependence counterbalances the increase of credit spreads 
and expected losses on the equity tranche and lowers the credit delta. The model deltas can be 
thought of as the “sticky implied tree” model deltas of Derman (1999). These are suitable in a 
regime of fear corresponding to systematic credit shifts. 
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Figure 8. Dynamics of the base correlation curve with respect to the number of defaults. Detachment 

points on the x –axis. Base correlations on the y –axis.  
 
The summer 2007 credit crisis provides some evidence that implied correlations tend to 
increase with credit spreads and thus with expected losses. Figure 9 shows the dynamics of 
the five year iTraxx credit spread and of the implied correlation of the equity tranche. Over 
this period the correlation between the two series was equal to 91%. This clearly favours the 
contagion model and once again suggests a flaw in the “sticky strike” market practice. 
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Figure 9. Credit spreads on the five years iTraxx index (Series 7) in bps on the left axis. Implied 

correlation on the equity tranche on the right axis  
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We also thought that it was insightful to compare our model deltas and the results provided by 
Arnsdorf and Halperin (2007), Figure 7 (see Table 12).  
 

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 26.5 4.5 1.25 0.65 0.25
model deltas 21.9 4.81 1.64 0.79 0.38  

Table 12. Market and model deltas as in Arnsdorf and Halperin (2007). 
 
The market conditions are slightly different since the computations were done in March 2007, 
thus the maturity is slightly smaller than five years. The market deltas are quoted deltas 
provided by major trading firms. We can see that these are quite close to the previous market 
deltas since the computation methodology involving Gaussian copula and base correlation is 
quite standard. The models deltas (corresponding to “model B” in Arnsdorf and Halperin 
(2007)) have a different meaning from ours: there are related to credit spread deltas rather that 
then default risk deltas and are not related to a dynamic replicating strategy. However, it is 
noteworthy that the model deltas in Arnsdorf and Halperin (2007) are quite similar to ours, 
and thus rather far away from market deltas. Though this is not a formal proof, it appears 
from Figure 4, that (systemic) gammas are rather small prior to the first default. If we could 
view a shock on the credit spreads as a small shock on the expected loss while a default event 
induces a larger shock (but not so large given the risk diversification at the index level) on the 
expected loss, the similarity between the different model deltas are not so surprising. As 
above, model deltas are lower for the equity tranche and larger for the other tranches, when 
compared with market deltas. 
 
We also compare our model deltas with credit deltas obtained by Eckner (2007), Table 5 
within an affine jump diffusion intensity model where model parameters have been calibrated 
on CDX NA IG5 quotes of December 2005 (see Table 13). In the latter framework, credit 
deltas are computed from sensitivities of CDO tranche and index prices with respect to a 
uniform and relative shift of individual intensities. We compute our contagion model deltas 
from loss intensities calibrated on the same data set. 
 

Tranches [0-3%] [3-7%] [7-10%] [10-15%] [15-30%]
market deltas 18.5 5.5 1.5 0.8 0.4
AJD deltas 21.7 6.0 1.1 0.4 0.1
contagion model deltas 17.9 6.3 2.5 1.3 0.8  

Table 13. Market deltas, “intensity” model credit deltas in Eckner (2007) and contagion model deltas 
 
Even though the approaches are completely different, once again the outlines are similar. Let 
us remark that the equity tranche deltas computed by Eckner are higher according to some 
“sticky delta” rule. 
 
Conclusion 
 
The lack of internally consistent methods to hedge CDO tranches has paved the way to a 
variety of local hedging approaches that do not guarantee the full replication of tranche 
payoffs. This may not look as such a practical issue when trade margins are high and holding 
periods short. However, we think that there might be a growing concern from investment 
banks about the long term credit risk management of trading books as the market matures. 
 
A homogeneous Markovian contagion model can be implemented as a recombining binomial 
tree and thus provides a strikingly easy way to compute dynamic replicating strategies of 
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CDO tranches. While such models have recently been considered for the pricing of exotic 
basket credit derivatives, our main concern here is to provide a rigorous framework to the 
hedging issue.  
 
We do not aim at providing a definitive answer to the thorny issue of hedging CDO tranches. 
For this purpose, we would also need to tackle name heterogeneity, possible non Markovian 
effects in the dynamics of credit spreads, non deterministic intensities between two default 
dates, the occurrence of multiple defaults, stochastic recovery rates… A fully comprehensive 
approach to the hedging of CDO tranches is likely to be quite cumbersome both on economic 
and numerical grounds. 
 
However, from a practical perspective, we think that our approach might be useful to assess 
the default exposure of CDO tranches by quantifying the credit contagion effects in a 
reasonable way. We also found some noticeable similarities between credit spread deltas as 
computed under the standard base correlation methodology and the default risk deltas as 
computed from our recombining tree. A closer look at the discrepancies between the two 
approaches suggests some inconsistency in the market approach as far as the dynamics of the 
correlation is involved. Taking into account such dynamic effects lowers credit deltas of the 
equity tranche and therefore increases the credit deltas of the senior tranches. From a risk 
management perspective, understanding how credit deltas are related to base correlation 
curves requires a coupling of standard vanna analysis and the study of contagion and dynamic 
dependence effects. 
 
Appendix A: dynamics of defaultable discount bonds and credit spreads 
 
Let us derive the dynamics of a (digital) defaultable discount bond associated with name 

{ }1, ,i n∈ …  and maturity T . The corresponding payoff at time T  is equal to 

{ }1 1 ( )
i iT N Tτ > = − . Let us now consider a portfolio of the previously defined defaultable bonds 

with holdings equal to 1
n

 for all names. The portfolio payoff is equal to 

( ) ( ), ( ) 1I
N TV T N T

n
= − . The replication price at time t  given that ( )N t k=  of such a 

portfolio is equal to ( ) ( )( , ) 1 ( )r T t Q
I

N TV t k e E N t k
n

− − ⎡ ⎤= − =⎢ ⎥⎣ ⎦
. Since the names are 

exchangeable, the n k−  non defaulted names have the same price which is thus ( , )IV t k
n k−

. 

Thus the price time t  of the defaultable discount bond, ( ),iB t T  is given by: 

( ) ( ) ( ), ( )
, 1 ( )

( )
I

i i

V t N t
B t T N t

n N t
= − ×

−
, ( ) ( ) ( )( ), , ,r T t

I IV t e Q t T V T− −=i i  

where the pre-default intensity of iτ  is equal to ( ) ( ), ( )
, ( )

( )
Q t N t

t N t
n N t
λ

α =
−i . When ( )N t n= , 

( ), ( ) 0Q t N tα =i  and ( ), 0iB t T = . Let us remark that the defaultable discount bond price 

follows a Markov chain with 1n +  states { } { }( ) 0, ( ) 0 , , ( ) 1, ( ) 0i iN t N t N t n N t= = = − =…  

and { }( ) 1iN t = . The generator matrix, ( )tΛ , is equal to: 
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( )
( )

( ,0) ( 1) / ( ,0) 0 0 0 0 ( ,0) /
0 ( ,1) ( 2) /( 1) ( ,1) 0 ( ,1) /( 1)
0 0
0
0
0 ( , 1) ( , 1)
0 0 0 0 0 0 0

t n n t t n
t n n t t n

t n t n

λ λ λ
λ λ λ

λ λ

− −⎛ ⎞
⎜ ⎟− − − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎝ ⎠

i i i
i i

i
 

 
Thus, the dynamics of the defaultable bond prices can be viewed as a special case of the one 
studied by Jarrow, Lando and Turnbull (1997) though the economic interpretation of the 
states slightly differs. 
 
Appendix B: Calibration equations on a complete set of number of defaults 
probabilities 
 
While the pricing and thus the hedging involves a backward procedure, calibration is 
associated with forward Kolmogorov differential equations. We show here a non-parametric 
fitting procedure of a possibly non time homogeneous pure birth process onto a complete set 
of marginal distributions of number of defaults. This is quite similar to the one described in 
Schönbucher (2006), though the purpose is somehow different since the aim of the previous 
paper is to construct arbitrage-free, consistent with some complete loss surface, Markovian 
models of aggregate losses, possibly in incomplete markets, without detailing the feasibility 
and implementation of replication strategies. 
 
We will further denote the marginal number of defaults probabilities by 

( )( , ) ( )p t k Q N t k= =  for 0 t T≤ ≤ , 0,1, ,k n= … . 
 
In the case of a pure birth process, the forward Kolmogorov equations can be written as: 

( , ) ( , 1) ( , 1) ( , ) ( , )dp t k t k p t k t k p t k
dt

λ λ= − − − , for 1, ,k n= … , ( ,0) ( ,0) ( ,0)dp t t p t
dt

λ= − . 

Since the space state is finite, there are no regularity issues and these equations admit a 
unique solution (see below for practical implementation). We refer to Karlin and Taylor 
(1975) for more details about the forward equations in the case of a pure birth process. These 
forward equations can be used to compute the loss intensity dynamics [ ]0, ( , ( ))t T t N tλ∈ → , 
thanks to: 

1 ( ,0)( ,0)
( ,0)

dp tt
p t dt

λ = − , 1 ( , )( , ) ( , 1) ( , 1)
( , )

dp t kt k t k p t k
p t k dt

λ λ⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 for 1, ,k n= … , 

and 0 t T≤ ≤ . Let us remark that we can also write:  

( )
( )0

( , ) ( )1 1( , )
( , ) ( )

k

m
d p t m dQ N t k

t k
p t k dt Q N t k dt

λ = ≤
= − = −

=

∑
. 

 

Eventually, the name intensities are provided by: ( ) ( , ( )), ( )
( )

Q t N tt N t
n N t
λα =
−i . This shows that, 

under the assumption of no simultaneous defaults, we can fully recover the loss intensities 
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from the marginal distributions of the number of defaults. However, despite its simplicity, the 
previous approach (the inference of the ),( ktλ from the default probabilities ),( mtp ) involves 
some theoretical and practical issues. 
 
As for the theoretical issues, we should deal with the assumption of no simultaneous defaults. 
We show below that, under standard no arbitrage requirements, (pseudo)-loss intensities 
might still be computed but that they may fail to reconstruct the input number of defaults 
distributions. Whatever the model, the marginal number of defaults probabilities must fulfil: 

0 ( , ) 1p t m≤ ≤ , ( ) [ ] { }, 0, 0,1, , 1t m T n∀ ∈ × −… , 
0

( , ) 1
n

m

p t m
=

=∑ , [ ]0,t T∀ ∈  and since ( )N t  is 

non decreasing, 
0 0

( , ) ( ', )
k k

m m
p t m p t m

= =

≥∑ ∑ , { }0,1, ,k n∀ ∈ … , [ ], ' 0,t t T∀ ∈  and 't t≤ . This 

implies that the ( , )t kλ , as computed from the above equation, are non-negative. Moreover, 

since 
0

( , ) 1
n

m

p t m
=

=∑ , 0

( , )
0

n

m

d p t m

dt
= =
∑

, thus ( , ) 0t nλ = , i.e. { }( )N t n=  is absorbing. In other 

words, standard no-arbitrage constraints on the probabilities of the number of defaults 
guarantee the existence of non-negative (pseudo)-loss intensities with the required boundary 
conditions. However, concluding that this (pseudo)-loss intensities may fail to reconstruct the 
input number of defaults distributions. The no simultaneous defaults assumption implies 

particularly that 0),(
=

dt
mtdp  for 0t =  and 1>m . If this constraint is not fulfilled by market 

inputs, we will not be able to reconstruct the input ( ),p t m  from the (pseudo) -loss intensities. 
 
On practical grounds, the computation of the ( , )p t m  usually involves some arbitrary 
smoothing procedure and hazardous extrapolations for small time horizons.  
 
For these reasons, we think that it is more appropriate and reasonable to calibrate the Markov 
chain of aggregate losses on a discrete set of meaningful market inputs corresponding to 
liquid maturities. 
 
Appendix C: calibration of time homogeneous loss intensities 
 
Solving for the forward equations provides 0( ,0) Tp T e λ−=  and 

( )
1

0

( , ) ( , 1)k

T
T s

kp T k e p s k dsλλ − −
−= −∫  for 1 1k n≤ ≤ −  (see Karlin and Taylor (1975) for more 

details). The previous equations can be used to determine 0 1, , nλ λ −…  iteratively, even if our 
calibration inputs are the defaults probabilities at the single date T .  
 
Assume for the moment that the intensities 0 1, , nλ λ −…  are known, positive and distinct39. To 
solve the forward equations, we assume that the default probabilities can be written as 

                                                 
39 Due to the last assumption, the described calibration approach is not highly regarded by 
numerical analysts (see Moler and Van Loan (2003) for a discussion). However, it is well 
suited in our case studies. 



29 

,
0

( , ) i

k
t

k i
i

p t k a e λ−

=

= ∑  for 0 t T≤ ≤  and 0, , 1k n= −… 40. Set 0,0 1a = , the recurrence equations 

1
, 1,
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k i k i
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−
 for 0,1, , 1i k= −… , 1, , 1k n= −…  and 

1

, ,
0

k

k k k i
i

a a
−

=

= −∑ . Then, we check 

easily that, if satisfied, these equations provide some solutions of the forward PDE. Since it is 
well-known that these solutions are unique, it means we have obtained explicitly the solution 
of the forward PDE, knowing the intensities 1,...,( )k k nλ = .  
 
Therefore, using (0, ) 0p k =  and TTp /))0,(ln(0 −=λ , we can compute iteratively 1 1, , nλ λ −…  

by solving the univariate non linear implicit equations ,
0
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k
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k i
i
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0 1
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∑ , 1, , 1k n= −… . 

It can be seen easily that for any { }0, , 1k n∈ −… , ( , )p T k  is a decreasing function of kλ , 

taking value 1
0

( , 1)
T

k p s k dsλ − −∫  for 0kλ =  and with a limit equal to zero as kλ  tends to 

infinity. In other words, the previous kλ  equations have a unique solution provided that: 
1

1 1,
0

1( , )
iTk

k k i
i i

ep T k a
λ

λ
λ

−−

− −
=

⎛ ⎞⎛ ⎞−
< × ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  for 1, , 1k n= −… . Note that, in practice, all the 

intensities kλ will be different (almost surely). Thus, starting from the −T default 
probabilities only, we have found the explicit solutions of the forward equations and the 
intensities 1,...,( )k k nλ =  that would be consistent with these probabilities.  
 
Appendix D: tree computations for different recovery rates 
 
Given a recovery rate of R , the (fractional) loss at time t  on the credit portfolio is such that 

( )( ) (1 ) N tL t R
n

= − . The mapping: 

 ( ) [ ] [ ] ( ) ( ) ( )
1

(1 ), 0, 0,1 , min , ( ) min , ,
n

Q

m

m Rt k T EL t k E k L t k p t m
n=

−⎛ ⎞⎡ ⎤∈ × → = = ⎜ ⎟⎣ ⎦ ⎝ ⎠
∑� � � �  is known 

as the “loss surface”. We can compute the probabilities of number of defaults from the 
( ),EL t k� . It can be quickly checked that the probabilities of number of defaults are given by: 

                                                 
40 Since 0nλ = , ( , )p t n  takes a slightly different form. Its detailed expression is useless here 
since we only need to deal with ( ,0), ( , 1)p t p t n −…  to calibrate 0 1, , nλ λ −… . Let us also 

remark that ( , )p t n  can equally be recovered from 1
0

( , ) ( , 1)
t

np t n p s n dsλ −= −∫  or from 

0
( , ) 1

n

k
p t k

=

=∑ . 
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( ) ( ) ( ) ( ) ( )1 1 1 1 1
( , ) , 2 , ,

1
k R k R k Rnp t k EL t EL t EL t

R n n n
⎛ ⎞− × − × − + × −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= × − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
, 

for 1, , 1k n= −…  and ( ) ( )1( , ) ,1 , 1
1

n np t n EL t R EL t R
R n

−⎛ ⎞⎛ ⎞= × − − × −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
. Eventually, 

( ,0)p t  is obtained from 
0

( , ) 1
n

k
p t k

=

=∑ . This provides the dependence of probabilities of 

number of defaults with respect to the recovery rate R . 
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