

Hedging Demand Deposits Interest Rate Margins

Risk Management and Financial Crisis Forum March 19th 2009.

Mohamed HOUKARI

mohamed.houkari@bnpparibas.com

Alexandre ADAM, BNP Paribas Asset and Liability Management

Mohamed HOUKARI, ISFA, Université de Lyon, Université Lyon 1 and BNP Paribas ALM

Jean-Paul LAURENT, ISFA, Université de Lyon, Université Lyon 1

PRESENTATION OUTLOOK

Modeling Framework, Objective and Optimal Strategy

Empirical Results

Conclusions

Demand Deposit Interest Rate Margin – Definition

Demand Deposit Interest Rate Margin for a given quarter:

 Income generated by the investment of Demand Deposit Amount on interbank markets while paying a deposit rate to customers

Risks in Interest Rate Margins:

- □ Interest Rate Risk:
 - 1. Investment on interbank markets
 - 2. Paying an interest rate to customers (possibly correlated to market rates)
 - 3. Demand Deposit amount is subject to transfer effects from customers, due to market rate variations
- □ Non hedgeable Risk Factors on the Deposit Amount:
 - **Business Risk**: Competition between banks, customer behavior independent from market conditions, etc.
 - Model Risk

r,e

Setting the Objective

Interest Rate Margin
$$IRM_g(K_T, L_T) = K_T(L_T - g(L_T)) \cdot \Delta T$$

Deposit Amount at T

Investment Market Rate during time interval $[T, T + \Delta T]$

Customer rate at T

Mean-variance framework:

□ Including a return constraint – due to the interest rate risk premium

$$\min_{S} \mathbf{E} \Big[\mathit{IRM}_{g} \left(K_{T}, L_{T} \right) - S \Big]^{2} \text{ under constraint } \quad \mathbf{E} \Big[\mathit{IRM}_{g} \left(K_{T}, L_{T} \right) - S \Big] \ge r$$

Dynamics for Market Rate $L_t = L(t, T, T + \Delta T)$

Libor Market Model for Investment Market Rate

$$\frac{dL_t}{L_t} = \mu_L dt + \sigma_L dW_L(t)$$
 Ex.: Brace, Gatarek, Musiela (1997)
$$\mu_L \neq 0$$
 Long-Term Investment Risk Premium

Coefficient specification assumptions:

 \square Our model: μ_L , σ_L constant

(and can be easily extended to time-dependent framework)

Deposit Amount Dynamics

Diffusion process for Deposit Amount

$$dK_{t} = K_{t} \left[\mu_{K} dt + \sigma_{K} d \overline{W_{K}}(t) \right]$$

- Sensitivity of deposit amount to market rates
 - Money transfers between deposits and other accounts
- Interest Rate partial contingence.
 - Business risk, ...
 - Incomplete market framework

$$d\overline{W}_K(t) = \rho dW_L(t) + \sqrt{1 - \rho^2} dW_K(t)$$

$$-1 < \rho < 0$$

Deposit Amount Dynamics – Examples

$$dK_{t} = K_{t} \left(\mu_{K} dt + \sigma_{K} d\overline{W}_{K}(t) \right)$$

- We assume the customer rate to be a function of the market rate.
 - □ Affine in general (US) / Sometimes more complex (Japan)

$$g(L_T) = \alpha + \beta \cdot L_T$$

United States

Sets of Hedging Strategies

□ 1st case: Investment in FRAs contracted at *t*=0

$$H_{S1} = \left\{ S = \theta \left(L_T - L_0 \right); \ \theta \in \mathbf{R} \right\}$$

 2nd case: Dynamic self-financed strategies taking into account the evolution of market rates only

$$H_{S2} = \left\{ S = \int_{0}^{T} \theta_{t}^{L} dL_{t}; \ \theta^{L} \in \Theta^{L} \right\}$$

$$Set of admissible investment strategies adapted to FWL$$

3rd case: Dynamic strategies taking into account the evolution of the deposit amount

$$H_D = \left\{ S = \int_0^T \theta_t dL_t \; ; \; \theta \in \Theta \right\}$$
 Set of admissible investment strategies adapted to $F^{W_L} \vee F^{W_K}$

• 'Admissible strategies' are such that each of the sets above are closed

Variance-Minimal Measure

- Martingale Minimal Measure / Variance Minimal Measure
 - □ Martingale Minimal Measure: $\frac{d\overline{\mathbf{P}}}{d\mathbf{P}} = \exp\left(-\frac{1}{2}\int_{0}^{T}\lambda^{2}dt \int_{0}^{T}\lambda dW_{L}(t)\right)$
 - Föllmer, Schweizer (1990)
 - In 'almost complete models', it coincides with the variance minimal measure: $\overline{\mathbf{P}} \in \mathbf{Arg} \min_{\mathbf{Q} \in \Pi_{RN}} \mathbf{E}^{\mathbf{P}} \left\lceil \frac{d\mathbf{Q}}{d\mathbf{P}} \right\rceil^2$
 - Delbaen, Schachermayer (1996)
 - □ N.B.: In our case, the Variance Minimal Measure density is a power function of the Libor rate. $\sqrt{\mathbf{p}} \quad (\mathbf{I} \quad)^{-\frac{\lambda}{\sigma_I}} \quad (\mathbf{I} \quad)^{-\frac{\lambda}{\sigma_I}}$

$$\frac{d\overline{\mathbf{P}}}{d\mathbf{P}} = \left(\frac{L_T}{L_0}\right)^{-\frac{\lambda}{\sigma_L}} \exp\left(\frac{1}{2}(\lambda^2 - \lambda\sigma_L)T\right)$$

Optimal Dynamic Hedging Strategy – Case #2

■ In Case #2, we determine:

$$\min_{\theta \in \Theta^{L}} \mathbf{E}^{\mathbf{P}} \left[IRM_{g} \left(K_{T}, L_{T} \right) - \int_{0}^{T} \theta_{t} dL_{t} \right]^{2}$$

The projection theorem applies

- □ Delbaen, Monat, Schachermayer, Schweizer, Stricker (1997)
- $_{\square}$ In case #2, the solution consists in replicating $\,arphi^{S2}(L_{\!T})\,$

where
$$\varphi^{S2}(x) = \mathbf{E}^{\mathbf{P}} \left[IRM_g(K_T, L_T) | L_T = x \right] - \mathbf{E}^{\overline{\mathbf{P}}} \left[IRM_g(K_T, L_T) \right]$$

- This payoff can be replicated on interest rate markets.
 - $\,\,\,\,\,\,\,$ This is a function of $L_{\!\scriptscriptstyle T}$

- We recall the related problem: $\min_{\theta \in \Theta} \mathbf{E}^{\mathbf{P}} \left[IRM_g(K_T, L_T) \int_0^T \theta_t dL_t \right]^2$
- The solution is dynamically determined as follows:

$$\theta_{t}^{**} = \frac{\partial \mathbf{E}_{t}^{\overline{\mathbf{P}}} \big[\mathit{IRM} \big(K_{T}, L_{T} \big) \big]}{\partial L_{t}} + \frac{\lambda}{\sigma_{L} L_{t}} \Big[\mathbf{E}_{t}^{\overline{\mathbf{P}}} \big[\mathit{IRM}_{g} \big(K_{T}, L_{T} \big) \big] - V_{t} \big(x^{**}, \theta^{**} \big) \Big]$$

$$Delta term + \underbrace{\frac{\mathit{Hedging}}{\mathit{Num\'eraire}}}_{Num\'eraire} \times \underbrace{\frac{\mathit{Feedback term}}{\mathit{Shift between the RN anticipation of the margin}}_{\mathit{margin} and the present value of the hedging portfolio}}$$

Investment in some *Elementary Portfolio* which verifies

This portfolio aims at some fixed return while minimizing the final quadratic dispersion.

$$\mathbf{E}^{\mathbf{P}} \left[\int_{0}^{T} \frac{\lambda}{\sigma_{L} L_{t}} dL_{t} - (-1) \right]^{2} = \min_{\theta \in \Theta} \mathbf{E}^{\mathbf{P}} \left[\int_{0}^{T} \theta_{t} dL_{t} - (-1) \right]^{2}$$

Optimal Dynamic Hedging Strategy – Some Remarks

- Case of No Deposit Rate: $g(L_T) = 0$
 - □ Explicit solution (Duffie and Richardson (1991)):

$$\mathbf{E}_{t}^{\overline{\mathbf{P}}} \left[IRM_{g}(K_{T}, L_{T}) \right] = K_{t}L_{t} \exp\left[(T - t)(\mu_{K} - \rho\sigma_{K}\lambda + \rho\sigma_{K}\sigma_{L}) \right]$$

$$\frac{\partial \mathbf{E}_{t}^{\overline{\mathbf{P}}} \left[IRM_{g}(K_{T}, L_{T}) \right]}{\partial L_{t}} = \left(1 + \frac{\rho\sigma_{K}}{\sigma_{L}} \right) K_{t} \exp\left[(T - t)(\mu_{K} - \rho\sigma_{K}\lambda + \rho\sigma_{K}\sigma_{L}) \right]$$

- The model works for 'almost complete models'
 - □ The Hedging Numéraire remains the following:

$$HN_{t} = 1 + \int_{0}^{t} \frac{\lambda}{\sigma_{L} L_{t}} dL_{t} \quad \text{or} \quad \mathbf{E}^{\mathbf{P}} \left[\int_{0}^{T} \frac{\lambda}{\sigma_{L} L_{t}} dL_{t} - (-1) \right]^{2} = \min_{\theta \in \Theta} \mathbf{E}^{\mathbf{P}} \left[\int_{0}^{T} \theta_{t} dL_{t} - (-1) \right]^{2}$$

PRESENTATION OUTLOOK

Modeling Framework, Objective and Optimal Strategy

Empirical Results

Conclusions

Comparing Strategies in Mean-Variance Framework

Efficient Frontiers

- Dynamic Efficient Frontier vs. Other Strategies at minimum variance point
- More discrepancies between strategies when the deposit rate escapes from linearity

Blue: Unhedged Margin

Red: Optimal Dynamic Strategy following only market

rates

Green: Delta-Hedging at *t=0* only Purple: Dynamic Delta-Hedging

■ The performances of other hedging strategies strongly depend upon the specification of the deposit rate.

Dealing with Deposits' 'Specific' Risk

- Comparing the optimal dynamic strategy following only market rates (blue) and the optimal dynamic strategy following both rates and deposits (pink):
 - ☐ At minimum variance point (*risk minimization*)
- As expected, the deposits' 'specific' risk is better assessed using a dynamic strategy following both rates and the deposit amount

- The mean-variance optimal dynamic strategy (following deposits and rates) behaves quite well under other risk criteria
 - □ Example of Expected Shortfall (99.5%) and VaR (99.95%).

Barrier Deposit Rate	Expected Return	Standard Deviation		ES (99.5%)		VaR (99.95%)	
		Level	Risk Reduction	Level	Risk Reduction	Level	Risk Reduction
Unhedged Margin	3.16	0.39		-2.02		-1.90	
Static Hedge Case 1	3.04	0.28	-0.11	-2.34	-0.32	-2.26	-0.36
Static Hedge Case 2	3.01	0.23	-0.16	-2.26	-0.24	-2.04	-0.14
Jarrow and van Deventer	3.01	0.24	-0.15	-2.35	-0.33	-2.25	-0.35
Optimal Dynamic Hedge	3.01	0.22	-0.17	-2.38	-0.36	-2.29	-0.39

- The optimal dynamic strategy features better tail distribution than for other strategies
 - Blue: Optimal Dynamic Strategy (following rates)
 - □ Pink: Optimal Dynamic Strategy (following both deposits and rates)

Dealing with Massive Bank Run

Introducing a Poisson Jump component in the deposit amount:

$$dK_t = K_t \Big[\mu_K dt + \sigma_K d\overline{W_K}(t) - dN(t) \Big]$$

$$(N(t))_{0 \le t \le T} \text{ is assumed to be independent from } W_K \text{ and } W_I$$

Then, we have: $\theta_t^{**} = \frac{\partial \mathbf{E}_t^{\overline{\mathbf{P}}} \left[IRM(K_T, L_T) \right]}{\partial L_t} + \frac{\lambda}{\sigma_L L_t} \left[\mathbf{E}_t^{\overline{\mathbf{P}}} \left[IRM_g(K_T, L_T) \right] - V_t(x^{**}, \theta^{**}) \right]$

$$\mathbf{E}_{t}^{\mathbf{\bar{P}}}\left[\mathit{IRM}_{g}\left(K_{T},L_{T}\right)\right] = e^{-\gamma(T-t)} \times (\mathit{Previous conditional expectation term})$$

- Due to independence, the jump element can be put out the conditional expectations
- N.B.: When a bank run occurs, the manager keeps investing the current hedging portfolio's value in the Hedging Numéraire

PRESENTATION OUTLOOK

Modeling Framework, Objective and Optimal Strategy

Empirical Results

Conclusions

Conclusions (1)

A dynamic strategy to assess risk in mean-variance framework

 Results about Mean-variance hedging in incomplete markets yield explicit dynamic hedging strategies

Practical Conclusions:

- Better assessment of deposits' 'specific' risk with a dynamic strategy taking into account both deposits and rates;
- □ Lack of stability for other strategies towards the deposit rate's specification;
- Robustness towards risk criterion
- □ No negative consequences as for tail distribution
- □ Additivity of Optimal Dynamic Strategies
 - Applicable to various balance sheet items

Conclusions (2)

- We use some mathematical finance concepts:
 - □ For Financial Engineering problems
 - □ with the aim of providing applicable strategies
 - □ And improve risk management processes

Technical References

- Duffie, D., Richardson, H. R., 1991. Mean-variance hedging in continuous time.
 Annals of Applied Probability 1(1).
- □ Gouriéroux, C., Laurent, J.-P., Pham, H., 1998. *Mean-variance hedging and numéraire*. Mathematical Finance 8(3).
- □ Hutchison, D., Pennacchi, G., 1996. Measuring Rents and Interest Rate Risk in Imperfect Financial Markets: The Case of Retail Bank Deposits. Journal of Financial and Quantitative Analysis 31(3).
- □ Jarrow, R., van Deventer, D., 1998. The arbitrage-free valuation and hedging of demand deposits and credit card loans. Journal of Banking and Finance 22.
- O'Brien, J., 2000. Estimating the value and interest risk of interest-bearing transactions deposits. Division of Research and Statistics / Board of Governors / Federal Reserve System.