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Demand Deposit Interest Rate Margin — Definition

m Demand Deposit Interest Rate Margin for a given quarter:

Income generated by the investment of Demand Deposit Amount on
iInterbank markets while paying a deposit rate to customers

m Risks in Interest Rate Margins:

Interest Rate Risk:
m 1. Investment on interbank markets
m 2. Paying an interest rate to customers (possibly correlated to market rates)
m 3. Demand Deposit amount is subject to transfer effects from customers, due
to market rate variations
Non hedgeable Risk Factors on the Deposit Amount:
m Business Risk: Competition between banks, customer behavior
independent from market conditions, etc.

m Model Risk
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Setting the Objective

Interest Rate Margin  IRM _ (KT Ly )

KT (LT - g(LT )) AT
\

Deposit Amountat T <

Investment Market Rate during
time interval [T, T+AT]

Customerrateat T <

m Mean-variance framework:
Including a return constraint — due to the interest rate risk premium

msin E[|R|\/| ] (KT - )— 5]2 under constraint E“Rl\/l : (KT L. )— SJZ r
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Dynamics for Market Rate L, = L(t,T,T +AT)

m Libor Market Model for Investment Market Rate

d
—L‘ = u dt+o, dW, (t) Ex.: Brace, Gatarek, Musiela (1997)

‘ U F O Long-Term Investment Risk Premium

m Coefficient specification assumptions:

Our model: 4,0 constant

(and can be easily extended to time-dependent framework)
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Deposit Amount Dynamics

m Diffusion process for Deposit Amount

dK, =K, [,uK dt + O'KdVV_K(t)]

(US marketplace)
Sensitivity of deposit amount to
market rates
= Money transfers between deposits / \
and other accounts
Interest Rate partial contingence. /
. . 540 —~
| BUSW]ESS ”Sk, e 520 — US Demand Deposit Amount
= Incomplete market framework
\_ § R 38 8382 838;538;28382838;25:¢3
> AN _ 2
dW, (t)= pdW_(t)++1- p?dW, (t) [-1<p<0
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EuroZone — u, =10.19%, 0, =6.56%

—Euro Overnight Deposits
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Modeling Deposit Rate — Examples

m We assume the customer rate to be a function of the market rate.
Affine in general (US) / Sometimes more complex (Japan)

g(LT):OH'IB'LT

9Ly )=(a+ 4L, )AL, >R

United States Japan
3.00% T T T T T
2 Own Rate : : : : : 019 ’
‘ ‘ ‘ ‘ ‘ ¢ ——JPY Libor 3M
250% | — — — R SR 0,8
| | | | | — = Japanese M2 Own Rate /
| | | | | ‘ 017 ¥ A
| | | | \.0
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e o | e 06
Affine Dependance ‘ A | N
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Sets of Hedging Strategies

1st case: Investment in FRAs contracted at t=0

H,={S=6(L -L,); 6 R}

-
(@]
o
= 2nd case: Dynamic self-financed strategies taking into account the
2 evolution of market rates only
= .
: _ _ L . oL L
s, =15 = jet dl,; 0" € @l) _ Set of admissible investment
: ° ’ strategies adapted to F '
-
g 3rd case: Dynamic strategies taking into account the evolution of the
- .
5 deposit amount
3 T
o
=1 H D — S = IetdL‘ , 00 . Set of admissible investment
: 0

strategies adapted to F'"+ v F"'

e ‘Admissible strategies’ are such that each of the sets above are closed
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Variance-Minimal Measure

m Martingale Minimal Measure / Variance Minimal Measure

. - dP 1 I
Martingale Minimal Measure: (ﬂD:exp(—zjﬁzdt—fidWL(t)}
0 0
m Follmer, Schweizer (1990)

In ‘almost complete models’, it coincides with the variance minimal

measure: [dQT

P € Arg min E”
dP

QEHRN

m Delbaen, Schachermayer (1996)

N.B.: In our case, the Variance Minimal Measure density is a power
function of the Libor rate. e [ A

Lo (1.,
Lo) exp(g(;t —/IGL)Tj
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Optimal Dynamic Hedging Strategy — Case #2

A in EP
m In Case #2, we determine: E {IRM KT,L J‘QdL[

m The projection theorem applies
Delbaen, Monat, Schachermayer, Schweizer, Stricker (1997)

In case #2, the solution consists in replicating (DSZ(L )
where @°° EP[IRI\/I KT,L L —X] EP[|R|V| KT,LT)]

This payoff can be replicated on interest rate markets.

This is a function of LT
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Optimal Dynamic Hedging Strategy — Case #3
T 2
= We recall the related problem: i EP{IRM (KT,LT)—_[Qtst}

0
m The solution is dynamically determined as follows:

« _OE7[IRM (K, Ly )]

2« ** **
0, o [EP[IRM (Ko L)V (7, 67)]

L

\_ o\ NG /

' Y
Hedging
Deltaterm  + - Feedback term
N Numeralrej - Shift between the RN anticipation of the

margin and the present value of the
hedging portfolio
Investment in some Elementary Portfolio which verifies

This portfolio aims at some fixed return 1 A : % :
P . P
while minimizing the final quadratic E j — st - (_ 1) = rp'(g] E j thLt - (_ 1)
dispersion. 019L L, < 0
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Optimal Dynamic Hedging Strategy — Some Remarks

= Case of No Deposit Rate: g(L;)=0

Explicit solution (Duffie and Richardson (1991)):
EF[IRMQ(KT Ly ) =KL exp[(T _t)(,uK _PUKﬂ*"‘PO'KUL)]

ceffiRm, (<L) () oo
oL,

jKt expl(T Nt - por i+ poror, |

o,

m The model works for ‘almost complete models’
The Hedging Numeéraire remains the following:

dl,| or EPH f“L[ dL, —(—1)}2 = min EPHQtdL‘ —(—1)}

O

2

HNt:1+j 4

2oL
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Comparing Strategies in Mean-Variance Framework

m Efficient Frontiers
Dynamic Efficient Frontier vs. Other Strategies at minimum variance point
More discrepancies between strategies when the deposit rate escapes from linearity

Mean-Variance Framework - Barrier Deposit Rate Mean-Variance Framework - No Deposit Rate

Barrier Threshold = 3,00% - L(0) = 2,50%

Deposit Rate = a. L(T) + b if L(T) > Threshold; a = 30% ; b = -0,50% 3,45
3,20 3,40
= 3,35 | O

w

w

o
.

3,15 /
6 315 /
3,00 1 '
* 3,10 Xy

2,95 w w w w w w w w w 3,05 \ \ \ \ T T T T T
0,20 0,22 0,24 0,26 0,28 0,30 0,32 0,34 0,36 0,38 0,40 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65

Expected Return

w w

o =

a1 o
Expected Return
w w
N N
o 3

Standard Deviation Standard Deviation
Blue: Unhedged Margin Green: Delta-Hedging at t=0 only
Red: Optimal Dynamic Strategy following only market Purple: Dynamic Delta-Hedging
rates

m The performances of other hedging strategies strongly depend upon the
specification of the deposit rate.
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" J
Dealing with Deposits’ ‘Specific’ Risk

m Comparing the optimal dynamic strategy following only market rates
(blue) and the optimal dynamic strategy following both rates and

deposits (pink):

At minimum variance point (risk minimization)

m  As expected, the deposits’ ‘specific’ risk is better assessed using a dynamic
strategy following both rates and the deposit amount

Hedged Margin Standard Deviation
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Robustness towards Risk Criterion

m The mean-variance optimal dynamic strategy (following deposits and
rates) behaves quite well under other risk criteria

Example of Expected Shortfall (99.5%) and VaR (99.95%).

. ES VaR
_ _ Standard Deviation (99.5%) (99.95%)
Barrier Deposit Rate Expected Return
Level Risk Reduction Level Risk Reduction Level Risk Reduction

Unhedged Margin 3.16 0.39 -2.02 -1.90

Static Hedge Case 1 3.04 0.28 -0.11 -2.34 -0.32 -2.26 -0.36

Static Hedge Case 2 3.01 0.23 -0.16 -2.26 -0.24 -2.04 -0.14

Jarrow and van Deventer 3.01 0.24 -0.15 -2.35 -0.33 -2.25 -0.35

Optimal Dynamic Hedge 3.01 0.22 -0.17 -2.38 -0.36 -2.29 -0.39

. . ) ) ProbabilitypensitiesA )

. Th e O ptl m al d y n am I C St rateg y Hedging Following Rates vs. Hedging Following Deposits and Rates
features better tail distribution than o | e —— R
for other strategies R [\

Blue: Optimal Dynamic Strategy T R e Bt A N
(following rates) A A 7 R N
Pink: Optimal Dynamic Strategy w |
(following both deposits and rates) o2 |1

0,50 1,0‘0 1,5‘0 2,(;0 2,56 3,(;0 3,56 4,(;0 4,56 5,00
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Dealing with Massive Bank Run

m Introducing a Poisson Jump component in the deposit amount:
dK, = K, | dt + o, W, (t)— dN (2)

(N (t))o -7 IS assumed to be independent from W, and W

GET[IRM (K, ,L: )] 4 [-5 -
o +0Lh[Et [IRM (K, Ly )]~V (x™,07))

E [lRM (KoL )] = e/ x (Previous conditional expectation term)

m Then, we have: § =

Due to independence, the jump element can be put out the conditional
expectations

m N.B.. When a bank run occurs, the manager keeps investing the
current hedging portfolio’s value in the Hedging Numéraire
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Conclusions (1)

m A dynamic strategy to assess risk in mean-variance framework

Results about Mean-variance hedging in incomplete markets yield explicit
dynamic hedging strategies

m Practical Conclusions:

Better assessment of deposits’ ‘specific’ risk with a dynamic strategy taking
Into account both deposits and rates;

Lack of stability for other strategies towards the deposit rate’s specification;
Robustness towards risk criterion
NO negative consequences as for tail distribution

Additivity of Optimal Dynamic Strategies

m Applicable to various balance sheet items
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Conclusions (2)

m We use some mathematical finance concepts:
For Financial Engineering problems
with the aim of providing applicable strategies

And improve risk management processes
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