

Credit Correlation Modelling Comparative analysis of CDO pricing models

Global Derivatives 2005 24 May 2005

Jean-Paul Laurent
Professor, ISFA Actuarial School, University of Lyon
Scientific consultant, BNP-Paribas
laurent.jeanpaul@free.fr, http://laurent.jeanpaul.free.fr

Joint work with X. Burtschell and J. Gregory (BNP-Paribas)

A comparative analysis of CDO pricing models available on www.defaultrisk.com

1

Comparative analysis of CDO pricing models

- Purpose of the presentation
 - Some insights about current issues in CDO modelling
 - Gaussian copula
 - One factor Gaussian copula
 - Ordering of risks
 - Correlation sensitivities and Gaussian extensions
 - Model dependence/Choice of copula
 - Student t, double t, Clayton, Marshall-Olkin, Stochastic correlation
 - Calibration issues
 - · Distribution of conditional default probabilities
 - Matching the correlation skew
 - Further issues

2

Comparative analysis of CDO pricing models

- Agenda
 - Conditional default probabilities and pricing of CDOs
 - One factor Gaussian copula
 - Dependence to the correlation parameter
 - Gaussian extensions, correlation sensitivities
 - Model dependence/Choice of copula
 - Student t, double t, Clayton, Marshall-Olkin, Stochastic correlation
 - Calibration
 - Empirical results
 - Matching the correlation skew

Semi explicit pricing, conditional default probabilities

- Factor approaches to joint default times distributions:
 - V: low dimensional factor
 - · Conditionally on V, default times are independent.
 - Conditional default and survival probabilities:

$$p_t^{i\mid V} = Q\left(\tau_i \le t\mid V\right), \quad q_t^{i\mid V} = Q\left(\tau_i > t\mid V\right).$$

- Why factor models ?
 - Tackle with large dimensions (125 names in I-TRAXX)
- Need tractable dependence between defaults:
 - Parsimonious modelling
 - Semi-explicit computations for CDO tranches

4

Semi explicit pricing, conditional default probabilities

- Semi-explicit pricing for CDO tranches
 - Laurent & Gregory [2003]
 - Default payments are based on the accumulated losses on the pool of credits:

$$L(t) = \sum_{i=1}^{n} LGD_{i} \mathbf{1}_{\left\{\tau_{i} \leq t\right\}}, \ LGD_{i} = N_{i} (1 - \delta_{i})$$

 Tranche premiums only involves call options on the accumulated losses

$$E\left[\left(L(t)-K\right)^{+}\right]$$

•

Semi explicit pricing, conditional default probabilities

- Characteristic function: $\varphi_{L(t)}(u) = E\left[e^{iuL(t)}\right]$
 - By conditioning upon V and using conditional independence:

$$\varphi_{L(t)}(u) = E \left[\prod_{1 \le j \le n} \left(1 - p_t^{j|V} + p_t^{j|V} \varphi_{1-\delta_j}(uN_j) \right) \right]$$

- Distribution of L(t) can be obtained by FFT
 - Or other inversion technique
- Only need of conditional (on factor) probabilities $p_i^{i|v}$

Semi explicit pricing, conditional default probabilities

- One factor Gaussian copula:
 - $V, \bar{V}_i, i = 1, ..., n$ independent Gaussian,

$$V_i = \rho_i V + \sqrt{1 - \rho_i^2} \bar{V}_i$$

- Default times: $\tau_i = F_i^{-1}(\Phi(V_i))$
- F; marginal distribution function of default times
- Conditional default probabilities:

$$p_t^{i|V} = \Phi\left(\frac{-\rho_i V + \Phi^{-1}(F_i(t))}{\sqrt{1-\rho_i^2}}\right)$$

,

One factor	Gaussian	copula

- CDO margins (bps pa)
 - With respect to correlation
 - Gaussian copula
 - Attachment points: 3%, 10%
 - 100 names
 - Unit nominal
 - Credit spreads 100 bp
 - 5 years maturity

	equity	mezzanine	senior
0%	5341	560	0.03
10%	3779	632	4.6
30%	2298	612	20
50%	1491	539	36
70%	937	443	52
100%	167	167	91

One factor Gaussian copula

- Equity tranche premiums are decreasing wrt ρ
 - General result?
 - Supermodular function f is such that:

$$f: \mathbb{R}^n \to \mathbb{R} \qquad \Delta_i^{\varepsilon} f(x) = f(x + \varepsilon e_i) - f(x)$$
$$\forall x \in \mathbb{R}^n, \forall \varepsilon, \delta > 0 \qquad \Delta_i^{\varepsilon} \Delta_j^{\delta} f(x) \ge 0$$

• Supermodular order (increase in dependence)

$$X = (X_1, \dots, X_n)$$
 $Y = (Y_1, \dots, Y_n)$

 $X \leq_{\text{sm}} Y \iff E[f(X)] \leq E[f(Y)], \forall f \text{ supermodular}$

9

One factor Gaussian copula

- « Supermodular » order of Gaussian vectors
 - Let X and Y be Gaussian vectors with zero mean

$$\boldsymbol{\Sigma}^{\boldsymbol{X}} = \begin{pmatrix} 1 & \sigma_{12}^{\boldsymbol{X}} & & & \\ \sigma_{21}^{\boldsymbol{X}} & 1 & & & \\ & & 1 & \sigma_{\boldsymbol{y}}^{\boldsymbol{X}} & \\ & & 1 & & \\ & & \sigma_{\boldsymbol{y}}^{\boldsymbol{X}} & 1 & \\ & & & & 1 \end{pmatrix} \quad \boldsymbol{\Sigma}^{\boldsymbol{Y}} = \begin{pmatrix} 1 & \sigma_{12}^{\boldsymbol{Y}} & & & \\ \sigma_{21}^{\boldsymbol{Y}} & 1 & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & \sigma_{\boldsymbol{y}}^{\boldsymbol{Y}} & 1 & \\ & & & \sigma_{\boldsymbol{y}}^{\boldsymbol{Y}} & 1 & \\ & & & & \boldsymbol{\Sigma}^{\boldsymbol{Y}} & \boldsymbol{\Sigma}^{\boldsymbol{Y}} & \boldsymbol{\Sigma}^{\boldsymbol{Y}} & \boldsymbol{\Sigma}^{\boldsymbol{Y}} \end{pmatrix}$$

■ Müller & Scarsini (2000), Müller (2001)

$$\Sigma^X \leq \Sigma^Y \iff X \leq_{\mathrm{sm}} Y$$

One factor Gaussian copula

- « Stop-Loss » order
 - Accumulated losses: L(t), L'(t)

$L(t) \leq_{\text{sl}} L'(t) \stackrel{\text{def}}{\Leftrightarrow} E\left[\left(L(t) - K\right)^{+}\right] \leq E\left[\left(L'(t) - K\right)^{+}\right], \forall K \geq 0$

- Supermodular order of latent variables implies stop-loss order of accumulated losses
- Thus, equity tranche premium is <u>always</u> decreasing with
- Guarantees uniqueness of « base correlation »
- Monotonicity properties extend to Student t, Clayton (Wei & Hu [2002]) and Marshall-Olkin copulas

One factor Gaussian copula

- Second issue
 - Equity tranche premium decrease with correlation
 - Does $\rho = 100\%$ correspond to some lower bound?
 - $\rho = 100\%$ corresponds to « comonotonic » default dates:

(τ_1, \dots, τ_n) comonotonic $\Leftrightarrow (\tau_1, \dots, \tau_n) \stackrel{d}{=} (F_1^{-1}(U), \dots, F_n^{-1}(U))$

where U is uniform

$$(\tau_1,...,\tau_n) \leq_{\text{sm}} (F_1^{-1}(U),...,F_n^{-1}(U))$$

- Tchen (1980)
- $\rho = 100\%$ is a <u>model free</u> lower bound for the equity tranche premium

One factor Gaussian copula

- Third issue
 - Does $\rho = 0\%$ corresponds to the higher bound on the equity tranche premium?
 - $\rho = 0\%$ corresponds to the independence case between default dates
 - The answer is no, negative dependence can occur
 - Base correlation does not always exists
 - · Even in Gaussian copula models
 - Factor models are usually associated with positive dependence
 - . i.e. independent default dates are smaller with respect to supermodular order

One factor Gaussian copula

- Gaussian extensions
 - Pairwise correlation sensitivities

- Intra and intersector correlations
- In the core of correlation, Gregory & Laurent, Risk october 2004

Model dependence / choice of copula

- Stochastic corrrelation copula
 - $V, \bar{V}_i, i = 1, ..., n$ independent Gaussian variables
 - $B_i = 1$ correlation ρ , $B_i = 0$ correlation β

$$V_i = B_i \left(\rho V + \sqrt{1 - \rho^2} \overline{V_i} \right) + \left(1 - B_i \right) \left(\beta V + \sqrt{1 - \beta^2} \overline{V_i} \right)$$

$$V_i = (B_i \rho + (1 - B_i) \beta) V + \sqrt{1 - (B_i \rho + (1 - B_i) \beta)^2} \overline{V}_i$$

$$\tau_i = F_i^{-1}(\Phi(V_i))$$

$$p_{i}^{i|V} = p\Phi\left(\frac{-\rho V + \Phi^{-1}(F_{i}(t))}{\sqrt{1-\rho^{2}}}\right) + (1-p)\Phi\left(\frac{-\beta V + \Phi^{-1}(F_{i}(t))}{\sqrt{1-\beta^{2}}}\right)$$

13

Model dependence / choice of copula

- Student t copula
 - Embrechts, Lindskog & McNeil, Greenberg et al, Mashal et al, O'Kane & Schloegl, Gilkes & Jobst

$$\begin{cases} X_{i} = \rho V + \sqrt{1 - \rho^{2}} \overline{V}_{i} \\ V_{i} = \sqrt{W} \times X_{i} \\ \tau_{i} = F_{i}^{-1} \left(t_{v} \left(V_{i} \right) \right) \end{cases}$$

- V, \overline{V}_i independent Gaussian variables
- $\frac{v}{w}$ follows a χ_v^2 distribution
- Conditional default probabilities (two factor model)

$$p_{t}^{i|V,W} = \Phi\left(\frac{-\rho V + W^{-1/2}t_{v}^{-1}(F_{i}(t))}{\sqrt{1-\rho^{2}}}\right)$$

Model dependence / choice of copula

- Clayton copula
 - Schönbucher & Schubert, Rogge & Schönbucher, Friend & Rogge,

$$V_i = \psi \left(-\frac{\ln U_i}{V} \right)$$
 $\tau_i = F_i^{-1} \left(V_i \right)$ $\psi(s) = \left(1 + s \right)^{-1/\theta}$

- Marshall-Olkin construction of archimedean copulas
- V: Gamma distribution with parameter θ
- $U_1, ..., U_n$ independent uniform variables
- Conditional default probabilities (one factor model)

$$p_{t}^{i|V} = \exp\left(V\left(1 - F_{i}(t)^{-\theta}\right)\right)$$

Model dependence / choice of copula

■ Double *t* model (Hull & White)

$$V_i = \rho_i \left(\frac{v-2}{v}\right)^{1/2} V + \sqrt{1-\rho_i^2} \left(\frac{\overline{v}-2}{\overline{v}}\right)^{1/2} \overline{V}_i$$

- $V, \overline{V_i}$ are independent Student t variables
 - with ν and $\overline{\nu}$ degrees of freedom

$$\tau_{i} = F_{i}^{-1} \left(H_{i} \left(V_{i} \right) \right)$$

■ where H_i is the distribution function of V_i

$$p_i^{ijV} = t_{\overline{v}} \left(\left(\frac{\overline{v}}{\overline{v} - 2} \right)^{1/2} \frac{H_i^{-1}(F_i(t)) - \rho_i \left(\frac{v - 2}{v} \right)^{1/2} V}{\sqrt{1 - \rho_i^2}} \right)^{1/2}$$

Model dependence / choice of copula

- Shock models (multivariate exponential copulas)
 - Duffie & Singleton, Giesecke, Elouerkhaoui, Lindskog & McNeil, Wong
- Modelling of default dates: $V_i = \min(V, \overline{V_i})$
 - V, \overline{V}_i exponential with parameters $\alpha, 1-\alpha$
 - Default dates $\tau_i = S_i^{-1} \left(\exp \min \left(V, \overline{V_i} \right) \right)$
 - S_i marginal survival function
 - Conditionally on V, τ_i are independent.
- Conditional default probabilities

 $q_t^{i|V} = 1_{V > -\ln S_i(t)} S_i(t)^{1-\alpha}$

19

Model dependence / choice of copula

- Calibration issues
 - One parameter copulas
 - Well suited for homogeneous portfolios
 - Dependence is « monotonic » in the parameter
- Calibration procedure
 - Fit Clayton, Student t, double t, Marshall Olkin parameters onto CDO equity tranches
 - Computed under one factor Gaussian model
 - · Or given market quotes on equity trances
 - Reprice mezzanine and senior CDO tranches
 - Given the previous parameters

20

Model dependence / choice of copula

- CDO margins (bps pa)
 - With respect to correlation
 - Gaussian copula
 - Attachment points: 3%, 10%
 - 100 names
 - Unit nominal
 - Credit spreads 100 bp
 - 5 years maturity

	equity	mezzanine	senior
0%	5341	560	0.03
10%	3779	632	4.6
30%	2298	612	20
50%	1491	539	36
70%	937	443	52
100%	167	167	91

CDO margins (bps pa)

- With respect to correlation
 - Gaussian copula
 - Attachment points: 3%, 10%
 - 100 names
 - Unit nominal
 - Credit spreads 100 bp
- 5 years maturity

		equity	mezzanine	senior
	0%	5341	560	0.03
%	10%	3779	632	4.6
	30%	2298	612	20
	50%	1491	539	36
	70%	937	443	52
	100%	167	167	91

Model dependence / choice of copula

ρ	0%	10%	30%	50%	70%	100%
θ	0	0.05	0.18	0.36	0.66	8
$ ho_6^2$			14%	39%	63%	100%
$ ho_{\scriptscriptstyle 12}^{\scriptscriptstyle 2}$			22%	45%	67%	100%
$\rho t(4)-t(4)$	0%	12%	34%	55%	73%	100%
$\rho t(5)-t(4)$	0%	13%	36%	56%	74%	100%
$\rho t(4)-t(5)$	0%	12%	34%	54%	73%	100%
$\rho t(3)-t(4)$	0%	10%	32%	53%	75%	100%
$\rho t(4)-t(3)$	0%	11%	33%	54%	73%	100%
α	0	28%	53%	69%	80%	100%

Table 5: correspondence between parameters

Model dependence / choice of copula

ρ	0%	10%	30%	50%	70%	100%
Gaussian	560	633	612	539	443	167
Clayton	560	637	628	560	464	167
Student (6)			637	550	447	167
Student (12)			621	543	445	167
t(4)-t(4)	560	527	435	369	313	167
t(5)-t(4)	560	545	454	385	323	167
t(4)-t(5)	560	538	451	385	326	167
t(3)-t(4)	560	495	397	339	316	167
t(4)-t(3)	560	508	406	342	291	167
MO	560	284	144	125	134	167

Table 6: mezzanine tranche (bps pa)

Model dependence / choice of copula

ρ	0%	10%	30%	50%	70%	100%
Gaussian	0.03	4.6	20	36	52	91
Clayton	0.03	4.0	18	33	50	91
Student (6)			17	34	51	91
Student (12)			19	35	52	91
t(4)-t(4)	0.03	11	30	45	60	91
t(5)-t(4)	0.03	10	29	45	59	91
t(4)-t(5)	0.03	10	29	44	59	91
t(3)-t(4)	0.03	12	32	47	71	91
t(4)-t(3)	0.03	12	32	47	61	91
MO	0.03	25	49	62	73	91

Table 7: senior tranche (bps pa)

Gaussian, Clayton and Student t CDO premiums are close

25

Model dependence / choice of copula

ρ	0%	10%	30%	50%	70%	100%
Gaussian	0%	0%	0%	0%	0%	100%
Clayton	0%	0%	2%	15%	35%	100%
Student (6)			5%	12%	25%	100%
Student (12)			1%	4%	13%	100%
t(4)-t(4)	0%	0%	1%	10%	48%	100%
t(5)-t(4)	0%	0%	0%	0%	0%	100%
t(4)-t(5)	0%	100%	100%	100%	100%	100%
t(3)-t(4)	0%	100%	100%	100%	100%	100%
t(4)-t(3)	0%	0%	0%	0%	0%	100%
MO	0%	28%	53%	69%	80%	100%

Table 8: coefficient of lower tail dependence (%)

Tail dependence is poorly related to CDO tranche premiums

26

Model dependence / choice of copula

ρ	0%	10%	30%	50%	70%	100%
Gaussian	0%	1%	6%	16%	33%	100%
Clayton	0%	3%	8%	15%	25%	100%
Student (6)			9%	25%	44%	100%
Student (12)			14%	30%	47%	100%
MO	0%	16%	36%	53%	67%	100%

Table 9: Kendall's τ (%)

Kendall's tau is poorly related to CDO tranche premiums

21

Model dependence / choice of copula

ρ^2	0%	10%	30%	50%	70%	100%
Gaussian	0.66%	0.91%	1.54%	2.41%	3.59%	8.1%
Clayton	0.66%	0.88%	1.45%	2.24%	3.31%	8.1%
Student (6)			1.41%	2.31%	3.52%	8.1%
Student (12)			1.49%	2.36%	3.56%	8.1%
t(4)-t(4)	0.66%	1.22%	2.38%	3.49%	4.67%	8.1%
t(5)-t(4)	0.66%	1.16%	2.27%	3.38%	4.57%	8.1%
t(4)-t(5)	0.66%	1.18%	2.28%	3.37%	4.54%	8.1%
t(3)-t(4)	0.66%	1.34%	2.57%	3.69%	5.02%	8.1%
t(4)-t(3)	0.66%	1.31%	2.55%	3.70%	4.87%	8.1%
MO	0.66%	2.63%	4.53%	5.65%	6.53%	8.1%

Table 13: bivariate default probabilities (5 year time horizon)

Bivariate default probabilities are well related to tranche premiums

Matching the correlation skew

Tranches	Market	Gaussian	Clayton	Student (12)	t(4)-t(4)	Stoch.	MO
[0-3%]	916	916	916	916	916	916	916
[3-6%]	101	163	163	164	82	122	14
[6-9%]	33	48	47	47	34	53	11
[9-12%]	16	17	16	15	22	29	11
[12-22%]	9	3	2	2	13	8	11

Table 17: CDO tranche premiums iTraxx (bps pa)

Tranches	Market	Gaussian	Clayton	Student (12)	t(4)-t(4)	Stoch.	MO
[0-3%]	916	916	916	916	916	916	916
[0-6%]	466	503	504	504	456	479	418
[0-9%]	311	339	339	340	305	327	272
[0-12%]	233	253	253	254	230	248	203
[0-22%]	128	135	135	135	128	135	113

Table 18: "equity tranche" CDO tranche premiums iTraxx (bps pa)

Conclusion

- Matching the skew with second generation models
 - RFL, stochastic correlation, double t
 - Conditional default probability distributions are the drivers
- Pricing bespoke portfolios, CDO squared with a consistent model
- Not yet fully satisfactory
 - Matching 5Y/10Y with same set of parameters
 - Stability of parameters through time
 - Dynamics of the correlation skew / risk management
 - Calibration of multiple parameters, possibly name dependent
- Still more work on the quant agenda.