Hedging Default and Credit Spread Risks within CDOs

Global Derivatives Trading & Risk Management
Paris
23 May 2007

Jean-Paul LAURENT
Professor, ISFA Actuarial School, University of Lyon,
Scientific consultant, BNP PARIBAS
http://laurent.jeanpaul.free.fr

Presentation related to papers
A note on the risk management of CDOs (2006)
Hedging default risks of CDOs in Markovian contagion models (2007)

Available on www.defaultrisk.com

Hedging Default and Credit Spread Risks within CDOs

Bullet points

- ➤ Hedging default and credit spread risks in contagion models
- ➤ Dealing with simultaneous defaults
- ➤ Hedging default and credit spread risks within intensity models
- ➤ Parallel and idiosyncratic Gammas

Purpose of the presentation

- ➤ Not trying to embrace all risk management issues
- Focus on very specific aspects of default and credit spread risk

Overlook of the presentation

- Economic background
- Tree approach to hedging defaults
- ➤ Hedging credit spread risks for large portfolios

- Hedging CDOs context
- About 1 000 papers on defaultrisk.com
- About 10 papers dedicated to hedging issues
 - In interest rate or equity markets, pricing is related to the cost of the hedge
 - In credit markets, pricing is disconnect from hedging
- Need to relate pricing and hedging
- What is the business model for CDOs?
- Risk management paradigms
 - Static hedging, risk-return arbitrage, complete markets

- Static hedging
- Buy a portfolio of credits, split it into tranches and sell the tranches to investors
 - ➤ No correlation or model risk for market makers
 - ➤ No need to dynamically hedge with CDS
- Only « budget constraint »:
 - > Sum of the tranche prices greater than portfolio of credits price
 - Similar to stripping ideas for Treasury bonds
- No clear idea of relative value of tranches
 - > Depends of demand from investors
 - Markets for tranches might be segmented

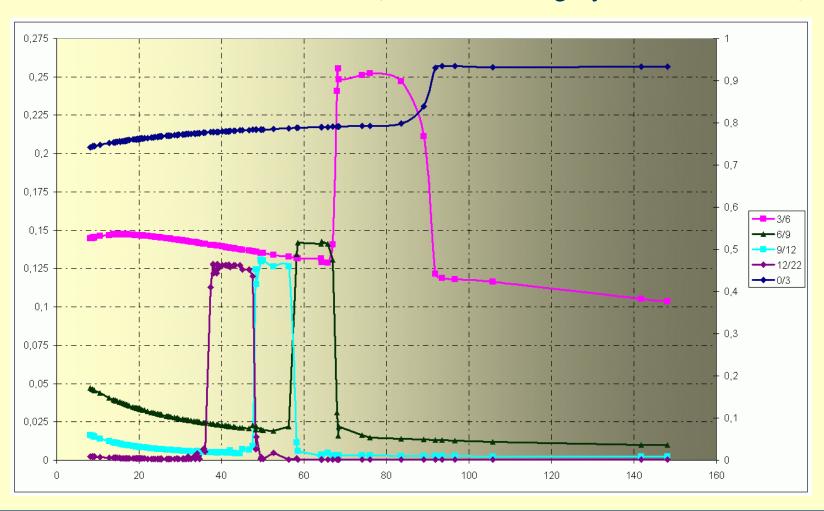
- Risk return arbitrage
- Historical returns are related to ratings, factor exposure
 - CAPM, equilibrium models
 - In search of high alphas
 - Relative value deals, cross-selling along the capital structure
- Depends on the presence of « arbitrageurs »
 - Investors with small risk aversion
 - Trading floors, hedge funds
 - Investors without too much accounting, regulatory, rating constraints

- The ultimate step: complete markets
 - As many risks as hedging instruments
 - News products are only designed to save transactions costs and are used for risk management purposes
 - Assumes a high liquidity of the market
- Perfect replication of payoffs by dynamically trading a small number of « underlying assets »
 - Black-Scholes type framework
 - Possibly some model risk
- This is further investigated in the presentation
 - Dynamic trading of CDS to replicate CDO tranche payoffs

- Default risk
 - Default bond price jumps to recovery value at default time.
 - Drives the CDO cash-flows
- Credit spread risk
 - Changes in defaultable bond prices prior to default
 - > Due to shifts in credit quality or in risk premiums
 - Changes in the marked to market of tranches
- Interactions between credit spread and default risks
 - Increase of credit spreads increase the probability of future defaults
 - Arrival of defaults may lead to jump in credit spreads
 - Contagion effects (Jarrow & Yu)

- Credit deltas in copula models
- CDS hedge ratios are computed by bumping the marginal credit curves
 - Local sensitivity analysis
 - Focus on credit spread risk
 - Deltas are copula dependent
 - Hedge over short term horizons
 - Poor understanding of gamma, theta, vega effects
 - Does not lead to a replication of CDO tranche payoffs
- Last but not least: not a hedge against defaults...

- Credit deltas in copula models
 - Stochastic correlation model (Burstchell, Gregory & Laurent, 2007)



- Main assumptions and results
 - Credit spreads are driven by defaults
 - ➤ Contagion model
 - Credit spreads are deterministic between two defaults
 - Homogeneous portfolio
 - ➤Only need of the CDS index
 - ➤ No individual name effect
 - Markovian dynamics
 - ➤ Pricing and hedging CDOs within a binomial tree
 - Easy computation of dynamic hedging strategies
 - ➤ Perfect replication of CDO tranches

- We will start with two names only
- Firstly in a static framework
 - Look for a First to Default Swap
 - Discuss historical and risk-neutral probabilities
- Further extending the model to a dynamic framework
 - Computation of prices and hedging strategies along the tree
 - Pricing and hedging of tranchelets
- Multiname case: homogeneous Markovian model
 - Computation of risk-neutral tree for the loss
 - Computation of dynamic deltas
- Technical details can be found in the paper:
 - "hedging default risks of CDOs in Markovian contagion models"

- Some notations:
 - $-\tau_1$, τ_2 default times of counterparties 1 and 2,
 - \mathcal{H}_t available information at time t,
 - P historical probability,
 - α_1^P, α_2^P : (historical) default intensities:

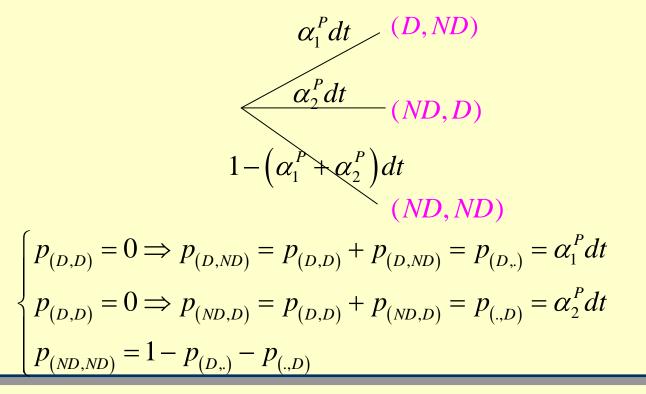
$$P \left[\tau_i \in \left[t, t + dt \right] \right] = \alpha_i^P dt, \ i = 1, 2$$

- Assumption of « local » independence between default events
 - Probability of 1 and 2 defaulting altogether:

Local independence: simultaneous joint defaults can be neglected

Building up a tree:

- Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)
- Under no simultaneous defaults assumption $p_{(D,D)}=0$
- Only three possible states: (D,ND), (ND,D), (ND,ND)
- Identifying (historical) tree probabilities:



- Stylized cash flows of short term digital CDS on counterparty 1:
 - $-\alpha_1^Q dt$ CDS 1 premium

$$\alpha_{1}^{P}dt = 1 - \alpha_{1}^{Q}dt \quad (D, ND)$$

$$0 = \alpha_{2}^{P}dt - \alpha_{1}^{Q}dt \quad (ND, D)$$

$$1 - (\alpha_{1}^{P} + \alpha_{2}^{P})dt - \alpha_{1}^{Q}dt \quad (ND, ND)$$

• Stylized cash flows of short term digital CDS on counterparty 2:

$$\alpha_1^P dt - \alpha_2^Q dt \quad (D, ND)$$

$$0 \xrightarrow{\alpha_2^P dt} 1 - \alpha_2^Q dt \quad (ND, D)$$

$$1 - (\alpha_1^P + \alpha_2^P) dt - \alpha_2^Q dt \quad (ND, ND)$$

• Cash flows of short term digital first to default swap with premium $\alpha_F^Q dt$:

$$\alpha_{1}^{P}dt = 1 - \alpha_{F}^{Q}dt \quad (D, ND)$$

$$0 = \alpha_{2}^{P}dt \quad 1 - \alpha_{F}^{Q}dt \quad (ND, D)$$

$$1 - (\alpha_{1}^{P} + \alpha_{2}^{P})dt \quad -\alpha_{F}^{Q}dt \quad (ND, ND)$$

Cash flows of holding CDS 1 + CDS 2:

$$\alpha_{1}^{P}dt = 1 - \left(\alpha_{1}^{Q} + \alpha_{2}^{Q}\right)dt \quad (D, ND)$$

$$0 = \frac{\alpha_{2}^{P}dt}{1 - \left(\alpha_{1}^{Q} + \alpha_{2}^{Q}\right)dt \quad (ND, D)}$$

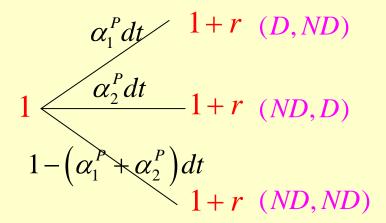
$$1 - \left(\alpha_{1}^{P} + \alpha_{2}^{P}\right)dt - \left(\alpha_{1}^{Q} + \alpha_{2}^{Q}\right)dt \quad (ND, ND)$$

- Perfect hedge of first to default swap by holding 1 CDS 1 + 1 CDS 2
 - Delta with respect to CDS 1 = 1, delta with respect to CDS 2 = 1

• Absence of arbitrage opportunities imply:

$$-\alpha_F^Q = \alpha_1^Q + \alpha_2^Q$$

- Arbitrage free first to default swap premium
 - Does not depend on historical probabilities α_1^P, α_2^P
- Three possible states: (D,ND), (ND,D), (ND,ND)
- Three tradable assets: CDS1, CDS2, risk-free asset



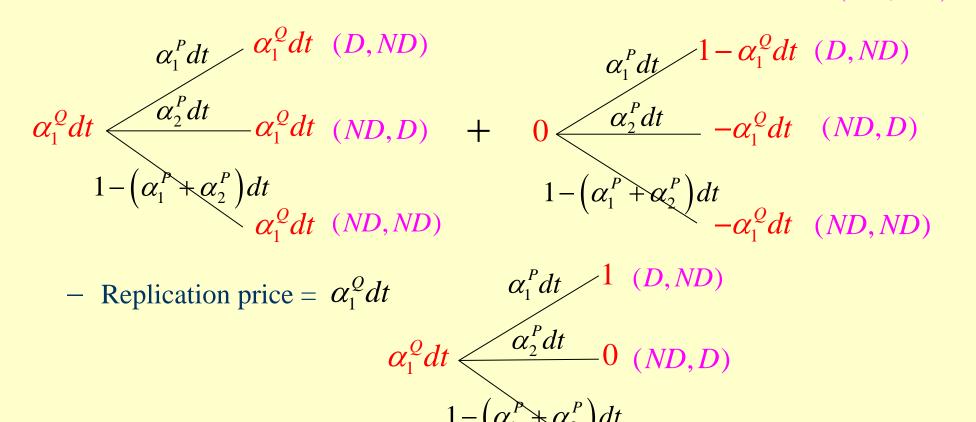
• For simplicity, let us assume r = 0

- Three state contingent claims
 - Example: claim contingent on state (D, ND)
 - Can be replicated by holding
 - 1 CDS 1 + $\alpha_1^Q dt$ risk-free asset

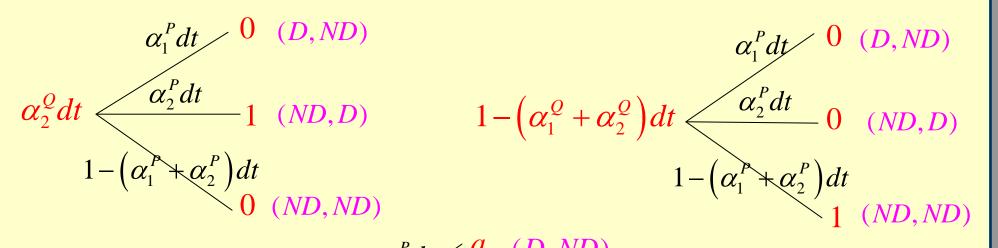
$$\alpha_1^P dt \qquad 1 \quad (D, ND)$$

$$? \qquad \alpha_2^P dt \qquad 0 \quad (ND, D)$$

$$1 - (\alpha_1^P + \alpha_2^P) dt \qquad 0 \quad (ND, ND)$$



Similarly, the replication prices of the (ND, D) and (ND, ND) claims



Replication price of:
$$\begin{array}{c|cccc}
\alpha_1^P dt & \alpha & (D, ND) \\
\hline
\alpha_2^P dt & b & (ND, D) \\
\hline
1 - (\alpha_1^P + \alpha_2^P) dt & c & (ND, ND)
\end{array}$$

Replication price = $\alpha_1^Q dt \times a + \alpha_2^Q dt \times b + (1 - (\alpha_1^Q + \alpha_2^Q) dt)c$

- Replication price obtained by computing the expected payoff
 - Along a risk-neutral tree

$$\alpha_{1}^{\varrho}dt \times a + \alpha_{2}^{\varrho}dt \times b + \left(1 - (\alpha_{1}^{\varrho} + \alpha_{2}^{\varrho})dt\right)c \xrightarrow{\alpha_{2}^{\varrho}dt} b \quad (ND, D)$$

$$1 - \left(\alpha_{1}^{\varrho} + \alpha_{2}^{\varrho}\right)dt$$

$$c \quad (ND, ND)$$

- Risk-neutral probabilities
 - Used for computing replication prices
 - Uniquely determined from short term CDS premiums
 - No need of historical default probabilities

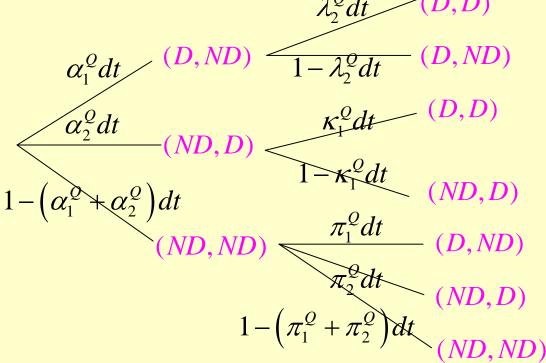
Computation of deltas

- Delta with respect to CDS 1: δ_1
- Delta with respect to CDS 2: δ_2
- Delta with respect to risk-free asset: p
 - > p also equal to up-front premium

$$\begin{cases} a = p + \delta_1 \times \overbrace{\left(1 - \alpha_1^{\mathcal{Q}} dt\right)}^{\text{payoff CDS 1}} + \delta_2 \times \overbrace{\left(-\alpha_2^{\mathcal{Q}} dt\right)}^{\text{payoff CDS 2}} \\ b = p + \delta_1 \times \left(-\alpha_1^{\mathcal{Q}} dt\right) + \delta_2 \times \left(1 - \alpha_2^{\mathcal{Q}} dt\right) \\ c = p + \delta_1 \times \underbrace{\left(-\alpha_1^{\mathcal{Q}} dt\right)}_{\text{payoff CDS 1}} + \delta_2 \times \underbrace{\left(-\alpha_2^{\mathcal{Q}} dt\right)}_{\text{payoff CDS 2}} \end{cases}$$

As for the replication price, deltas only depend upon CDS premiums

Dynamic case:



- $-\lambda_2^Q dt$ CDS 2 premium after default of name 1
- $-\kappa_1^Q dt$ CDS 1 premium after default of name 2
- $\pi_1^Q dt$ CDS 1 premium if no name defaults at period 1
- $\pi_2^Q dt$ CDS 2 premium if no name defaults at period 1
- Change in CDS premiums due to contagion effects
 - Usually, $\pi_1^Q < \alpha_1^Q < \lambda_1^Q$ and $\pi_2^Q < \alpha_2^Q < \lambda_2^Q$

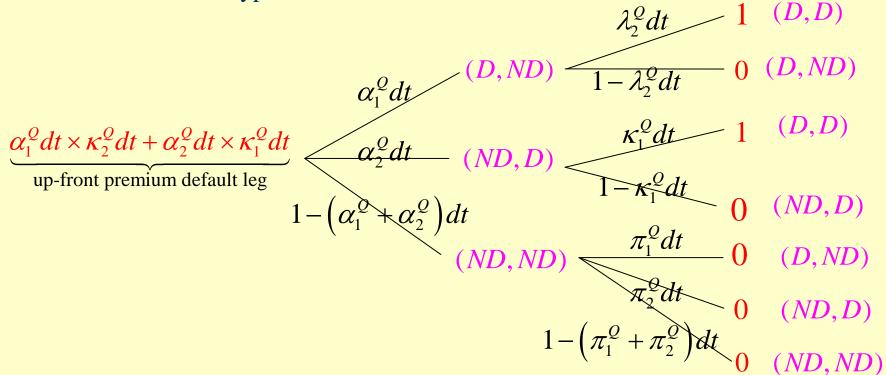
- Computation of prices and hedging strategies by backward induction
 - use of the dynamic risk-neutral tree
 - Start from period 2, compute price at period 1 for the three possible nodes
 - + hedge ratios in short term CDS 1,2 at period 1
 - Compute price and hedge ratio in short term CDS 1,2 at time 0
- Example to be detailed:
 - computation of CDS 1 premium, maturity = 2
 - $-p_1dt$ will denote the periodic premium
 - Cash-flow along the nodes of the tree

Computations CDS on name 1, maturity = $2 \frac{\lambda_2^Q}{\lambda_2^Q} dt$ $0 \xrightarrow{\alpha_1^Q dt} 1 - p_1 dt \quad (D, ND) \xrightarrow{1 - \lambda_2^Q dt} 0 \quad (D, ND)$ $0 \xrightarrow{\alpha_2^Q dt} - p_1 dt \quad (ND, D) \xrightarrow{1 - \kappa_1^Q dt} 1 - p_1 dt \quad (D, D)$ $1 - (\alpha_1^Q + \alpha_2^Q) dt \qquad - p_1 dt \quad (ND, ND)$ $- p_1 dt \quad (ND, ND) \xrightarrow{\pi_1^Q dt} 1 - p_1 dt \quad (ND, ND)$ $1 - (\pi_1^Q + \pi_2^Q) dt \qquad - p_1 dt \quad (ND, ND)$ $1 - (\pi_1^Q + \pi_2^Q) dt \qquad - p_1 dt \quad (ND, ND)$

• Premium of CDS on name 1, maturity = 2, time = 0, p_1dt solves for:

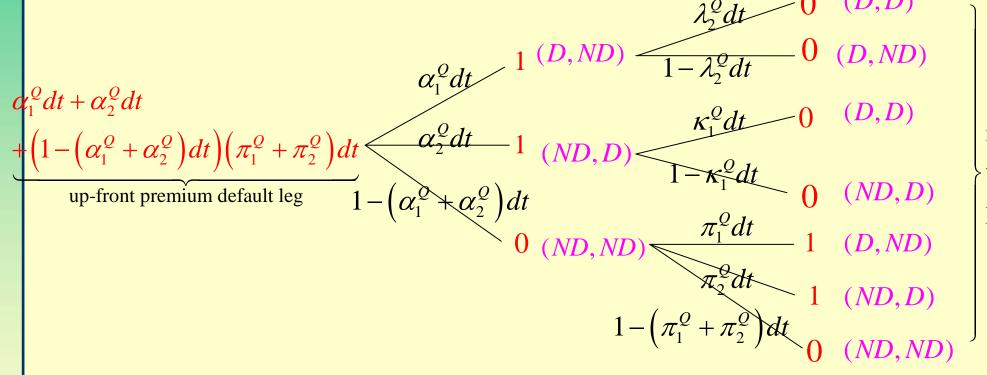
$$0 = (1 - p_1)\alpha_1^{Q} + (-p_1 + (1 - p_1)\kappa_1^{Q} - p_1(1 - \kappa_1^{Q}))\alpha_2^{Q} + (-p_1 + (1 - p_1)\pi_1^{Q} - p_1\pi_2^{Q} - p_1(1 - \pi_1^{Q} - \pi_2^{Q}))(1 - \alpha_1^{Q} - \alpha_2^{Q})$$

- Example: stylized zero coupon CDO tranchelets
 - Zero-recovery, maturity 2
 - Aggregate loss at time 2 can be equal to 0,1,2
 - > Equity type tranche contingent on no defaults
 - ➤ Mezzanine type tranche : one default
 - > Senior type tranche: two defaults



senior tranche payoff

- mezzanine tranche
 - Time pattern of default payments

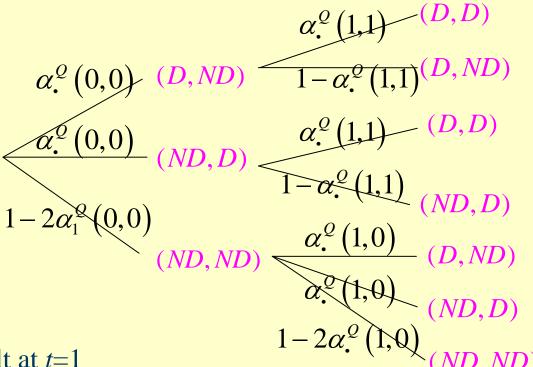


- Possibility of taking into account discounting effects
- The timing of premium payments
- Computation of dynamic deltas with respect to short or actual CDS on names 1,2

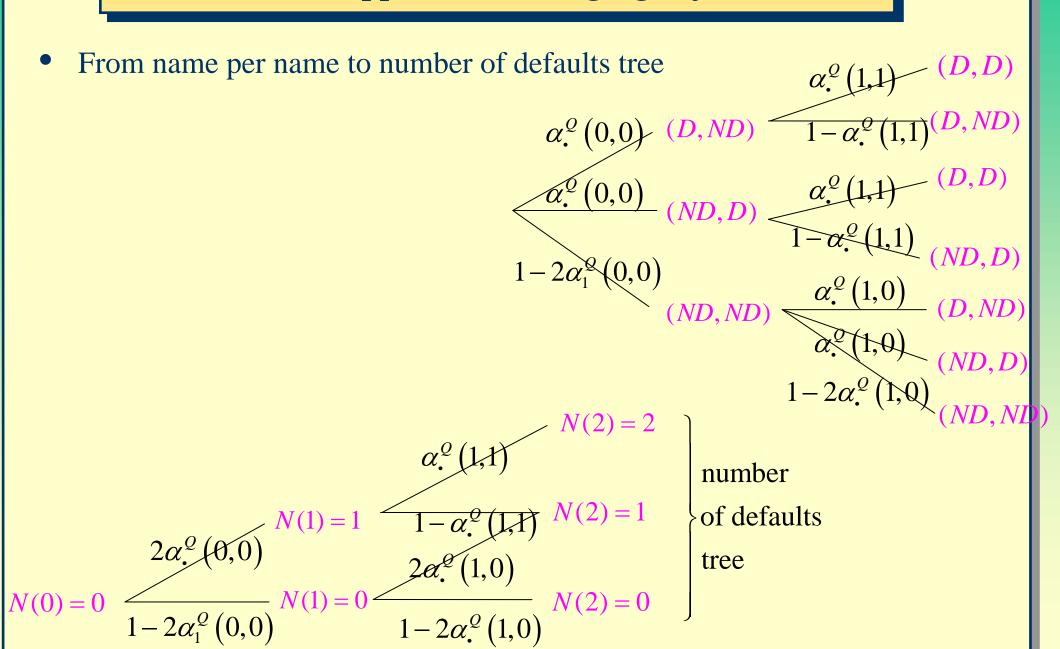
mezzanine tranche payoff

- In theory, one could also derive dynamic hedging strategies for index CDO tranches
 - Numerical issues: large dimensional, non recombining trees
 - Homogeneous Markovian assumption is very convenient
 - CDS premiums at a given time t only depend upon the current number of defaults N(t)
 - CDS premium at time 0 (no defaults) $\alpha_1^Q dt = \alpha_2^Q dt = \alpha_1^Q \left(t = 0, N(0) = 0\right)$
 - CDS premium at time 1 (one default) $\lambda_2^Q dt = \kappa_1^Q dt = \alpha_1^Q (t = 1, N(t) = 1)$
 - CDS premium at time 1 (no defaults) $\pi_1^Q dt = \pi_2^Q dt = \alpha_1^Q \left(t = 1, N(t) = 0\right)$

Homogeneous Markovian tree



- If we have N(1) = 1, one default at t=1
- The probability to have N(2) = 1, one default at t=2...
- Is $1-\alpha^{Q}(1,1)$ and does not depend on the defaulted name at t=1
- -N(t) is a Markov process
- Dynamics of the number of defaults can be expressed through a binomial tree



- Easy extension to *n* names
 - Predefault name intensity at time t for N(t) defaults: $\alpha_{\cdot}^{Q}(t,N(t))$
 - Number of defaults intensity : sum of surviving name intensities:

$$\lambda(t, N(t)) = (n - N(t))\alpha^{Q}(t, N(t)) \qquad (n - 2)\alpha^{Q}(2, 2) \qquad N(3) = 3$$

$$(n - 1)\alpha^{Q}(1, 1) \qquad N(2) = 2 \qquad \frac{1 - (n - 1)\alpha^{Q}(2, 2)}{(n - 1)\alpha^{Q}(2, 1)} \qquad N(3) = 2$$

$$(n - 1)\alpha^{Q}(1, 1) \qquad N(2) = 1 \qquad \frac{1 - (n - 1)\alpha^{Q}(2, 1)}{(n - 1)\alpha^{Q}(2, 1)} \qquad N(3) = 1$$

$$N(0) = 0 \qquad \frac{n\alpha^{Q}(2, 0)}{1 - n\alpha^{Q}(0, 0)} \qquad N(1) = 0 \qquad \frac{n\alpha^{Q}(2, 0)}{1 - n\alpha^{Q}(2, 0)} \qquad N(3) = 0$$

- $-\alpha^{\mathcal{Q}}_{\cdot}(0,0), \alpha^{\mathcal{Q}}_{\cdot}(1,0), \alpha^{\mathcal{Q}}_{\cdot}(1,1), \alpha^{\mathcal{Q}}_{\cdot}(2,0), \alpha^{\mathcal{Q}}_{\cdot}(2,1), \dots$ can be easily calibrated
- on marginal distributions of N(t) by forward induction.

- Previous recombining binomial risk-neutral tree provides a framework for the valuation of payoffs depending upon the number of defaults
 - Applies to CDO tranches (homogeneous portfolio)
 - Applies to credit default swap index
- What about the credit deltas?
 - In a homogeneous framework, deltas with respect to CDS are all the same
 - Possibility of perfect dynamic replication of a CDO tranche with a credit default swap index and the default-free asset
 - Credit delta with respect to the credit default swap index
 - = change in PV of the tranche / change in PV of the CDS index

• Example: number of defaults distribution at 5Y generated from a Gaussian copula

Correlation parameter: 30%

Number of names: 125

- Default-free rate: 3%

- 5Y credit spreads: 20 bps

Recovery rate: 40%

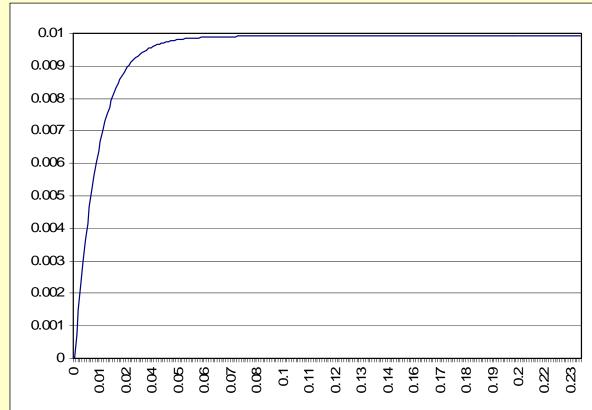
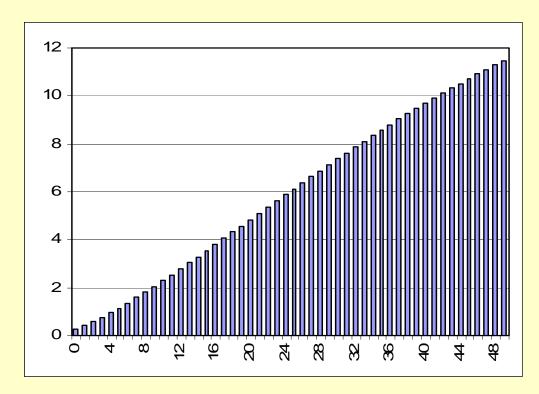


Figure shows the corresponding expected losses for a 5Y horizon

- Calibration of loss intensities
 - For simplicity, assumption of time homogeneous intensities
 - Figure below represents loss intensities, with respect to the number of defaults
 - Increase in intensities: contagion effects



- Dynamics of the 5Y CDS index spread
 - In bp pa

		Weeks								
		0	14	28	42	56	70	84		
	0	20	19	19	18	18	17	17		
	1	0	31	30	29	28	27	26		
	2	0	46	44	43	41	40	38		
	3	0	63	61	58	56	54	52		
	4	0	83	79	76	73	70	67		
40	5	0	104	99	95	91	87	83		
Defaults	6	0	127	121	116	111	106	101		
	7	0	151	144	138	132	126	120		
De	8	0	176	169	161	154	146	140		
Q Q	9	0	203	194	185	176	168	160		
	10	0	230	219	209	200	190	181		
	11	0	257	246	235	224	213	203		
	12	0	284	272	260	248	237	225		
	13	0	310	298	286	273	260	248		
	14	0	336	324	311	298	284	271		
	15	0	0	348	336	323	308	294		

- Dynamics of credit deltas ([0,3%] equity tranche)
 - With respect to the 5Y CDS index
 - For selected time steps

		OutStanding	Weeks								
		Nominal	0	14	28	42	56	70	84		
	0	3.00%	0.967	0.993	1.016	1.035	1.052	1.065	1.075		
40	1	2.52%	0	0.742	0.786	0.828	0.869	0.908	0.943		
faults	2	2.04%	0	0.439	0.484	0.532	0.583	0.637	0.691		
	3	1.56%	0	0.206	0.233	0.265	0.301	0.343	0.391		
Defa	4	1.08%	0	0.082	0.093	0.106	0.121	0.141	0.164		
S S	5	0.60%	0	0.029	0.032	0.035	0.039	0.045	0.051		
	6	0.12%	0	0.004	0.005	0.005	0.006	0.006	0.007		
	7	0.00%	0	0	0	0	0	0	0		

- Hedging strategy leads to a perfect replication of equity tranche payoff
- Deltas > 1

• Credit deltas default leg and premium leg (equity tranche)

OutStanding			Weeks								
		Nominal	0	14	28	42	56	70	84		
	0	3.00%	0.814	0.843	0.869	0.893	0.915	0.933	0.949		
40	1	2.52%	0	0.614	0.658	0.702	0.746	0.787	0.827		
ults	2	2.04%	0	0.341	0.384	0.431	0.482	0.535	0.591		
Defau	3	1.56%	0	0.140	0.165	0.194	0.229	0.269	0.315		
De	4	1.08%	0	0.045	0.054	0.064	0.078	0.095	0.117		
Q Q	5	0.60%	0	0.013	0.015	0.017	0.020	0.024	0.030		
	6	0.12%	0	0.002	0.002	0.002	0.003	0.003	0.003		
	7	0.00%	0	0	0	0	0	0	0		

OutStanding				Weeks							
		Nominal	0	14	28	42	56	70	84		
	0	3.00%	-0.153	-0.150	-0.146	-0.142	-0.137	-0.132	-0.126		
1 40	1	2.52%	0	-0.128	-0.127	-0.126	-0.124	-0.120	-0.116		
Nb Defaults	2	2.04%	0	-0.098	-0.100	-0.101	-0.102	-0.101	-0.100		
	3	1.56%	0	-0.066	-0.068	-0.071	-0.073	-0.074	-0.076		
	4	1.08%	0	-0.037	-0.039	-0.041	-0.043	-0.045	-0.047		
	5	0.60%	0	-0.016	-0.017	-0.018	-0.019	-0.020	-0.021		
	6	0.12%	0	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003		
	7	0.00%	0	0	0	0	0	0	0		

• Dynamics of credit deltas ([3,6%] tranche)

		OutStanding				Weeks			
		Nominal	0	14	28	42	56	70	84
	0	3.00%	0.162	0.139	0.117	0.096	0.077	0.059	0.045
	1	3.00%	0	0.327	0.298	0.266	0.232	0.197	0.162
	2	3.00%	0	0.497	0.489	0.473	0.448	0.415	0.376
	3	3.00%	0	0.521	0.552	0.576	0.591	0.595	0.586
40	4	3.00%	0	0.400	0.454	0.508	0.562	0.611	0.652
Defaults	5	3.00%	0	0.239	0.288	0.343	0.405	0.473	0.544
faı	6	3.00%	0	0.123	0.153	0.190	0.236	0.291	0.358
De	7	2.64%	0	0.059	0.073	0.090	0.115	0.147	0.189
Q Q	8	2.16%	0	0.031	0.036	0.043	0.052	0.066	0.086
	9	1.68%	0	0.019	0.020	0.023	0.026	0.030	0.037
	10	1.20%	0	0.012	0.012	0.013	0.014	0.016	0.018
	11	0.72%	0	0.007	0.007	0.007	0.007	0.008	0.009
	12	0.24%	0	0.002	0.002	0.002	0.002	0.002	0.003
	13	0.00%	0	0	0	0	0	0	0

II - Tree approach to hedging defaults

• Dynamics of credit deltas ([6,9%] tranche)

		OutStanding	Weeks						
		Nominal	0	14	28	42	56	70	84
	0	3.00%	0.017	0.012	0.008	0.005	0.003	0.002	0.001
	1	3.00%	0	0.048	0.036	0.025	0.017	0.011	0.006
	2	3.00%	0	0.133	0.107	0.083	0.061	0.043	0.029
	3	3.00%	0	0.259	0.227	0.193	0.157	0.122	0.090
	4	3.00%	0	0.371	0.356	0.330	0.295	0.253	0.206
	5	3.00%	0	0.405	0.423	0.428	0.420	0.396	0.358
	6	3.00%	0	0.346	0.392	0.433	0.465	0.482	0.481
1,0	7	3.00%	0	0.239	0.292	0.350	0.409	0.465	0.510
 	8	3.00%	0	0.139	0.181	0.232	0.293	0.363	0.436
Nb Defaults	9	3.00%	0	0.074	0.098	0.132	0.177	0.235	0.307
	10	3.00%	0	0.042	0.053	0.070	0.095	0.132	0.183
	11	3.00%	0	0.029	0.033	0.040	0.051	0.070	0.098
	12	3.00%	0	0.025	0.026	0.028	0.033	0.040	0.053
	13	2.76%	0	0.022	0.022	0.022	0.024	0.026	0.031
	14	2.28%	0	0.020	0.018	0.018	0.018	0.019	0.020
	15	1.80%	0	0	0.015	0.014	0.014	0.014	0.014
	16	1.32%	0	0	0.013	0.011	0.010	0.010	0.010
	17	0.84%	0	0	0.009	0.008	0.007	0.006	0.006
	18	0.36%	0	0	0.005	0.004	0.003	0.003	0.003
	19	0.00%	0	0	0	0	0	0	0

II - Tree approach to hedging defaults

- Small dependence of credit deltas with respect to recovery rate
 - Equity tranche, *R*=30%

		OutStanding		Weeks						
		Nominal	0	14	28	42	56	70	84	
Nb Defaults	0	3.00%	0.975	0.997	1.018	1.035	1.050	1.062	1.072	
	1	2.44%	0.000	0.735	0.775	0.814	0.852	0.888	0.922	
	2	1.88%	0.000	0.417	0.456	0.499	0.544	0.591	0.641	
	3	1.32%	0.000	0.178	0.200	0.225	0.253	0.286	0.324	
	4	0.76%	0.000	0.060	0.066	0.074	0.084	0.095	0.109	
	5	0.20%	0.000	0.011	0.011	0.013	0.014	0.015	0.017	
	6	0.00%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

- Equity tranche, *R*=40%

		OutStanding		Weeks					
		Nominal	0	14	28	42	56	70	84
	0	3.00%	0.967	0.993	1.016	1.035	1.052	1.065	1.075
Nb Defaults	1	2.52%	0	0.742	0.786	0.828	0.869	0.908	0.943
	2	2.04%	0	0.439	0.484	0.532	0.583	0.637	0.691
	3	1.56%	0	0.206	0.233	0.265	0.301	0.343	0.391
	4	1.08%	0	0.082	0.093	0.106	0.121	0.141	0.164
	5	0.60%	0	0.029	0.032	0.035	0.039	0.045	0.051
	6	0.12%	0	0.004	0.005	0.005	0.006	0.006	0.007
	7	0.00%	0	0	0	0	0	0	0

II - Tree approach to hedging defaults

- Small dependence of credit deltas with respect to recovery rate
 - Initial delta with respect to the credit default swap index

	Recovery Rates									
Tranches	10%	20%	30%	40%	50%	60%				
[0-3%]	0.9960	0.9824	0.9746	0.9670	0.9527	0.9456				
[3-6%]	0.1541	0.1602	0.1604	0.1616	0.1659	0.1604				
[6-9%]	0.0164	0.0165	0.0168	0.0168	0.0168	0.0169				

- Only a small dependence of credit deltas with respect to recovery rates
- First conclusion:
 - Thanks to stringent assumptions
 - > credit spreads driven by defaults + homogeneity + Markovian
 - It is possible to compute a dynamic hedging strategy
 - ➤ Based on the CDS index
 - That fully replicates the CDO tranche payoffs

- When dealing with the risk management of CDOs, traders
 - concentrate upon credit spread and correlation risk
 - Neglect default risk
- What about default risk?
 - For large indices, default of one name has only a small direct effect on the aggregate loss
- Is it possible to build a framework where hedging default risk can be neglected?
- And where one could only consider the hedging of credit spread risk?
 - See paper "A Note on the risk management of CDOs"

- Main and critical assumption
 - Default times follow a multivariate Cox process
 - For instance, affine intensities
 - Duffie & Garleanu, Mortensen, Feldhütter, Merrill Lynch
- 2. the default times follow a multivariate Cox process:

$$\tau_i = \inf \left\{ t \in \mathbb{R}^+, U_i \ge \exp\left(-\int_0^t \lambda_{i,u} du\right) \right\}, \quad i = 1, \dots, n$$
(2.2)

where $\lambda_1, \ldots, \lambda_n$ are strictly positive, \mathcal{F} - progressively measurable processes, U_1, \ldots, U_n are independent random variables uniformly distributed on [0,1] under Q and \mathcal{F} and $\sigma(U_1, \ldots, U_n)$ are independent under Q.

No contagion effects

No contagion effects

- credit spreads drive defaults but defaults do not drive credit spreads
- For a large portfolio, default risk is perfectly diversified
- Only remains credit spread risks: parallel & idiosyncratic

Main result

- With respect to dynamic hedging, default risk can be neglected
- Only need to focus on dynamic hedging of credit spread risks
 - > With CDS
- Similar to interest rate derivatives markets

Formal setup

- τ_1, \ldots, τ_n default times
- $N_i(t) = 1_{\{\tau_i \le t\}}, i = 1,...,n$ default indicators
- $H_t = \bigvee_{i=1,\dots,n} \sigma(N_i(s), s \le t)$ natural filtration of default times
- F_t background (credit spread filtration)
- $G_t = H_t \vee F_t$ enlarged filtration, *P* historical measure
- $l_i(t,T), i = 1,...,n$ time t price of an asset paying $N_i(T)$ at time T

- Sketch of the proof
- Step 1: consider some smooth shadow risky bonds
 - Only subject to credit spread risk
 - Do not jump at default times
- Projection of the risky bond prices on the credit spread filtration

Definition 3.2 The default free T forward loss process associated with name $i \in \{0, \ldots, n\}$, denoted by $p^i(., T)$ is such that for $0 \le t \le T$:

$$p^{i}(t,T) \stackrel{\Delta}{=} E^{Q} \left[p^{i}(T) \mid \mathcal{F}_{t} \right] = E^{Q} \left[N_{i}(T) \mid \mathcal{F}_{t} \right] = Q(\tau_{i} \leq T \mid \mathcal{F}_{t}). \tag{3.2}$$

Lemma 3.1 $p^i(t,T)$, $i=1,\ldots,n$ are projections of the forward price processes $l^i(t,T)$ on \mathcal{F}_t :

$$p^{i}(t,T) = E^{Q} \left[l^{i}(t,T) \mid \mathcal{F}_{t} \right], \tag{3.3}$$

for $i = 1, \ldots, n$ and $0 \le t \le T$.

- Step 2: Smooth the aggregate loss process
- ... and thus the tranche payoffs
 - Remove default risk and only consider credit spread risk
 - Projection of aggregate loss on credit spread filtration

Definition 3.1 We denote by $p^i(.)$, the **default-free running loss process** associated with name $i \in \{0, ..., n\}$, which is such that for $0 \le t \le T$:

$$p^{i}(t) \stackrel{\Delta}{=} E^{Q}[N_{i}(t) \mid \mathcal{F}_{t}] = Q(\tau_{i} \leq t \mid \mathcal{F}_{t}) = 1 - \exp(-\Lambda_{i,t}). \tag{3.1}$$

Definition 3.5 default-free aggregate running loss process The default free aggregate running loss at time t is such that for $0 \le t \le T$:

$$p_n(t) \stackrel{\Delta}{=} \frac{1}{n} \sum_{i=1}^n p^i(t). \tag{3.7}$$

- Step 3: compute perfect hedge ratios of the smoothed payoff
 - ➤ With respect to the smoothed risky bonds
 - Smoothed payoff and risky bonds only depend upon credit spread dynamics
 - Both idiosyncratic and parallel credit spread risks
 - Similar to a multivariate interest rate framework
 - Perfect hedging in the smooth market

Assumption 2 There exists some bounded \mathcal{F} - predictable processes $\theta_1(.), \ldots, \theta_n(.)$ such that:

$$(p_n(T) - K)^+ = E^Q \left[(p_n(T) - K)^+ \right] + \frac{1}{n} \sum_{i=1}^n \int_0^T \theta_i(t) dp^i(t, T) + z_n, \tag{4.2}$$

where z_n is \mathcal{F}_T -measurable, of Q-mean zero and Q-strongly orthogonal to $p^1(.,T), \ldots, p^n(.,T)$.

- Step 4: apply the hedging strategy to the <u>true</u> defaultable bonds
- Main result
 - Bound on the hedging error following the previous hedging strategy
 - When hedging an actual CDO tranche with actual defaultable bonds
 - Hedging error decreases with the number of names
 - ➤ Default risk diversification

Proposition 1 Under Assumptions (1) and (2), the hedging error ε_n defined as:

$$\varepsilon_n = (l_n(T) - K)^+ - E^Q \left[(l_n(T) - K)^+ \right] - \frac{1}{n} \sum_{i=1}^n \int_0^T \theta_i(t) dl^i(t, T), \tag{4.4}$$

is such that $E^P[|\varepsilon_n|]$ is bounded by:

$$\frac{1}{\sqrt{2n}} \left(1 + \left(E^Q \left[\left(\frac{dP}{dQ} \right)^2 \right] \right)^{1/2} \right) + \frac{1}{n} \left(E^Q \left[\left(\frac{dP}{dQ} \right)^2 \right] \right)^{1/2} \left(\sum_{i=1}^n \left(Q(\tau_i \le T) + E^Q \left[B_i \right]_T \right) \right)^{1/2} + E^P [|z_n|].$$

- Provides a hedging technique for CDO tranches
 - Known theoretical properties
 - Takes into account idiosyncratic and parallel gamma risks
 - Good theoretical properties rely on no simultaneous defaults, no contagion effects assumptions
 - Empirical work remains to be done
- Thought provocative
 - To construct a practical hedging strategy, do not forget default risk
 - Equity tranche [0,3%]
 - iTraxx or CDX first losses cannot be considered as smooth

- Linking pricing and hedging?
- The black hole in CDO modeling?
- Standard valuation approach in derivatives markets
 - **≻**Complete markets
 - ➤ Price = cost of the hedging/replicating portfolio
- Mixing of dynamic hedging strategies
 - for credit spread risk
- And diversification/insurance techniques
 - For default risk

Conclusion

- Two different models have been investigated
- Contagion homogeneous Markovian models
 - Perfect hedge of default risks
 - Easy implementation
 - Poor dynamics of credit spreads
 - No individual name effects
- Multivariate Cox processes
 - Rich dynamics of credit spreads
 - But no contagion effects
 - Thus, default risk can be diversified at the index level
 - Replication of CDO tranches is feasible by hedging only credit spread risks.