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Hedging Default and Credit Spread Risks within CDOs

* Bullet points
» Hedging default and credit spread risks in contagion models

» Dealing with simultaneous defaults
» Hedging default and credit spread risks within intensity models
» Parallel and idiosyncratic Gammas

* Purpose of the presentation

» Not trying to embrace all risk management issues

» Focus on very specific aspects of default and credit spread risk
* QOverlook of the presentation

» Economic background

» Tree approach to hedging defaults
» Hedging credit spread risks for large portfolios




| - Economic Background

Hedging CDOs context

About 1 000 papers on defaultrisk.com

About 10 papers dedicated to hedging issues

— Ininterest rate or equity markets, pricingisrelated to the cost of
the hedge

— In credit markets, pricing isdisconnect from hedging
Need to relate pricing and hedging

What 1s the business model for CDOs?

Risk management paradigms
— Static hedging, risk-return arbitrage, complete markets



| - Economic Background

Static hedging
Buy a portfolio of credits, split it into tranches and sell the
tranches to investors
» No correlation or model risk for market makers
» No need to dynamically hedge with CDS
Only « budget constraint »:
» Sum of the tranche prices greater than portfolio of credits price
» Similar to stripping ideas for Treasury bonds

No clear idea of relative value of tranches

» Depends of demand from investors
» Markets for tranches might be segmented



| - Economic Background

* Risk —return arbitrage

* Historical returns are related to ratings, factor exposure

— CAPM, equilibrium models
— In search of high alphas

— Reélative value deals, cross-selling along the capital structure

* Depends on the presence of « arbitrageurs »
— Investors with small risk aversion

» Trading floors, hedge funds

— Investors without too much accounting, regulatory, rating constraints




| - Economic Background

* The ultimate step : complete markets
— As many risks as hedging instruments

— News products are only designed to save transactions costs and
are used for risk management purposes

— Assumes a high liquidity of the market
* Perfect replication of payoffs by dynamically trading a
small number of « underlying assets »
— Black-Scholes type framework
— Possibly some model risk
* Thisisfurther investigated in the presentation
— Dynamic trading of CDS to replicate CDO tranche payoffs




| - Economic Background

* Default risk
— Default bond price jumps to recovery value at default time.
— Drivesthe CDO cash-flows

* Credit spread risk
— Changes in defaultable bond prices prior to default

» Dueto shiftsin credit quality or in risk premiums
— Changes in the marked to market of tranches

* |nteractions between credit spread and default risks
— Increase of credit spreads increase the probability of future defaults

— Arrival of defaults may lead to jump in credit spreads
» Contagion effects (Jarrow & Yu)




| - Economic Background

* Credit deltasin copula models

* CDS hedge ratios are computed by bumping the marginal
credit curves
— Local sensitivity analysis
— Focus on credit spread risk
— Deltas are copula dependent
— Hedge over short term horizons
» Poor understanding of gamma, theta, vega effects
» Does not lead to areplication of CDO tranche payoffs

* | ast but not |least: not a hedge against defaullts...




| - Economic Background

* Credit deltasin copula models
— Stochastic correlation model (Burstchell, Gregory & Laurent, 2007)
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|l - Tree approach to hedging defaults

* Main assumptions and results
— Credit spreads are driven by defaults

» Contagion model

» Credit spreads are deterministic between two
defaults

— Homogeneous portfolio

»Only need of the CDS index

»No individual nhame effect
— Markovian dynamics

» Pricing and hedging CDOs within abinomial tree
» Easy computation of dynamic hedging strategies
» Perfect replication of CDO tranches




|l - Tree approach to hedging defaults

We will start with two names only

Firstly in a static framework
— Look for aFirst to Default Swap
— Discuss historical and risk-neutral probabilities
Further extending the model to a dynamic framework
— Computation of prices and hedging strategies along the tree
— Pricing and hedging of tranchelets
Multiname case: homogeneous Markovian model
— Computation of risk-neutral tree for the loss
— Computation of dynamic deltas
Technical details can be found in the paper:
— “hedging default risks of CDOs in Markovian contagion models’



|l - Tree approach to hedging defaults

¢ Some notations:

— T4, T, default times of counterparties 1 and 2,
— 7, available information at timet,

— P historical probability,
— a;,a, : (historical) default intensities:
5 Plre[tt+di|H, |=aldt, i=12

* Assumption of «local » independence between default events
— Probability of 1 and 2 defaulting altogether:
> Plre[tt+d,z,e[tt+dt|H,]=aldtxafdt in (dt)

— Local independence: simultaneous joint defaults can be neglected




|l - Tree approach to hedging defaults

* Building up atree:
— Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)
— Under no simultaneous defaults assumption pp, ,=0
— Only three possible states: (D,ND), (ND,D), (ND,ND)
— ldentifying (historical) tree probabilities:

a;dt_ (D,ND)

P
a., dt (ND, D)
1—(a1 Zp)dt
(ND, ND)

Pop) = 0= Pono) = Poo)y T Pono) = Pp,) =% dt
Poo) = 0= Pino.o) = Pooy T Pino.o) = Pro) = @2 dt
Pinoo) =1~ Po,) ~ Pio

N




|| - Tree approach to hedging defaults

Stylized cash flows of short term digital CDS on counterparty 1.
— a2 dt CDS 1 premium

/ 1- g dt  (D,ND)
;
a, dt —a dt (ND, D)

1- (al

—al °dt  (ND,ND)

Stylized cash flows of short term digital CDS on counterparty 2:
/ —a, Sdt  (D,ND)
adt 149t (ND,D)

1- (051

—ant (ND, ND)



|l - Tree approach to hedging defaults

® (Cashflows of short term digital first to default swap with premium a?dt ;

/1 o dt  (D,ND)
o, dt  1- 4%t (ND,D)

1- (al 2 dt
—a2dt (ND,ND)

® (Cashflowsof holding CDS 1+ CDS2:
alpd 1—(051Q +a§)dt (D,ND)

0 — (o + a3 )dt (ND,D)

1- (alp dt
al +a2 dt (ND,ND)

* Peafect hedge of first to default swap by holding 1 CDS 1+ 1 CDS?2
— Deltawith respect to CDS 1 =1, deltawith respect to CDS2 =1



|l - Tree approach to hedging defaults

* Absence of arbitrage opportunities imply:

— a®=a2+af

® Arbitrage free first to default swap premium

— Does not depend on historical probabilities ¢, ,a,
®* Threepossible states: (D,ND), (ND,D), (ND,ND)
®* Threetradable assets. CDS1, CDS2, risk-free asset

/fd/ 1+r (D,ND)
=)
1<% 14¢ (\D.D)
1th

1+r (ND,ND)

®* For simplicity, let usassume r =0




|l - Tree approach to hedging defaults

o dt 1 (D,ND)

®* Three state contingent claims

P
— Example: claim contingent on state (D,ND) ~ ? 7l 0 (ND,D)
— Can be replicated by holding 5
Q . 1- (051 )dt
— 1 CDS1+ o dt risk-free asset 0 (ND, ND)
o, dt alet (D,ND) a’d 1- alet (D,ND)
P
aldt <~ % a a’dt (ND,D) + O o dit —a°dt (ND,D)
1- (o gy )t 1- (o Peg )t

a2dt (ND,ND) —a°dt (ND,ND)

— Replication price = adlt afdt_~1 (D,ND)

o dt

1— (o kot )dt
0 (ND,ND)

o, dt

0 (ND,D)




|| - Tree approach to hedging defaults

* Similarly, the replication prices of the(ND, D) and (ND,ND) claims
afdt - 0 (D,ND) afdr~ 0 (D,ND)
ol dt /
o dt 2 1 (ND,D) 1—(a§+a§)dt %d (ND, D)
1th 1—(a1 azp)dt
0 (ND,ND) 1 (ND,ND)
/af’d!/a (D, ND)
o, dt
* Replication priceof: 7 : b (ND,D)
1th
C (ND,ND)

e Replication price = aletxa+a§dt><b+(l— (a1Q+a§)dt)C




|l - Tree approach to hedging defaults

* Replication price obtained by computing the expected payoff
— Along arisk-neutral tree

Q
afdtxa+a§dtxb+(1—(af+a§)dt)c Z b (ND,D)

1- (al af)dt
C (ND,ND)

® Risk-neutral probabilities
— Used for computing replication prices
— Uniquely determined from short term CDS premiums
— No need of historical default probabilities




|l - Tree approach to hedging defaults

®* Computation of deltas
— Deltawith respect to CDS 1: 0,
— Deltawith respect to CDS 2: 0,
— Deltawith respect to risk-free asset: p

» p aso equal to up-front premium

payoff CDS 1 payoff CDS 2
a= o+51><( thj+5 ( )
‘b= :)+51><( th) +5, x( afdt)
C=p+6,%(-a dt) +0,x (—agdt)

payoff CDS 1. payoif CDS 2

— Asfor thereplication price, deltas only depend upon CDS premiums



|l - Tree approach to hedging defaults

AJdt—(D,D)
O ' -

Dynamic case: o2dtt~ (D:ND) <T—og; (D, ND)
- 0 (D,D)

= dt
1—(a aQ)dt (ND, D)

. S 20t
(ND, ND) : (D,ND)
(ND, D)

1—(7[1Q+7z§

. (ND, ND)
— Aydt CDS 2 premium after default of name 1

—  x2dt CDS 1 premium after default of name 2

— m°dt CDS 1 premium if no name defaults at period 1

— 7z7dt CDS 2 premium if no name defaults at period 1
®* Changein CDS premiums due to contagion effects

— Usudly, zl<al<A? and 72 <al <Ay



|l - Tree approach to hedging defaults

* Computation of prices and hedging strategies by backward
Induction
— use of the dynamic risk-neutral tree

— Start from period 2, compute price at period 1 for the three
possible nodes

— + hedge ratios in short term CDS 1,2 at period 1
— Compute price and hedge ratio in short term CDS 1,2 at time O

* Example to be detalled:
— computation of CDS 1 premium, maturity = 2
— p,dt will denote the periodic premium
— Cash-flow along the nodes of the tree



|l - Tree approach to hedging defaults

® Computations CDS on name 1, maturity = 2 19 0 (D,D)
2
o2t 1~ Pt (DND) =7 50— 0 (D.RD)
Qdt o 1- pldt (D,D)
0 a, — p,dt (ND,D){
=c<dt
1- (al ag)dt —pdt  (ND,D)

Q
—pdt (ND, ND) mdt g pdt (D,ND)
—pdt (ND,ND)
* Premium of CDS on name 1, maturity = 2, time = 0, pdt solvesfor:

0= (1_ pl)alQ +(_ p1+(1_ p1)K1Q - p1<1_ KlQ))aS

+ (_p1+(1_ pl)”lQ_ plﬂ.g_ pl(l—ﬂf—ﬂg))(l—af—ag)




|l - Tree approach to hedging defaults

* Example: stylized zero coupon CDO tranchelets
— Zero-recovery, maturity 2
— Aqggregate loss at time 2 can be equal to0 0,1,2
» Equity type tranche contingent on no defaults
» Mezzanine type tranche : one default
» Senior type tranche : two defaults
1 (D,D)

0 (D,ND)

1 (D,D)

A2dt

(D.ND) <o

o dt x x7dt + a7 dt x i dt

-

up-front premmm default leg

0 (D,ND)
0 (ND,D)
0 (ND,ND)

senior
> tranche
payoff
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|l - Tree approach to hedging defaults

® mezzanine tranche
— Time pattern of default payments

Q
1 (D,ND) /lzag/

— 7Q
odt + adt /%Qd!/ : :; )
(1 (al +a, )dt)( Q)dt aat

T2 + 75 1 (ND,D)

up-front premlum default leg 1— (al ag ) dt

— Possibility of taking into account discounting effects
— Thetiming of premium payments

— Computation of dynamic deltas with respect to short or actual CDS on names 1,2

0 (D,D)
O (D,ND)

o (D,D)

1 (ND,D)

0 (ND,ND) °

meZZ @
> tranche
payofi

ine



|l - Tree approach to hedging defaults

* |ntheory, one could also derive dynamic hedging strategies
for index CDO tranches
— Numerical issues. large dimensional, non recombining trees
— Homogeneous Markovian assumption is very convenient

»CDS premiums at agiven timet only depend upon
the current number of defaults N(t)
— CDS premium at time 0 (no defaults) a2dt = o2dt = a° (t=0,N(0) = 0)
— CDS premium at time 1 (one default) A2dt = x2dt = a2 (t =1 N(t) =1)
— CDSpremium at time 1 (no defaults)  7z2dt = z9dt = 2 (t =1, N(t) = 0)




|l - Tree approach to hedging defaults
(D,D)
Homogeneous Markovian tree 0.0 %(D ND)
a, , ’

(D,D)
Y (ND, D)

1- 222(0,0)
“Q(]’O (D, ND)

(ND, ND) ,
%(ND,D)
— If we have N1 =1, one default at t=1 (ND,ND)

— The probability to haveN(2) =1, one default at t=2..

— Is 1-a?(1,1) and does not depend on the defaulted name at t=1

— N(t) isaMarkov process

— Dynamics of the number of defaults can be expressed through a binomial tree




|l - Tree approach to hedging defaults

* From name per name to number of defaults tree /(119/ (D,D)

/ (D,ND) = 1I-g2(z1)(P-ND)
(D,D)

a2 (0,0) (ND, D) %

1- 22%(0,0) (ND, D)

a?(10)

(ND, ND) (D,ND)
%(ND D)
N(2)=2 (ND, NOj)
a‘Q@(r)/ number
ND) =1 “1=g%(ay N2 =1 ‘of defaults

20£.Q ] O) . (:L O) tree

N(0)=0 N@)=0 N(2)=0
O e00) 1 2ato)




|l - Tree approach to hedging defaults

® Easy extension to n names
— Predefault name intensity at timet for N(t) defaults: o (t,N(t))
— Number of defaults intensity : sum of surviving name intensities:

A(LN() =(n—=N(t)) e (t,N(t)) W N(3) =3
N(2) =2 EA=Dal(22) 5 _ 5

1AN-1)a° (1) N(2) -1 ~Da’(21) N(3)=1

(2.2)
(21)
na2(2,0)
7(2.0)

N(1) =1 (
"2 480) 2(1,0)

M=t 1-ne,’(0,0) e 1-na*(1,0) N(2)=0

N(3)=0
1-ne (2,

— 22(0,0),e¢2(10),a°(11),22(2,0),22(21).... can be easily calibrated

— on marginal distributions of N(t)by forward induction.




|l - Tree approach to hedging defaults

* Previous recombining binomial risk-neutral tree provides a
framework for the valuation of payoffs depending upon the
number of defaults

— Appliesto CDO tranches (homogeneous portfolio)
— Appliesto credit default swap index

* \What about the credit deltas?

— In ahomogeneous framework, deltas with respect to CDS are all
the same

— Possibility of perfect dynamic replication of a CDO tranche with
acredit default swap index and the default-free asset

— Credit deltawith respect to the credit default swap index
— =changein PV of the tranche/ changein PV of the CDS index



|l - Tree approach to hedging defaults

* Example: number of defaults distribution at 5Y generated from a

Gaussian copula

0.01

0.009 -

] 0.008 -

— Correlation parameter: 30% | |
— Number of names: 125 0.006
— Default-free rate: 3% 0005 |

— 5Y credit spreads; 20 bps | °™*
— Recovery rate: 40% .

0.002
0.001 -
8638858349933 53338§]Y
o O O O O O o o O O O O O O O o O

® Figure shows the corresponding expected losses for a5Y horizon




|l - Tree approach to hedging defaults

* Cadlibration of loss intensities
— For smplicity, assumption of time homogeneous intensities

— Figure below represents loss intensities, with respect to the
number of defaults

— Increase in intensities. contagion effects
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|l - Tree approach to hedging defaults I

* Dynamics of the 5Y CDS index spread

— Inbp pa
Weeks

0 124 28 42 56 70 84

0 20 19 19 18 18 17 17

1 0 31 30 29 28 27 26

2 0 26 44 43 41 20 38

3 0 63 61 53 56 54 52

Z 0 83 79 76 73 70 67

5 0 104 99 95 91 87 83
216 0 127 121 116 111 106 101
N 0 51 | 1424 | 138 | 132 | 126 | 120
Al s 0 176 169 161 154 146 140
2 [ 0 203 194 185 176 168 160
10 0 230 219 209 200 190 181
11 0 257 246 235 224 213 203
12 0 284 272 260 248 237 225
13 0 310 298 286 273 260 248
12 0 336 324 311 298 284 271
15 0 0 348 336 323 308 294




|l - Tree approach to hedging defaults I

* Dynamics of credit deltas ([0,3%] equity tranche)
— With respect to the 5Y CDS index
— For selected time steps

OutStanding
Nominal

n
T |25 | 0 | 0742 | 0786 | 0:828 | 0.869 | 0008
2| _20a% |0 | 0439 | 0484 | 0532 | 0583 | 0637
3| _156% |0 | 0206 | 0233 | 0.265 | 0301 | 0343
a | _tos% | 0 | 0082 | 0093 | 0.106 | 0121 | 041
5| _o060% |0 | 0020 | 0032 | 0.035 | 0.039 | 0045 _
n“

Nb Defaults

— Hedging strategy |eads to a perfect replication of equity tranche payoff
— Deltas>1




|l - Tree approach to hedging defaults

* Credit deltas default leg and premium leg (equity tranche)

OutStanding Weeks
Nominal 0 14 28 42 56 70 84

0 3.00% 0.814 | 0.843 | 0.869 | 0.893 | 0.915 | 0.933 | 0.949

1 2.52% 0 0.614 | 0.658 | 0.702 | 0.746 | 0.787 | 0.827
% 2 2.04% 0 0.341 | 0.384 | 0.431 | 0.482 | 0.535 | 0.591
© 3 1.56% 0 0.140 | 0.165 | 0.194 | 0.229 | 0.269 | 0.315
A 4 1.08% 0 0.045 | 0.054 | 0.064 | 0.078 | 0.095 | 0.117
> 5 0.60% 0 0.013 | 0.015 | 0.0127 | 0.020 | 0.024 | 0.030

6 0.12% 0 0.002 | 0.002 | 0.002 |} 0.003 | 0.003 | 0.003

7 0.00% 0 0 0 0 0 0 0

OutStanding Weeks
Nominal 0 14 28 42 56 70 84

0 3.00% -0.153 | -0.150 | -0.146 | -0.142 | -0.137 | -0.132 | -0.126

1 2.52% 0 -0.128 | -0.127 | -0.126 | -0.124 | -0.120 | -0.116
% 2 2.04% 0 -0.098 | -0.100 | -0.101 | -0.102 | -0.101 | -0.100
o 3 1.56% 0 -0.066 | -0.068 | -0.071 ] -0.073 | -0.074 | -0.076
a 4 1.08% 0 -0.037 | -0.039 | -0.041 ] -0.043 | -0.045 | -0.047
> 5 0.60% 0 -0.016 | -0.017 | -0.018 | -0.019 | -0.020 | -0.021

6 0.12% 0 -0.003 | -0.003 | -0.003 | -0.003 | -0.003 | -0.003

7 0.00% 0 0 0 0 0 0 0




Dynamics of credit deltas ([3,6%] tranche)

|l - Tree approach to hedging defaults I

OutStanding Weeks

Nominal 0 14 28 42 56 70 84
0 3.00% 162 | 0.139 | 0.117 | 0.096 | 0.077 | 0.059 | 0.045
1 3.00% 0 0.327 | 0.298 | 0.266 | 0.232 | 0.197 | 0.162
2 3.00% 0 0.497 | 0.489 | 0.473 | 0.448 | 0.415 | 0.376
3 3.00% 0 0.521 | 0552 | 0.576 | 0.591 | 0.595 | 0.586
4 3.00% 0 0.400 | 0.454 | 0.508 | 0.562 | 0.611 | 0.652
2 5 3.00% 0 0.239 | 0.288 | 0.343 | 0.405 | 0.473 | 0.544
§ 6 3.00% 0 0.123 | 0.153 | 0.190 | 0.236 | 0.291 | 0.358
s 7 2.64% 0 0.059 | 0.073 | 0.090 | 0.115 | 0.147 | 0.189
> 8 2.16% 0 0.031 | 0.036 | 0.043 | 0.052 | 0.066 | 0.086
9 1.68% 0 0.019 | 0.020 | 0.023 | 0.026 | 0.030 | 0.037
10 1.20% 0 0.012 | 0.012 | 0.013 | 0.014 | 0.016 | 0.018
11 0.72% 0 0.007 | 0.007 | 0.007 | 0.007 | 0.008 | 0.009
12 0.24% 0 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.003

13 0.00% 0 0 0 0 0 0 0




|l - Tree approach to hedging defaults

* Dynamics of credit deltas ([6,9%] tranche)

OutStanding Weeks
Nominal 0 14 28 42 56 70 84
0 3.00% .017 0.012 0.008 | 0.005 0.003 0.002 0.001
1 3.00% 0 0.048 0.036 0.025 0.017 0.011 0.006
2 3.00% 0 0.133 0.107 0.083 0.061 0.043 | 0.029
3 3.00% 0 0.259 0.227 0.193 0.157 0.122 0.090
4 3.00% 0 0.371 0.356 0.330 0.295 | 0.253 | 0.206
5 3.00% 0 0.405 0.423 0.428 0.420 | 0.396 | 0.358
6 3.00% 0 0.346 0.392 0.433 0.465 | 0.482 0.481
7 3.00% 0 0.239 0.292 0.350 0.409 0.465 | 0.510
2 8 3.00% 0 0.139 0.181 0.232 0.293 0.363 | 0.436
E 9 3.00% 0 0.074 | 0.098 0.132 0.177 0.235 | 0.307
8 10 3.00% 0 0.042 0.053 0.070 0.095 | 0.132 0.183
§ 11 3.00% 0 0.029 0.033 0.040 0.051 0.070 | 0.098
12 3.00% 0 0.025 0.026 0.028 0.033 0.040 | 0.053
13 2.76% 0 0.022 0.022 0.022 0.024 | 0.026 | 0.031
14 2.28% 0 0.020 0.018 0.018 0.018 | 0.019 0.020
15 1.80% 0 0 0.015 0.014 | 0.014 | 0.014 | 0.014
16 1.32% 0 0 0.013 0.011 0.010 | 0.010 | 0.010
17 0.84% 0 0 0.009 0.008 0.007 0.006 | 0.006
18 0.36% 0 0 0.005 0.004 | 0.003 0.003 | 0.003
19 0.00% 0 0 0 0 0 0 0




|l - Tree approach to hedging defaults

— Equity tranche, R=30%

* Small dependence of credit deltas with respect to recovery rate

OutStanding Weeks
Nominal 0 14 28 42 56 70 84
0 3.00% 0.975 | 0.997 | 1.018 | 1.035 | 1.050 | 1.062 | 1.072
2 [ 1 2 44% 0.000 | 0.735 | 0.775 | 0.814 | 0.852 | 0.888 | 0.922
2 [2 1.88% 0.000 | 0.417 | 0.456 | 0.499 | 0.544 | 0.591 | 0.641
2 3 1.32% 0.000 | 0.178 | 0.200 | 0.225 | 0.253 | 0.286 | 0.324
s [ 4 0.76% 0.000 | 0.060 | 0.066 | 0.074 | 0.084 | 0.095 | 0.109
5 0.20% 0.000 | 0.011 | 0.011 | 0.013 | 0.014 | 0.015 | 0.017
6 0.00% 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
— Equity tranche, R=40%
OutStanding Weeks
Nominal 0 14 28 42 56 70 84
0 3.00% 0.967 | 0993 | 1.016 | 1.035 | 1.052 | 1.065 | 1.075
1 2.52% 0 0.742 | 0.786 | 0.828 | 0.869 | 0.908 | 0.943
212 2.04% 0 0439 | 0484 | 0532 | 0583 | 0.637 | 0.691
8 [3 1.56% 0 0.206 | 0233 | 0.265 | 0.301 | 0.343 | 0.391
Al 2 1.08% 0 0.082 | 0.093 | 0.106 | 0.121 | 0.141 [ 0.164
2 ['5 0.60% 0 0.029 | 0.032 [ 0.035 | 0.039 | 0.045 | 0.051
6 0.12% 0 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.007
7 0.00% 0 0 0 0 0 0 0




|l - Tree approach to hedging defaults

* Small dependence of credit deltas with respect to recovery rate
— Initial deltawith respect to the credit default swap index

Recovery Rates
Tranches 10% 20% 30% 40% 50% 60%
[0-3%)] 0.9960 0.9824 0.9746 0.9670 0.9527 0.9456
[3-6%] 0.1541 0.1602 0.1604 0.1616 0.1659 0.1604
[6-9%] 0.0164 0.0165 0.0168 0.0168 0.0168 0.0169

— Only asmall dependence of credit deltas with respect to recovery rates

® FHirst conclusion:
— Thanks to stringent assumptions
» credit spreads driven by defaults + homogeneity + Markovian
— |t is possible to compute a dynamic hedging strategy
» Based on the CDS index
— That fully replicates the CDO tranche payoffs




Il - Hedging credit spread risks for large portfolios

When dealing with the risk management of CDOs, traders
— concentrate upon credit spread and correlation risk
— Neglect default risk

What about default risk ?

— For large indices, default of one name has only a small direct
effect on the aggregate loss

Is it possible to build aframework where hedging default
risk can be neglected?
And where one could only consider the hedging of credit
spread risk?

— See paper “A Note on the risk management of CDOs’



Il - Hedging credit spread risks for large portfolios

* Main and critical assumption
— Default times follow a multivariate Cox process
» For instance, affine intensities
» Duffie & Garleanu, Mortensen, Feldhitter, Merrill Lynch

2. the default times follow a multivariate Cox process:

t
Tz-—inf{tER+,U@->exp (/ A@-,ude,)}, 1=1,...,n (2.2)
0

where A1, ..., A, are strictly positive, F - progressively measurable processes, Uy, ... U,
are independent random variables uniformly distributed on [0,1] wnder Q and F and

o(Uy,...  U,) are independent under Q.

* No contagion effects
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* No contagion effects

— credit spreads drive defaults but defaults do not drive credit
Spreads

— For alarge portfolio, default risk is perfectly diversified
— Only remains credit spread risks: parallel & idiosyncratic

* Main result
— With respect to dynamic hedging, default risk can be neglected
— Only need to focus on dynamic hedging of credit spread risks
> With CDS

— Similar to interest rate derivatives markets
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®* Formal setup

—  T3...,7,  default times

- N(@)=1,.i=L..n defaultindicators

- H=V nG(Ni(S),SS t) natural filtration of default times
- kK B;ckground (credit spread filtration)

— G, =H, VF enlargedfiltration, P historical measure

— L(t,T),i=1....,n timet price of an asset paying N.(T) at

time T
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® Sketch of the proof

* Step 1: consider some smooth shadow risky bonds

— Only subject to credit spread risk
— Do not jump at default times

* Projection of the risky bond prices on the credit spread filtration

Definition 3.2 The default free T' forward loss process associated with name 1 €
{0,... ,n}, denoted by p*(.,T) is such that for 0 <t < T:

pP(tT) 2 B [p'(T) | ] = B2 [N(T) | F] = Q(r: < T | ). (3.2)

Lemma 3.1 p(¢,7), i = 1,... ,n are projections of the forward price processes I'(t,T) on
-T_-t :

p'(t,T) = B9 [I'(¢,T) | o) , (3.3)

fori=1,... ,nand 0 <t < T,
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* Step 2. Smooth the aggregate |0ss process

® .. andthusthe tranche payoffs
— Remove default risk and only consider credit spread risk
— Projection of aggregate loss on credit spread filtration

Definition 3.1 We denote by p'(.), the default-free running loss process associated
with name ¢ € {0,... ,n}, which is such that for 0 <t < T

pi(t) £ E9[Ni(t) | Fi] = Q(ri <t | Ft) =1 — exp(—Ayy). (3.1)

Definition 3.5 default-free aggregate running loss process The default free aggregate
running loss at time t 18 such that for 0 <t <1

palt) 2 23" 9(0) 3.7



Il - Hedging credit spread risks for large portfolios

* Step 3. compute perfect hedge ratios of the smoothed
payof f
»With respect to the smoothed risky bonds

— Smoothed payoff and risky bonds only depend upon credit spread
dynamics

— Both idiosyncratic and parallel credit spread risks

— Similar to amultivariate interest rate framework

— Perfect hedging in the smooth market

Assumption 2 There exists some bounded F - predictable processes 01(.),... ,0,(.) such
that:
D)~ K)* = B2 (a0~ )] + 23 [ 000 T) 4 (42)
1=1

where z, is Fp-measurable, of Q-mean zero and Q -strongly orthogonal to p* (., T), ... ,p™(.,T).
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* Step 4. apply the hedging strategy to the true defaultable bonds

® Main result
— Bound on the hedging error following the previous hedging strategy
— When hedging an actual CDO tranche with actual defaultable bonds
— Hedging error decreases with the number of names

» Default risk diversification
Proposition 1 Under Assumptions (1) and (2), the hedging error e, defined as:

en = (L(T) — K)" — B9 [(1I,(T) - — = Z/ Hdli(t, T), (4.4)

is such that EX[| e, || is bounded by:

(- () 4

+E7| 2 [].

(%ﬂ ) (S @ <)+ 59 B

(4.5)
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* Provides a hedging technique for CDO tranches

— Known theoretical properties
— Takesinto account idiosyncratic and parallel gamma risks

— Good theoretical properties rely on no simultaneous defaults, no
contagion effects assumptions

— Empirical work remains to be done

* Thought provocative
— To construct a practical hedging strategy, do not forget default risk
— Equity tranche [0,3%]

— I Traxx or CDX first losses cannot be considered as smooth




Hedging credit spread risk for large portfolios

* Linking pricing and hedging ?
* The black hole in CDO modeling ?
* Standard valuation approach in derivatives markets
» Complete markets
» Price = cost of the hedging/replicating portfolio
* Mixing of dynamic hedging strategies
— for credit spread risk

* And diversification/insurance techniques
— For default risk




Conclusion

* Two different models have been investigated

* Contagion homogeneous Markovian models
— Perfect hedge of default risks
— Easy implementation
— Poor dynamics of credit spreads
— No individual name effects

* Multivariate Cox processes
— Rich dynamics of credit spreads
— But no contagion effects
— Thus, default risk can be diversified at the index level

— Replication of CDO tranches isfeasible by hedging only credit
spread risks.



