

Global Derivatives Paris 10 May 2006

Jean-Paul Laurent ISFA, University of Lyon, Scientific Consultant BNP Paribas laurent.jeanpaul@free.fr, http://laurent.jeanpaul.free.fr

Advanced Pricing of CDOs

- CDO pricing and product development
- Interpolation of base correlations
- Parametric factor copulas
- Non parametric factor approaches
- Loss dynamics
- Purpose of the talk
 - To give an overview of current issues in the pricing of CDOs and related products
 - Try to show some possible directions regarding future modelling

CDO pricing and product development

- CDO pricing and product development
 - Models drive product development
 - New products call for new pricing techniques
- Examples :
 - CDO, CDO squared do not involve the dynamics of the loss distribution
 - Which is required for forward starting CDOs
 - Options on tranches moreover require the joint dynamics of losses and premiums : dynamic loss models
 - Interest hybrids : rather call for intensity models
- The case of EDS, EDOs
 - Three or four years ago, was expected to be a booming market
 - Calls for structural, barrier type models, possibly with Levy processes well-suited for equity-credit hybrids
 - Market did not go in that direction yet

CDO pricing and product development

- The next markets shifts are not easy to forecast
 - *More liquidity on iTraxx, CDX related products ?*
 - More attachment points, more traded maturities
 - FTD on indices ?
- Depends on the bank strategy
 - Willingness to carry default, credit spread, correlation risk
 - Focus either on exotics, custom-made or rather promote standardized liquid plain vanilla product

CDO pricing and product development

- Global vs local pricing approaches
 - Global : aim is to provide a consistent framework for pricing and hedging a large range of products
 - Local : focuses on a specific product
 - Example : forward starting CDOs involve the joint distribution of aggregate loss over two time horizons
 - Local approach: extract the marginal loss distributions over the two maturities involved, then couple those marginals through some suitable copula
 - Global approach: construct a dynamic model of the loss, or of conditional copulas.
- Implementation constraints
 - Numerical efficiency
 - Large dimensional problems when dealing with a name per name approach
 - Factor approaches, large portfolio approximations
 - Calibration issues, risk management of parameters

Interpolation of base correlations

- Given base correlations of [0,3%] and [0,6%] (say)
 - Compute by linear interpolation (or other smoothing technique) the base correlation of a [0,5%] tranche (say)
- Pros
 - Easy to think of pricing procedure
- Cons
 - Does not always produce arbitrage free prices
 - Possibly some negative loss probabilities
 - Extrapolation for out of range attachment points is hazardous
 - Super-senior, [0,1%] tranches
 - Prices for a [6%,7%] depends on the pricing of the [0,3%] which is counterintuitive

Interpolation of base correlations

- Cons (following)
 - The market does not usually quote "zero-coupon CDO"
 - Base correlations are associated with loss distributions of different maturities
 - Smoothing in two dimensions (maturity + attachment/detachment points) and arbitrage-free constraints?
 - Loss must increase through time
 - First order stochastic dominance of loss distributions
 - Rescaling techniques for the pricing of bespoke and CDO squared often lead to arbitrary prices
 - Forward-starting CDOs ?

- Stochastic correlation, Random factor loadings
- Pros
 - Guarantee arbitrage-free prices of CDOs
 - Easy pricing of CDOs through semi-analytical methods
 - Sparse number of parameters
- Cons
 - not a perfect fit to market quotes
 - matching of both 5Y and 10Y tranches?
 - Need of some procedure for the pricing of bespoke
 - Though less arbitrary than base correlation approaches
 - False sense of security
 - example of stochastic correlation vs RFL, see below

- Modelling approaches
 - Direct modelling of L(t): <u>collective model</u>
 - Dealing with heterogeneous portfolios
 - non stationary, non Markovian
 - Aggregation of portfolios, bespoke portfolios?
 - Risk management of correlation risk?
 - Modelling of default indicators of names: <u>individual model</u>

$$L(t) = \sum_{i=1}^{n} LGD_i 1_{\tau_i \le t}$$

- Numerical approaches
 - e.g. smoothing of base correlation of liquid tranches

- Individual model / factor based copulas
 - Allows to deal with non homogeneous portfolios
 - Arbitrage free prices
 - non standard attachment –detachment points
 - Non standard maturities
 - Consistent pricing of bespoke, CDO², zero-coupon CDOs
 - Computations
 - Semi-explicit pricing, computation of Greeks, LHP
 - *But*...
 - Poor dynamics of aggregate losses (forward starting CDOs)
 - Risk management, credit deltas, theta effects
 - Calibration onto liquid tranches (matching the skew)

- Factor approaches to joint default times distributions:
 - V: low dimensional factor
 - Conditionally on V, default times are independent.
 - Conditional default and survival probabilities:

$$p_t^{i \mid V} = Q \left(\boldsymbol{\tau}_i \leq t \mid V \right), \quad q_t^{i \mid V} = Q \left(\boldsymbol{\tau}_i > t \mid V \right).$$

- Why factor models ?
 - *Tackle with large dimensions (i-Traxx, CDX)*
- Need of tractable dependence between defaults:
 - Parsimonious modelling
 - Semi-explicit computations for CDO tranches
 - Large portfolio approximations $L(t) \simeq p_t^{i|V}$

- Stochastic correlation
 - Latent variables $V_i = \tilde{\rho}_i V + \sqrt{1 \tilde{\rho}_i^2 V_i}, \quad i = 1, ..., n$

$$\tilde{\rho}_i = (1 - B_s)(1 - B_i)\rho + B_s$$

 $\tilde{\rho}_i$, stochastic correlation, $Q(B_s = 1) = q_s$), systemic state, $Q(B_i = 1) = q$, idiosyncratic state

Conditional default probabilities

$$p_t^{|V,B_s=0} = (1-q)\Phi\left(\frac{\Phi^{-1}(F(t)) - \rho V}{\sqrt{1-\rho^2}}\right) + qF(t), F(t) \text{ default probability}$$
$$p_t^{|V,B_s=1} = \mathbf{1}_{V \le \Phi^{-1}(F(t))}, \text{ comonotonic}$$

- Stochastic correlation $\tilde{\rho}_i = (1 B_s)(1 B_i)\rho + B_s$
 - Semi-analytical techniques for pricing CDOs available
 - Large portfolio approximation can be derived
 - Allows for Monte Carlo
 - $\rho, \searrow q_s, \searrow q \ leads \ to \ increase \ senior \ tranche \ premiums$
- State dependent correlation $V_i = m_i(V)V + \sigma_i(V)\overline{V_i}, i = 1,...,n$
 - Local correlation $V_i = -\rho(V)V + \sqrt{1 \rho^2(V)}\overline{V_i}$

• Turc et al

- Random factor loadings $V_i = m + (l1_{V < e} + h1_{V \ge e})V + v\overline{V_i}$
 - Andersen & Sidenius

- Distribution functions of conditional default probabilities
 - stochastic correlation vs RFL

- With respect to level of aggregate losses
- Also correspond to loss distributions on large portfolios

- Marginal compound correlation
 - Compound correlation of a $[\alpha, \alpha]$ tranche
 - Digital call on aggregate loss
 - obtained from conditional default probability distribution
 - Need to solve a second order equation
 - *zero, one or two marginal compound correlations*

- Marginal compound correlations:
 - With respect to attachment detachment point

- Stochastic correlation vs RFL
- zero marginal compound correlation at the expected loss

- Calibration history (from 15 April 2005)
 - Implied correlation, implied idiosyncratic and systemic probabilities

- Trouble in fitting during the crisis
- Since then, decrease in systemic probability

- Still remains in the factor copula framework
 - Semi-analytical pricing techniques for CDOs
 - Taking into account heterogeneity across names
- Non parametric specification of conditional default probabilities $p_t^{i|V}$
 - Under some constraints $t \le t' \Rightarrow p_t^{i|V} \le p_{t'}^{i|V}$
 - Consistency with marginal credit curves $E^{Q} | p_{t}^{i|V} | = Q(\tau_{i} \leq t)$
 - Consistency with quotes of liquid tranches $E\left|\left(p_{t}^{i|V}-k_{i}\right)^{+}\right|=\pi_{i,t}$
 - Local correlation, implied copulas, entropic calibration

- Implied copula (Hull & White)
 - discrete distribution of conditional default probabilities $p_t^{i|V}$
- Local correlation

$$V_i = -\rho(V)V + \sqrt{1 - \rho^2(V)}\overline{V_i}$$

- Can be computed from the distribution of $p_t^{i|V}$
 - Through some fixed point algorithm
- Local correlation at step one: rescaled marginal compound correlation
 - Same issues of uniqueness and existence as marginal compound correlation

• Local correlation associated with RFL (as a function of the factor)

- Jump at threshold 2, low correlation level 5%, high correlation level 85%
- Possibly two local correlations

- Local correlation associated with stochastic correlation model
 - With respect to factor V

- Correlations of 1 for high-low values of V (comonotonic state)
- Possibly two local correlations leading to the same prices
- As for RFL, rather irregular pattern

- Entropic calibration
 - Start from some base parametric factor model
 - g_0 a priori density function of $p_t^{i|V}$
 - Look for some a posteriori density function g of $p_t^{i|V}$

$$\min_{g} \int g(p) \ln \frac{g(p)}{g_0(p)} dp$$

under consistency constraints
$$\int_{0}^{1} (p - k_i)^+ g(p) dp = \pi_i$$
$$g(p) = g_0(p) \exp\left(\lambda + \sum_{i=1}^{I} \lambda_i (p - k_i)^+\right)$$

Semi-analytical form of the distribution of default probabilities

i=0

Guarantees positivity

Loss dynamics

- Loss dynamics for factor models
- Consider the large portfolio approximation: $L(t) \simeq p_t^{i|V}$
- As a consequence L(t) and L(t') are "perfectly correlated" (comonotonic)
 - Forward starting CDOs ?
- Dynamic factor approach $p_t^{i|V(t)}$
 - Under the constraint that $p_t^{i|V(t)}$ is stochastically increasing in t

Loss dynamics

- Dynamic models of the loss
 - Intensity models
 - Cox (doubly stochastic) models
 - Default times are independent upon some pre-specified default intensities
 - No jumps in credit spreads at default time arrivals
 - Factor approach still applicable (see Mortensen $V(t) = \int \lambda(s) ds$)
 - Allows to deal with name heterogeneity
 - Most likely to be well suited for analyzing hedging issues
 - Contagion models
 - Jumps in credit spreads at default time arrivals
 - Taking into account large portfolios
 - Numerical issues

Loss dynamics

- SPA, Schönbucher
 - The term structure of the aggregate loss distributions is the starting point
- Collective model of the loss
 - *Dealing with heterogeneity across names?*
 - Needs the set of loss distributions over all horizons as a starting point
 - Rather demanding
 - Small losses region
 - Well suited for standard indices
 - Bespoke ?
 - Well suited for path dependent loss payoffs
 - Specification of the volatility inputs ?
 - Hedging issues ?

Advanced Pricing of CDOs

- Linking pricing and hedging ?
- The black hole in CDO modelling ?
- Standard valuation approach in derivatives markets
 - Complete markets
 - Price = cost of the hedging/replicating portfolio
- Hedging CDOs with underlying CDS and indices

• Local risk minimization ?

Hedging non standard CDOs with liquid tranches