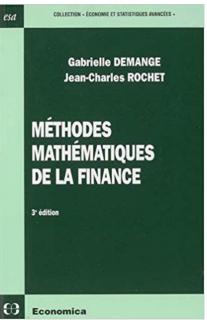
Ouvrage de référence pour la partie relative

aux actifs contingents



La fabrique des produits dérivés

- Cas statique : une seule période future
 - Exemple : credit default swaps (CDS)
 - Exemple: butterfly et options d'achat
 - Un actif risqué prenant des valeurs entières, options d'achat de prix d'exercice entiers et un actif sans risque
 - Prix des actifs contingents et probabilité risque-neutre : principe d'évaluation
 - Identification des états de la nature
 - Options digitales
 - Exercices : cas statique
- Introduction au cas dynamique : le modèle binomial

2

Évaluation par duplication : exercice

- On suppose que l'on peut acheter et vendre des pommes et des oranges, sans coûts de transaction
 - Pommes et oranges sont les actifs élémentaires

- On peut acheter un panier de 2 pommes et 3 oranges pour 8 euros
- On peut acheter un panier de 3 pommes et 3 oranges pour 9 euros
- Comment obtenir une pomme? Quel est son prix?
- Comment obtenir une orange? Quel est son prix?
- Quel est le prix d'un panier de n pommes et m oranges $(n, m \in \mathbb{N})$

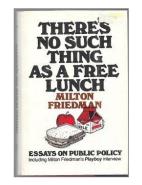
Évaluation par duplication : exercice

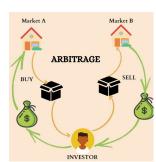
- Comment obtenir une pomme ? Quel est son prix ?
 - On achète le panier 2 et on vend le panier 1, ce qui permet d'avoir une pomme pour le prix d'un euro.
 - On achète trois paniers 1 et on vend deux paniers 2, ce qui nous permet d'avoir trois oranges au prix de $3 \times 8 2 \times 9 = 6$ euros, soit 2 euros par orange.
 - Passer de trois oranges à 6 euros à une orange à deux euros correspond à un stock split (division d'actions)
 - Le prix du panier est n + 2m euros
 - Le marché est ici complet et sans opportunité d'arbitrage
- On suppose maintenant que le prix du panier 1 est de 9 euros. Que se passe-t-il ?
- On suppose maintenant que le prix du panier 1 est de 10 euros. Que se passe-t-il?

5

Évaluation par duplication : exercice

- En achetant le panier 2 et en vendant le panier 1, il nous reste une orange gratuite.
 C'est ce qu'on appelle un « free lunch ».
- En achetant le panier 2 et en vendant le panier 1, on reçoit une orange et un euro en prime : on est payé pour recevoir une orange.
- Ces deux cas, prix de l'orange nul, prix de l'orange négatif correspondent à des opportunités d'arbitrage.
- Ecrire les contraintes sur le prix des paniers (notés x, y) pour qu'il n'y ait pas d'opportunité d'arbitrage.







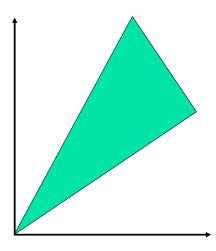
Évaluation par duplication : exercice

- On note p le prix d'une pomme et q le prix d'une orange.
- On cherche l'ensemble des (x, y) tels que :

$$\begin{cases}
2p + 3q = x \\
3p + 3q = y
\end{cases} \text{ avec } p, q > 0.$$

- En résolvant le système précédent, on obtient p = y x > 0et $q = x - \frac{2}{3}y > 0$
- Soit y > x et $y < \frac{3}{2}x$
- Par ailleurs les prix des paniers doivent être positifs : x, y > 0
- L'ensemble des (x, y) admissibles est facile à représenter graphiquement et forme un cône convexe épointé (voir transparent suivant)

A compléter ...



9 10

Évaluation par duplication

Évaluation par duplication

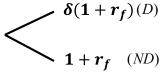
- L'évaluation par duplication à partir de produits financiers élémentaires est au cœur de l'approche de Modigliani et Miller
- On peut accéder à l'actif en achetant des actions et des obligations (les deux briques élémentaires ici)
 - On peut modifier le levier d'endettement au niveau de l'investisseur en variant la proportion d'actions et d'obligations
 - "No matter how hard he tries, a dairy farmer can't increase the value of his milk by selling the cream on the top separately from the milk on the bottom.
 - What he gains in price when selling the cream, he'll lose in price when selling the milk" (Modigliani et Miller)
 - C'est une image qu'il faut relativiser
 - Niches spécifiques d'investisseurs pour les actions et les obligations
 - Sans parler des financements hybrides, des divisions de titres, ...
 - Création de valeur dans le cadre de la finance structurée

14

Évaluation par duplication et credit default swap (CDS)

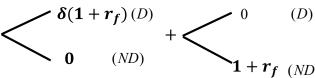
- Les actifs contingents sont proches de l'assurance
 - Si le revenu d'un agent est bas dans l'état D, il peut s'assurer contre ce risque en achetant de l'actif contingent à cet état
- Fabrication d'actifs contingents au défaut de l'entreprise

Paiements de l'obligation risquée de taux nominal r_f pour les états défaut (D) et non-défaut (ND)



 $oldsymbol{\delta}$: taux de recouvrement

Démembrement de l'obligation risquée en deux tranches

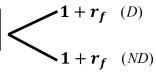


La somme des prix des actifs contingents est le prix de l'obligation risquée

Évaluation par duplication et Credit Default Swap (CDS)

- L'intermédiaire qui réalise le démembrement ...
 - a créé deux marchés à partir d'un seul, et ceci sans risque.
- Comment établir le prix relatif des nouveaux actifs (contingents)?
 - Supposons qu'il existe une obligation sans risque de défaut

Paiements de l'obligation sans risque de défaut de taux nominal \boldsymbol{r}_f



• Achat d'une obligation sans risque, vente d'une obligation risquée

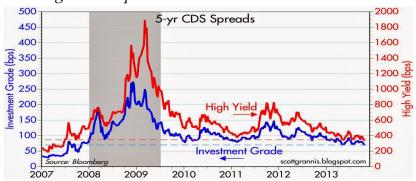
$$1+r_f-\delta(1+r_f)=(1-\delta)(1+r_f) \ (D)$$

$$1+r_f-(1+r_f)=0 \ (ND)$$
 Given Default

• Fabrication d'une assurance contre le défaut : CDS

Évaluation par duplication et CDS

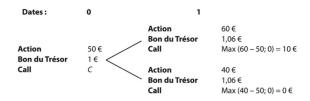
- Combinaison de plusieurs actifs existants
 - Ici actif « sans risque » et actif soumis au risque de défaut
- Prix de l'assurance contre le risque de défaut
 - Prix de l'obligation sans risque de défaut moins prix de l'obligation risquée



Évaluation par duplication

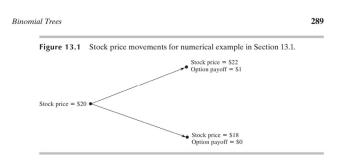
- Modèle à une période et deux états de la nature (suite)
 - Extrait du livre de Berk et de Marzo (Finance d'entreprise, partie 7 : options et finance d'entreprise)

On considère un call européen ayant pour sous-jacent une action et expirant dans une période. Son prix d'exercice est de 50 €. On suppose ici, comme dans toute la suite (sauf mention contraire), que l'action ne verse pas de dividende. L'action vaut 50 € au départ et ne peut prendre que deux valeurs à la fin de la période : 40 € (état baissier) ou 60 € (état haussier). Le bon du Trésor a une valeur initiale de 1 € et offre un taux de rendement de 6 % sur la période. Il est possible de résumer ces informations grâce à un arbre binomial. C'est un diagramme temporel dont chaque branche exprime un état de la nature possible à la fin de la période :



Évaluation par duplication

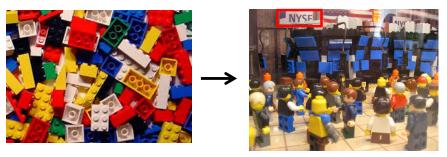
- Dans l'exemple précédent, on s'intéresse à la duplication du paiement d'une option d'achat à partir de l'actif sous-jacent et de l'actif sans risque.
- De même dans l'ouvrage très pédagogique sur les produits dérivés de Hull



Finance 'entreprise Jonathan Berk et Peter DeMarzo

Évaluation par duplication

- Tout produit financier peut être vu comme un portefeuille ou un assemblage d'actifs contingents
 - Actifs contingents : briques à partir desquelles on construits des produits dérivés, des produits financiers structurés



- Parallèle avec la physique des particules élémentaires
 - Plusieurs niveaux de désagrégation : atomes, protons, quarks

Deal-contingent hedging: a flexible way to mitigate risk Many CFOs assume that risks relating to M&A transactions from unpredictable events (eg Brexit) are difficult to mitigate. But mitigating the risk is achievable.

- You can use deal-contingent hedging in M&A situations to cost effectively manage FX and interest rate risks.
- A deal-contingent hedge combines the best aspects of a standard FX forward and an FX option: it requires no payment upfront, locks in a forward rate, and disappears if the M&A fails.
- Deal-contingent interest rate hedging is also popular given the growing prospect of US rate rises and increasing bond vields.

Identification des scénarios

- Contingence : selon Aristote, ce qui s'oppose à nécessaire
- Nécessaire : ce qui ne peut être autrement
- Dans un monde où tout peut être parfaitement prévu (déterminisme de Laplace), il n'y a pas de contingence, tout est nécessaire
- Mais dans la gestion des affaires, il est utile d'envisager différents scénarios et d'avoir des stratégies de gestion adaptées aux différents scénarios

NOMURA

La contingence, l'aléatoire, le hasard sont consubstantiels à une bonne gestion des affaires et des risques.

Identification des états de la nature?

- Cas simple où on ne s'intéresse qu'à un actif financier, disons une action
 - Le prix d'une action demain sera un multiple du « ticksize » (échelon de cotation)
 - L'unité est le tick size
- S'il y a un carnet d'ordres et s'il y a suffisamment d'ordres limites, tout nouvel ordre s'exécutera au tick le plus proche, puis le suivant, etc. du fait de la priorité par les prix
 - On ne peut sauter que d'un tick à la hausse ou à la baisse
 - Changements de prix : suite binaire 100011 ... où 1 est associé à hausse d'un tick et 0 baisse d'un tick

Identification des états de la nature?

- Un modèle de microstructure va chercher à représenter de manière probabiliste la date d'arrivée du prochain saut à la hausse ou à la baisse
 - N_t^h processus à valeurs dans N donnant le nombre de sauts à la hausse à la date t.
 - N_t^b nombre de sauts à la baisse à la date t
 - Variation du prix entre t_0 et $t N_t^h N_{t_0}^h (N_t^b N_{t_0}^b)$
 - *Un raisonnement purement inductif et l'analyse* institutionnelle nous conduit à dire qu'il n'y a que deux prix états futurs possibles
 - Mais, il se pourrait néanmoins que l'on observe un jour une suite 1000112 (le prix saute de deux ticks)

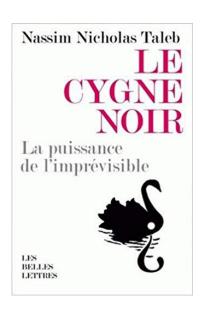
Identification des états de la nature

- Se limiter à deux états de la nature revient à ignorer des événements rares (et difficilement quantifiables).
 - Un ordinateur ne connaît pas ces éléments de contexte
 - Si on lui demande de traiter des suite binaires 0100010101 ...
 - Une extrapolation de la suite précédente doit nécessairement se limiter à un choix dans {0,1}
- Celui qui programme l'ordinateur fait un choix de modélisation
 - L'absence passée d'un saut de deux ticks ne garantit pas une absence future.
 - On nous présente la série de cours boursiers précédente
 - Nous la faisons rentrer dans la <u>catégorie</u> « cours boursiers »

Identification des états de la nature

- La série présentée hérite des propriétés de la catégorie
 - Doit-on considérer que cette catégorie se limite à des variations d'un tick?
- Ces processus inductifs de catégorisation sont rapides et automatiques : « système 1 » de Daniel Kahneman.
 - Ils se traduisent également dans le langage :
 - On voit un cygne blanc. On dit « Le cygne est blanc » (constatation)
 - On voit beaucoup de cygnes blancs (et jamais de noir)
 - « Le cygne est blanc » devient un attribut du cygne (propriété générale)
 - L'apparition d'un **cygne noir** (krach) est un « unknown unknown » : état de la nature qui n'avait pas été considéré, dont on n'avait pas conscience qu'il avait été négligé

25



Identification des états de la nature

- Le cas des taux d'intérêt négatifs
- Pendant longtemps, on a considéré que les taux nominaux ne pouvaient être négatifs
 - Quelques contre-exemples : taxe sur les dépôts non résidents en francs suisses
 - Un taux d'intérêt négatif sur les dépôts à vue impliquerait un arbitrage vers les espèces
 - Malgré les limites à stocker, payer en espèces ou retirer des espèces
 - D'où l'utilisation de modèles log-normaux pour les taux
 - *Un* « put » (floor) sur taux avec un prix d'exercice nul aurait donc dû avoir une prime nulle

Identification des états de la nature

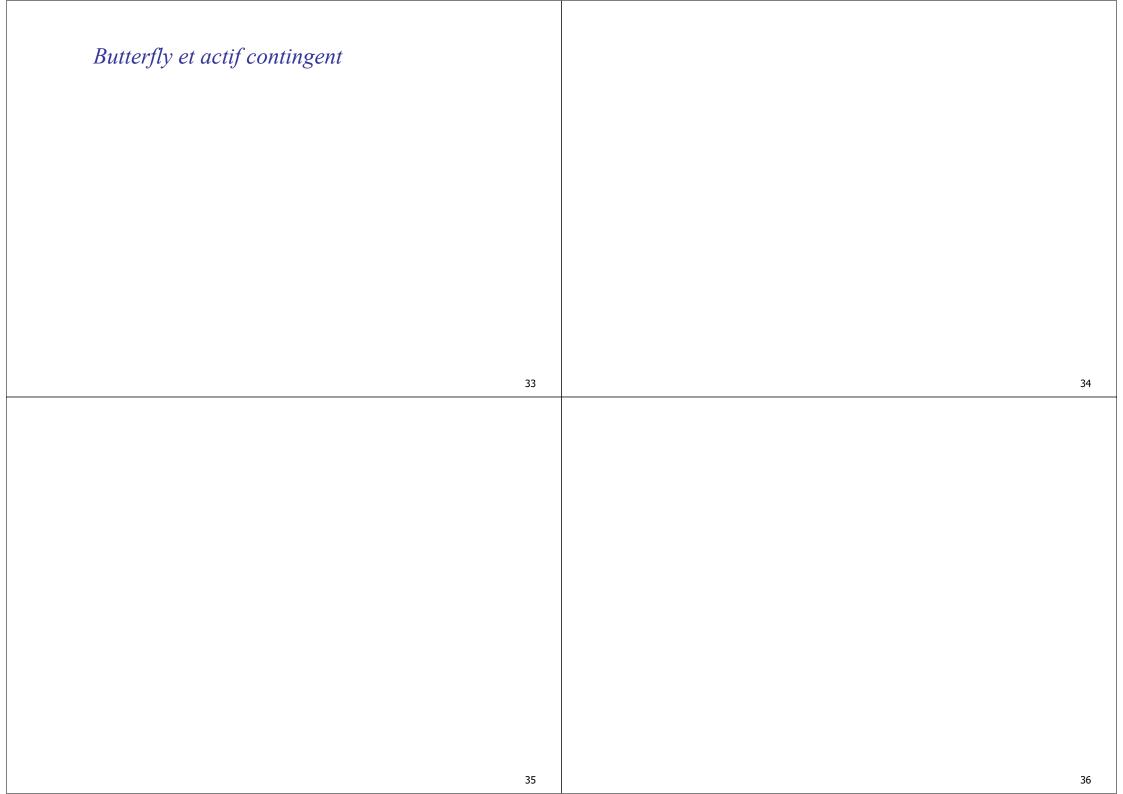
- Modification des politiques monétaires des banques centrales, notamment la BCE
 - Prêts aux banques (MRO Main Refinancing Operations), rémunération des réserves à taux négatif
 - Achat de dettes d'état et d'entreprise sur le marché secondaire (quantitative easing)
 - Beaucoup de taux interbancaires et d'obligations négatifs.
 - Primes de floors positives
 - Plus de borne inférieure naturelle en zéro
 - Distributions de probabilité des taux d'intérêt associées aux pricers et aux modèles de risque : soit les taux ne sont pas bornés inférieurement, soit on introduit une barrière qui a un caractère plus ou moins arbitraire (et peut être modifiée)

Identification des états de la nature

- Dans l'exemple précédent, on peut considérer des valeurs négatives des taux d'intérêt
- Mais va-t-on leur associer une probabilité nulle ou strictement positive ?
 - Probabilité nulle avec un espace d'état fini : impossibilité
 - Ce n'est pas vrai dans le cas continu : si on considère une loi uniforme sur [0,1], la probabilité d'obtenir une valeur disons égale à 0,1 est nulle. Mais pour ce tirage n'est pas exclu pour autant.
- Supposons notre espace d'événements élémentaires {0,1,...,S} doté d'une probabilité « objective »
 - L'existence de cette mesure de probabilité objective est <u>postulée</u> (c'est un axiome dans l'approche standard de Kolmogorov.

Identification des états de la nature

- $p_0, ..., p_S$: probabilités d'être dans les états 0, 1, ..., S
- Version simple de l'absence d'opportunité d'arbitrage : $p_s > 0 \Rightarrow q_s > 0$. En effet, $q_s = 0$ correspondrait à un ticket de loto gratuit
- Et la réciproque $q_s > 0 \Rightarrow p_s > 0$: $p_s = 0$ correspond à un événement impossible et personne ne souhaiterait payer pour s'assurer contre un événement impossible
- $P \sim Q$. Les deux mesures sont équivalentes : elles ont les mêmes ensembles de mesure positive et de mesure nulle
- La mesure de probabilité risque-neutre Q est observable (contrairement à P).
- Son « objectivité » (sa rationalité) est celle du marché financier (et non pas des acteurs de marché)



Actifs contingents : valeurs discrètes de l'actif sousjacent

- Exemple : actif sous-jacent pouvant prendre les valeurs 0,1,2,3,4,5
- Actif contingent à l'état 3 représenté par un vecteur

$$\tilde{V} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 État de la nature (microéconomie)
$$\Leftrightarrow \text{Scénario (finance)} \\ \Leftrightarrow \text{Événement élémentaire : probabilités}$$

État de la nature (microéconomie)

- $V_0 = V_1 = V_2 = 0, V_3 = 1, V_4 = V_5 = 0,$

Actifs contingents aux états (futurs) de la nature

• Considérons des options d'achat de prix d'exercice 0,1,2,..., 4

•
$$\tilde{S} = (\tilde{S} - 0)^+ = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$
: actif sous-jacent \Leftrightarrow option de strike 0

$$(\tilde{S} - 1)^{+} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, (\tilde{S} - 2)^{+} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}, \dots, (\tilde{S} - 4)^{+} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

37

$$\bullet \quad \alpha_0 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \alpha_1 \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} + \alpha_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} + \alpha_5 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

- $V_0 = \alpha_0 = 0$ (à partir de la première ligne)
- $V_1 = \alpha_0 + \alpha_1 \times 1 = 0 \Longrightarrow \alpha_1 = 0$
- $V_2 = \alpha_0 + \alpha_1 \times 2 + \alpha_2 \times 1 = 0 \Rightarrow \alpha_2 = 0$
- $V_3 = \alpha_0 + \alpha_1 \times 3 + \alpha_2 \times 2 + \alpha_3 \times 1 = 1 \Rightarrow \alpha_3 = 1$
- $V_4 = \alpha_0 + \alpha_1 \times 4 + \alpha_2 \times 3 + \alpha_3 \times 2 + \alpha_4 \times 1 = 0 \Rightarrow \alpha_4 = -2$
- $-3\alpha_{3}-2\alpha_{4}=1$
- $\alpha_0 = \alpha_1 = 0, \alpha_2 = 1, \alpha_3 = -2, \alpha_4 = 1, \alpha_5 = 0$

Actifs contingents aux états (futurs) de la nature

• $\Omega = \{\omega_0, ..., \omega_s\}$: Espace des états (futurs) de la nature. $S \in \mathbb{N}$

•
$$\tilde{V} = \begin{pmatrix} V_0 \\ V_1 \\ \vdots \\ V_{S-1} \\ V_S \end{pmatrix}$$
 vecteur (ou variable aléatoire) associé à

un portefeuille de titres, de produits structurés

- $V_1, \dots, V_S \in \mathbb{R}, \, \tilde{V} \in \mathbb{R}^{S+1}$
- V_s est le paiement dans l'état s, exprimé dans une unité de compte donnée, par exemple euro ou dollar

Actifs contingents aux états (futurs) de la nature

• On va considérer un actif sous-jacent (prix positif) et des options d'achat sur cet actif, de prix d'exercice 0,1,2,...,S-1

$$\tilde{S} = (\tilde{S} - 0)^{+} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ \vdots \\ S - 1 \\ S \end{pmatrix}$$
: l'actif sous-jacent est une option de strike 0

$$(\tilde{S}-1)^{+} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ S-2 \\ S-1 \end{pmatrix}, (\tilde{S}-2)^{+} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \vdots \\ S-2 \end{pmatrix}, \dots, (\tilde{S}-(S-1))^{+} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Actifs contingents aux états (futurs) de la nature

• $Cas\ avec\ S + 1 = 6\ \'etats\ de\ la\ nature$

$$M = \begin{pmatrix} 1 + r_f & 0 & 0 & 0 & 0 & 0 \\ 1 + r_f & 1 & 0 & 0 & 0 & 0 \\ 1 + r_f & 2 & 1 & 0 & 0 & 0 \\ 1 + r_f & 3 & 2 & 1 & 0 & 0 \\ 1 + r_f & 4 & 3 & 2 & 1 & 0 \\ 1 + r_f & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

•
$$\det(M) = 1 + r_f > 0$$

Actifs contingents aux états (futurs) de la nature

•
$$A_F = \begin{pmatrix} 1 + r_f \\ 1 + r_f \\ \vdots \\ 1 + r_f \end{pmatrix}$$
, vecteur de paiement associé à l'actif sans

risque

$$M = \left(A_F, \tilde{S}, \left(\tilde{S} - 1 \right)^+, \dots, \left(\tilde{S} - (K - 1) \right)^+ \right)$$

- M matrice carrée $(S + 1) \times (S + 1)$ triangulaire inférieure.
 - Les éléments diagonaux sont non nuls,
 - Son déterminant également (car produit des éléments diagonaux)
 - $det(M) = 1 + r_f$
- M est inversible (ou de rang plein): $\exists M^{-1}$ tel que $M \times M^{-1} = M^{-1} \times M = Id_{S+1}$

Duplication (statique) à partir d'options.

- Portefeuille constitué à partir des actifs
 - $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_S \in \mathbb{R}$

$$\alpha_0 \times A_F + \alpha_1 \times \tilde{S} + \dots + \alpha_S \times (\tilde{S} - (S - 1))^+ = \left(A_F, \tilde{S}, (\tilde{S} - 1)^+, \dots, (\tilde{S} - (S - 1))^+\right) \times \begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_S \end{pmatrix} = M \times \alpha$$

- $\alpha_0 A_F$ correspond au vecteur de paiements associé à α_0 unités d'actif sans risque, $\alpha_1 \tilde{S}$ correpond à l'achat de α_1 actions, etc.
- La première égalité s'obtient en développant le terme de droite

■ Trouver
$$\alpha = \begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_S \end{pmatrix}$$
 tel que $M \times \alpha = \tilde{V}$: $\alpha = M^{-1} \times \tilde{V}$

42

Duplication (statique) à partir d'options.

- On peut obtenir les α_s , $s \in \{0,1,...,S\}$ de manière itérative
 - $V_0 = \alpha_0 \times (1 + r_f) \Longrightarrow \alpha_0 = \frac{V_0}{1 + r_f}$
 - $V_1 = \alpha_0 \times (1 + r_f) + \alpha_1 \times 1 \ (car S_1 = 1)$
 - Connaissant déjà α_0 , on en déduit α_1
 - $V_2 = \alpha_0 \times (1 + r_f) + \alpha_1 \times 2 + \alpha_2 \times 1$
 - Connaissant déjà α_0 et α_1 , on en déduit α_2
- S'il y a au moins S + 1 actifs, tels que la matrice des paiements associés à ces actifs, M est inversible, alors on peut dupliquer tout vecteur de paiement futur \tilde{V} (produit structuré) à partir de ces actifs.
 - Le prix (aujourd'hui) de \tilde{V} est le coût de constitution du portefeuille dupliquant (en l'absence d'opportunités d'arbitrage)

Actifs contingents : cas avec $S + 1 \in \mathbb{N}$ *états*

$$\bullet \quad e_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_S = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} e_0, \dots, e_S, \text{ vecteurs de}$$

paiement associés aux actifs contingents aux états de la nature

• $(e_0, ..., e_S)$ base canonique de \mathbb{R}^{S+1}

$$M = (e_0 e_1 e_2 e_3 \dots e_S) = Id_{S+1}. Id_6 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

 $M \times \alpha = Id_{S+1} \times \alpha = \tilde{V} \Longrightarrow \alpha = \tilde{V}$

Actifs contingents

$$\tilde{V} = \begin{pmatrix} V_0 \\ V_1 \\ \vdots \\ V_{S-1} \\ V_S \end{pmatrix} = V_0 \times \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + V_1 \times \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \dots + V_S \times \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

- $\tilde{V} = V_0 \times e_0 + V_1 \times e_1 + \dots + V_S \times e_S$
- Tout vecteur de paiements (futurs) s'écrit immédiatement comme une combinaison linéaire d'actifs contingents
- C'est un portefeuille d'actifs contingents
- Il est plus simple d'utiliser les actifs contingents, même s'il est plus courant de traiter des calls et des puts sur les marchés
 - Bourse de Paris, au 19^e siècle : stellages (strangles)
 - Aujourd'hui, calls vendus avec leur couverture

46

Actifs contingents

- Arbre des états de la nature et actifs contingents
 - Deux dates : aujourd'hui et demain

• Arbre des états de la nature :

• Ici, 3 états de la nature, notés (a), (b), (c)

• *On sait à la date future quel état se réalise*

• Actif contingent à la réalisation de l'état (a)

- Le risque est lié à la méconnaissance aujourd'hui de l'état futur.
- Un actif contingent transfère de la richesse entre aujourd'hui et demain
 - Conditionnellement à la réalisation d'un état (ici l'état (a))

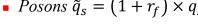
Prix d'actifs contingents et probabilités risque-neutre

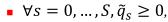
- Notons q_s le prix aujourd'hui d'un actif contingent à l'état s
 - Paye 1 si l'état s se réalise et 0 sinon.

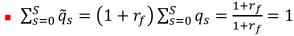
- Évaluation par duplication
 - **Produit financier** qui paye à son détenteur V_1 si l'état 1 se réalise, ..., V_S si l'état S se réalise.
 - Produit financier: assemblage ou portefeuille d'actifs contingents.
 - Peut être dupliqué par la détention de V₁ unités d'actif contingent à l'état $1, ..., V_S$ unités d'actif contingent à l'état S
 - Coût de duplication : Montant de l'investissement pour constituer le portefeuille dupliquant, soit $\sum_{s=0}^{S} q_s V_s$

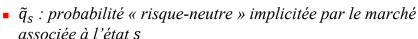
Taux sans risque, probabilité risque neutre

- Remarque : $\forall s = 0, ..., S, q_s \ge 0$
 - Sinon opportunité d'arbitrage
 - Posons $\tilde{q}_s = (1 + r_f) \times q_s$



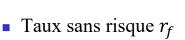






- Valeur aujourd'hui:
- $\sum_{S=0}^{S} q_S V_S = \frac{1}{1+r_f} \sum_{S=0}^{S} \tilde{q}_S V_S = \frac{1}{1+r_f} E^Q \left[\tilde{V} \right]$
 - Où Q est la probabilité risque-neutre (définie sur $(\Omega, P(\Omega))$
 - \tilde{V} : variable aléatoire, prenant les valeurs $V_0, ..., V_S$

Taux sans risque, probabilité risque neutre



- Un investissement de 1 aujourd'hui dans l'actif sans risque rapporte $1 + r_f$ dans tous les états de la nature
- $V_0 = V_1 = \cdots = V_S = 1 + r_f$
- Prix de l'actif sans risque = 1
- $\bullet \Rightarrow 1 = \sum_{s=0}^{s} q_s \times (1 + r_f) = (1 + r_f) \times \sum_{s=0}^{s} q_s$
- $\Rightarrow \sum_{s=0}^{S} q_s = \frac{1}{1 + r_f}$
- Remarque : si on a S + 1 états, les payoffs des calls engendrent un espace vectoriel de dimension S + 1
 - On a S + 1 vecteurs linéairement indépendants
- L'actif sans risque permet de « compléter » le marché, c'està-dire d'avoir une base de \mathbb{R}^{S+1}

Option digitale (binary option) et probabilité risque-neutre

- Un call digital a un paiement à l'échéance égal à 1 si $A_1 > K$ où K est le prix d'exercice. Si $A_1 \le K$ le paiement est nul.
- On notera $C_h(K)$ la prime de cette option
- $C_b(K) = \frac{1}{1+r_f} E^Q [1_{A_1 > K}]$, où Q est la probabilité dite « risque-neutre » et r_f le taux sans risque
 - Pour une option d'achat $C(K) = \frac{1}{1+r_f} E^Q[(A_1 K)^+]$
- Considérons le paiement $1_{A_1 \ge K} = 1_{A_1 > K} + 1_{A_1 = K}$
- On notera $\overline{C}_b(K)$ la prime de cette option
- $\bar{C}_b(K) = C_b(K) + \frac{1}{1+r_f}Q(A_1 = K)$
 - $\bar{C}_b(K) = C_b(K)$ s'il n'y a pas de masse de probabilité en K

Option digitale (binary option) : rappels de probabilités

- $E^{Q}[1_{A_1>K}] = Q(A_1 > K) \times 1 + (1 Q(A_1 > K)) \times 0 = Q(A_1 > K) = S(K)$
- Fonction de répartition de A_1 ?
- $x \to F(x) = Q(A_1 \le x)$ définition
- $x \to S(x) = Q(A_1 > x) = 1 F(x)$ fonction de survie
- A quel paiement futur correspond la fonction de répartition ?
- $F(K) = Q(A_1 \le K) = E^{Q}[1_{A_1 \le K}]$

Option digitale (binary option) et probabilité risque-neutre

Profils de risque du call digital et du call spread

1

Call spread : on achète $\frac{1}{\varepsilon}$ calls de strike $K-\varepsilon$ et on vend $\frac{1}{\varepsilon}$ calls de strike K

Valeur de l'actif sous-jacent A_1

$$K-\varepsilon$$
 K

- Si $A_1 \ge K$ et $\varepsilon > 0$, $\frac{1}{\varepsilon} \times \left(\left(A_1 (K \varepsilon) \right)^+ (A_1 K)^+ \right) = 1$
- Paiement du call spread \geq à celui du call digital et converge simplement vers $1_{A_1 \geq K} : \frac{1}{\epsilon} \times \left(\left(A_1 (K \epsilon) \right)^+ \left(A_1 K \right)^+ \right) \rightarrow 1_{A_1 \geq K}$

Option digitale (binary option) et probabilité risque-neutre

- $\frac{1}{\varepsilon} \times \left(\left(A_1 (K \varepsilon) \right)^+ (A_1 K)^+ \right) \to 1_{A_1 \ge K}$ convergence des profils de paiement
- Prenons les espérances (sous probabilité risque-neutre). Par linéarité des espérances
- $E^{Q}\left[\frac{1}{\varepsilon}\times\left(\left(A_{1}-\left(K-\varepsilon\right)\right)^{+}-\left(A_{1}-K\right)^{+}\right)\right]=\frac{1}{\varepsilon}\times\left(E^{Q}\left[\left(A_{1}-K\right)^{+}\right]\right)$ $\left(K-\varepsilon\right)^{+}-E^{Q}\left[\left(A_{1}-K\right)^{+}\right]$
- $E^{Q}\left[\left(A_{1}-\left(K-\varepsilon\right)\right)^{+}\right]=\left(1+r_{f}\right)\times C(K-\varepsilon)$
- $E^{Q}[(A_1 K)^+] = (1 + r_f) \times C(K)$
- $= (1 + r_f) \times \frac{1}{\varepsilon} \times (C(K \varepsilon) C(K)) \to (1 + r_f) \times \overline{C}_b(K)$

Option digitale (binary option)

- Si $K \to C(K)$ est dérivable en K, alors $\frac{1}{\varepsilon} \times (C(K \varepsilon) C(K)) \to -C'(K)$ quand $\varepsilon \to 0$
- Conclusion : $\overline{C}_b(K) = -C'(K)$
- Le prix du call digital est alors égal à l'opposé de la dérivée de la prime du call (normal) par rapport au strike
- Comme $C'(K) \le 0$ (prime du call en fonction du strike décroissante), $\overline{C}_b(K)$ est bien positif

Option digitale (binary option)

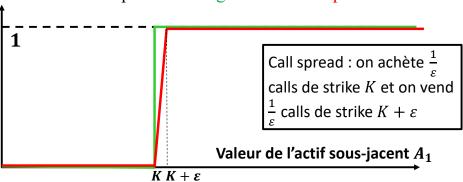
- OTTOTIONS
 TOTOTIONS
 TOTOTI
- Théorème de convergence dominée ou monotone
- $\lim_{\varepsilon \to 0^+} -\frac{C(K-\varepsilon) C(K)}{-\varepsilon} \ existe \ et \ est \ \acute{e} gale \ \grave{a} \ \bar{C}_b(K) = \frac{Q(A_1 \ge K)}{1 + r_f}$
 - $\frac{C(K-\varepsilon)-C(K)}{\varepsilon}$ prime du call spread digital associé au paiement en rouge
- $K \to C(K)$ est dérivable à gauche, de dérivée $-\bar{C}_b(K)$
- Approchons le paiement du call digital par en-dessous
 - Illustration graphique : voir transparent suivant
 - Soit ε , $\varepsilon > 0$ et le portefeuille constitué par l'achat de $1/\varepsilon$ call de strike K et la vente de $1/\varepsilon$ call de strike $K + \varepsilon$
 - Payoff: $\frac{1}{\varepsilon} \times \left((A_1 K)^+ \left(A_1 (K + \varepsilon) \right)^+ \right)$
 - $\lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \times \left((A_1 K)^+ \left(A_1 (K + \varepsilon) \right)^+ \right) = 1_{A_1 > K}$
 - $\varepsilon \to 0$: paiement du call spread tend simplement vers $1_{A_1 > K}$

57

Option digitale (binary option)

TOTOOOTT 1001000000111 TOTOOOTT 1000111010101

Profils de risque du call digital et du call spread

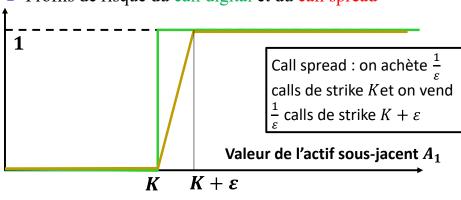


• Le paiement du call spread est supérieur ou égal à celui du call digital et converge simplement vers $1_{A_1>K}$

$$\frac{1}{\varepsilon} \times \left((A_1 - K)^+ - \left(A_1 - (K + \varepsilon) \right)^+ \right) \to 1_{A_1 > K}$$

Option digitale

• Profils de risque du call digital et du call spread



- $K \to C(K)$ est dérivable à droite, de dérivée $-C_b(K)$

Option digitale et probabilité risque-neutre

- Par le même raisonnement que précédemment,
- $K \to C(K)$ est dérivable à droite, de dérivée $-C_b(K) = \frac{Q(A_1 > K)}{1 + r_f}$
- Si $K \to C(K)$ est dérivable
 - Alors $K \to C(K)$ est dérivable à gauche et à droite et les deux dérivées sont égales

$$C'(K) = \lim_{\varepsilon \to 0} \frac{C(K+\varepsilon) - C(K)}{\varepsilon} = -\frac{Q(A_1 \ge K)}{1 + r_f} = -\frac{Q(A_1 > K)}{1 + r_f}$$

$$Et Q(A_1 = K) = 0$$

 Attention aux risques de manipulation du sous-jacent dans le cas d'options digitales.

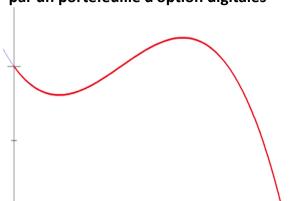
Option digitale et probabilité risque-neutre

- Récapitulons (sans hypothèse de dérivabilité) :
 - $\lim_{\varepsilon \to 0^+} -\frac{C(K-\varepsilon) C(K)}{-\varepsilon} = \bar{C}_b(K) = \frac{Q(A_1 \ge K)}{1 + r_f} fonction$ décroissante de K
 - $\lim_{\varepsilon \to 0^+} -\frac{C(K+\varepsilon) C(K)}{\varepsilon} = C_b(K) = \frac{Q(A_1 > K)}{1 + r_f} fonction$ décroissante de K

62

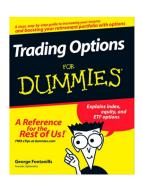
Cas continu : évaluation de la densité de probabilité risque-neutre

On peut approcher un profil de paiement général par un portefeuille d'option digitales



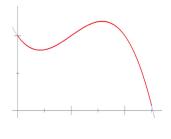
Bernhard Riemann

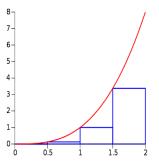
65



Profils de paiement généraux

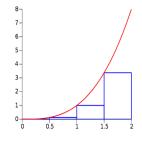
- On considère un profil de paiement général g
 - À l'échéance, l'acheteur de l'option exotique reçoit $g(A_1)$ où g est une fonction continue
 - On va considérer une subdivision de l'ensemble des valeurs possibles prises par l'actif sous-jacent 0, K₁, K₂, ..., K_n
 - On peut approximer la fonction g par une fonction en escalier prenant la valeur g(K_i) sur l'intervalle [K_i, K_{i+1}]
 - Voir graphique ci-contre





Profils de paiement généraux

- Approximation du profil de paiement général par une fonction en escalier
 - Prix du portefeuille d'options digitales
 - $\sum_{i} g(K_i) \times \left(C_b(K_i) C_b(K_{i+1}) \right)$
 - En faisant un développement limité et en supposant que K → C_b(K) continûment dérivable
 - $C_b(K_i) C_b(K_{i+1}) \simeq C'_b(K_i) \times (K_i K_{i+1})$
- On obtient la somme de Riemann
 - $\sum_{i} g(K_{i}) \times (C'_{b}(K_{i}) \times (K_{i} K_{i+1})) = -\sum_{i} g(K_{i}) \times C'_{b}(K_{i})(K_{i+1} K_{i})$
 - Quand le pas de la subdivision $K_{i+1} K_i$ tend vers 0, converge vers $-\int g(K)C'_h(K)dK$



Profils de paiement généraux

- La prime associée à un profil de paiement général peut se calculer à partir des primes des options digitales $C'_{b}(K)$
- Un profil de paiement général est la limite d'une suite de paiements associés à des fonctions en escalier
- On peut dupliquer le paiement général précédent par un portefeuille d'options digitales
 - On parle de duplication (« replication ») statique.
 - Comme $C_b(K) = -C'(K), C'_b(K) = -d^2C(K)/dK^2$
- La prime associée au profil de paiement $g(A_1)$ est donnée $\operatorname{par} \int_0^\infty g(K) \frac{d^2 C(K)}{dK^2} dK$
 - La primes des calls C(K) déterminent les primes associés à des profils de paiement généraux

Profils de paiement généraux

• Propriété (Breeden et Litzenberger) : La prime associée au profil de paiement $g(A_1)$ est donnée par $\int_0^\infty g(K) \frac{d^2 C(K)}{dK^2} dK$

Douglas Breeden

Bob Litzenberger

■ Dans le cas d'espace d'état continu, $K \to (1+r)\frac{d^2C(K)}{dK^2}$ est la fonction de densité associée à la probabilité risque neutre

Profils de paiement généraux

- Notons π , la fonction qui à un profil de paiement g, associe sa prime $\pi(g)$
- $\pi(g) = \int_0^\infty g(K) \frac{d^2 C(K)}{dK^2} dK$
- Par ailleurs $\pi(g) = \frac{1}{1+r} E^{Q}[g] = \frac{1}{1+r} \int_0^\infty f(K)g(K)dK$
 - Où f est la fonction de densité de la mesure de probabilité Q
 - Par identification, on obtient $f(K) = (1+r)\frac{d^2C(K)}{dK^2}$
 - Remarque : comme $K \to C(K)$ est convexe, $\frac{d^2C(K)}{dK^2} \ge 0$
 - Remarque : $\frac{d^2C(K)}{dK^2} \approx \frac{C(K+dK)-2C(K)+C(K-dK)}{(dK)^2}$ correspondant à une prime de butterfly.

69

70

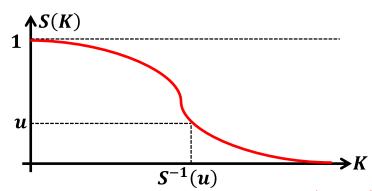
Options digitales et probabilités

- Option digitale de strike nul
 - Rapporte 1 si l'actif sous-jacent a une valeur positive ou nulle à l'échéance $A_1 \ge 0$
 - Ce qui est toujours vrai (pour un actif)
 - C'est un zéro-coupon
 - Valeur à la date initiale $C_b(0) = 1/(1+r_f)$ où r est le taux sans risque
- Notons $S(K) = (1 + r_f) \times C_b(K)$
- La fonction $K \in \mathbb{R}^+ \to S(K) \in \mathbb{R}^+$ est décroissante
 - $\lim_{K\to\infty} S(K)$ existe
 - Supposons que $\lim_{K\to\infty} S(K) = 0$
 - « trees don't grow to the sky » (Keynes)

John Maynard Keynes (1883-1946)

Options digitales et probabilités

• Supposons $K \to S(K)$ strictement décroissante et continue



- Pour $u \in [0,1[$, on peut définir $S^{-1}(u)$ par $S(S^{-1}(u)) = u$
 - S^{-1} fonction réciproque de S

Options digitales et probabilités

- Soit *U* une variable aléatoire distribuée uniformément sur l'intervalle [0,1]
 - Peut être simulée par la fonction alea d'Excel
 - La probabilité que U soit inférieure à un seuil $u \in [0,1]$ est donnée par P(U < u) = u
 - Par exemple, la probabilité que U soit inférieur à 0,5 est 1/2
- Définissons la variable aléatoire $A_1 = S^{-1}(U)$
- $A_1 > K \Leftrightarrow S^{-1}(U) > K \Leftrightarrow S(S^{-1}(U)) < S(K)$
 - Car S est décroissante. De plus $S(S^{-1}(U)) = U$
- La probabilité que A_1 soit supérieur à un seuil $K \in \mathbb{R}^+$ est donnée par $Q(A_1 > K) = Q(U < S(K)) = S(K)$

Options digitales et probabilités

- Récapitulons les résultats obtenus
 - Prime de l'option digitale : $C_b(K) = \frac{1}{1+r_f} \times S(K)$
 - r_f : taux d'intérêt sans risque entre date courante et date d'exercice
 - $S(K) = Q(A_1 > K)$
 - $C_b(K) = \frac{1}{1+r_f} \times Q(A_1 > K)$
 - Pour une variable aléatoire A_1 , la fonction $K \to S(K) = Q(A_1 > K)$ est appelée fonction de survie
 - $K \to Q(A_1 \le K) = 1 S(K)$: fonction de répartition
 - $(1+r)C_b(K)$ peut s'interpréter comme la probabilité que l'option digitale soit exercée
 - Ces probabilités dérivées des primes d'options sont dites « risque-neutres ».

74

Marchés incomplets

- Soit $m \in \mathbb{N}$ produits traités sur les marchés financiers
 - Il peut s'agir de l'actif sans risque, d'un actif sous-jacent, d'options d'achat ou de vente sur cet actif-sous-jacent
 - On suppose qu'il n'y aucune friction sur les marchés
- Comme précédemment S + 1 états de la nature
- Soit $k \in \{1, ..., m\}$.
- On note $H_k \in \mathbb{R}^{S+1}$, le vecteur de \mathbb{R}^{S+1} associé aux paiements futurs du produit financier k
 - $H_k = (h_{k1}, ..., h_{kS+1})$, (représentation avec matrice ligne)
 - h_{ki} : flux payé par le produit k à la date future dans l'état i
- $P_k \in \mathbb{R}$: prix payé à la date courante pour acquérir le produit financier k

Marchés incomplets

- Pour $\alpha_k \in \mathbb{R}$ unités de produit $k \in \{1, ..., m\}$ achetées, les flux futurs sont égaux à :
 - $\bullet \ \alpha_k H_k = \alpha_k \times (h_{k1}, \dots, h_{kS+1})$
- Et le prix d'acquisition à la date courante est $\alpha_k P_k$
- Pour un portefeuille constitué de α_1 unités de produit 1, ..., α_m unités de produit m, les flux futurs sont égaux à $\sum_{k=1}^{m} \alpha_k H_k$
- Et le prix d'acquisition en $\sum_{k=1}^{m} \alpha_k P_k$
- On notera H, le sous-espace vectoriel de \mathbb{R}^{S+1} engendré par les vecteurs H_1, \dots, H_m
- *H* : espace des vecteurs de paiement <u>atteignables</u>
 - $\dim H \leq \min(S+1,m)$

78

Marchés incomplets et complets

- Si $\dim H < S + 1$, on dit que le marché des produits financiers est incomplet
 - Cas notamment s'il y a moins de produits traités dans le marché que d'états de la nature
- Si dimH = S + 1, le marché est dit complet : $H = \mathbb{R}^{S+1}$
- Duplication des actifs contingents (Arrow-Debreu) e_i ,
 - Trouver $\alpha_1, ..., \alpha_m \in \mathbb{R}$, tels que $\sum_{k=1}^m \alpha_k H_k = e_i$, $i \in \{1, ..., S+1\}$?
 - Système de n équations linéaires à m inconnues $\alpha_1, ..., \alpha_m$
- Prix de duplication de l'actif contingent $e_i : \sum_{k=1}^m \alpha_k P_k$
- Existence, unicité, positivité des prix des actifs contingents ?

Marchés incomplets et complets

- Dans la suite, on supposera que les vecteurs $H_1, ..., H_m$ correspondant aux produits traités dans le marché financier sont linéairement indépendants
 - Pas de redondance d'actifs
 - Les produits atteignables ont un unique prix de duplication
- Si $m = S + 1, H_1, ..., H_m$ forment une base de \mathbb{R}^{S+1}
 - Autant de produits traités (linéairement indépendants) que d'état de la nature
 - Comme $H = \mathbb{R}^{S+1}$, tout produit financier est atteignable
- $\sum_{k=1}^{m} \alpha_k H_k = e_i, i \in \{1, ..., S+1\}$: système de Cramer
- Il existe un unique portefeuille de duplication et par conséquent un unique prix de duplication

Marchés incomplets et opportunité d'arbitrage

- Revenons maintenant au cas général $m \le S + 1$
- Opportunité d'arbitrage
 - Cas statique
- Définition : Opportunité d'arbitrage
 - Produit financier associé aux flux futurs $V_1, ..., V_{S+1}$ et de prix aujourd'hui P, tels que $\forall i = 1, ..., S+1, V_i \geq 0, -P \geq 0$ et au moins une inégalité est stricte
- On dit que les échéanciers $H_1, ..., H_m$ de prix $P_1, ..., P_m$ ne présentent pas d'opportunité d'arbitrage si tout échéancier de flux atteignable positif a un prix de duplication positif
- $\forall \alpha_1, \dots, \alpha_m \in \mathbb{R}, \sum_{k=1}^m \alpha_k H_k \ge 0 \Rightarrow \sum_{k=1}^m \alpha_k P_k \ge 0$

Marchés incomplets : à laisser de côté

- Remarque technique sur la définition de l'AOA
 - AOA : absence d'opportunité d'arbitrage
 - L'inégalité $\sum_{k=1}^{m} \alpha_k H_k \ge 0$ est à prendre au sens de l'ordre partiel dans \mathbb{R}^n
 - Toutes les coordonnées du vecteur $\sum_{k=1}^{m} \alpha_k H_k$ sont positives ou nulles
 - $\forall \alpha_1, ..., \alpha_m \in \mathbb{R}, \sum_{k=1}^m \alpha_k H_k \ge 0 \Rightarrow \sum_{k=1}^m \alpha_k P_k \ge 0$ est une implication de l'AOA
 - Si AOA, la propriété précédente est vérifiée
 - Mais la propriété précédente n'implique pas l'AOA
 - $H_1 = e_1$, $P_1 = 0$ est une OA et vérifie la propriété précédente
 - Problème technique (sans conséquence)

Marchés incomplets : à laisser de côté

• Point technique à laisser de côté!

- Comment résoudre la difficulté précédente ?
- Il suffit d'inclure le prix d'acquisition en t₀ dans le vecteur de paiement
- On définit $\widetilde{H}_k = (-P_k, H_k) \in \mathbb{R}^{S+2}, k = 1, ..., m$
- \widetilde{H} sous-espace de \mathbb{R}^{S+2} engendré par les \widetilde{H}_k
- Opportunité d'arbitrage :
 - Échéancier atteignable : un élément de \widetilde{H}
 - À flux positifs ou nuls : appartenant à $(\mathbb{R}^+)^{S+2}$
 - Un flux au moins non nul : l'échéancier ≠ vecteur nul (0, ..., 0)
 - Opportunité d'arbitrage un élément de $\widetilde{H} \cap ((\mathbb{R}^+)^{S+2} \setminus (0, ..., 0))$
 - AOA $\Leftrightarrow \widetilde{H} \cap ((\mathbb{R}^+)^{S+2} \setminus (0, \dots, 0)) = \emptyset$
 - $(\mathbb{R}^+)^{S+2}\setminus(0,...,0)$: Orthant positif épointé de \mathbb{R}^{n+1}

Marchés incomplets et opportunité d'arbitrage

- Existence de prix Arrow-Debreu positifs?
 - Soit $V = (V_1, ..., V_{S+1}) = \sum_{k=1}^m \alpha_k H_k \in H \subset \mathbb{R}^{S+1}$ un échéancier atteignable
 - V: échéancier associé à un portefeuille constitué des actifs traités sur le marché $H_1, ..., H_m$
 - V_i flux payé dans l'état $i, i \in \{1, ..., S + 1\}$
 - Notons f_i l'application coordonnée, qui à chaque échéancier $V \in H$ associe le flux payé à la date t_i
 - $V \in H \rightarrow f_i(V) = V_i$
 - e_i : échéancier associé au zéro-coupon de maturité t_i
 - f_i : forme linéaire définie sur H
 - Notons p, l'application linéaire qui à chaque échéancier
 V ∈ H associe son prix de duplication
 - $V \in H \to p(V) = \sum_{k=1}^{m} \alpha_k P_k$
 - *p* : forme linéaire définie sur *H*

82

Marchés incomplets et opportunité d'arbitrage

- Énoncé du lemme de Farkas
- $\{\forall V \in H, f_1(V) \ge 0, ..., f_{S+1}(V) \ge 0 \Rightarrow p(V) \ge 0\} \Leftrightarrow \exists q_1, ..., q_{S+1} \in \mathbb{R}^+, p = \sum_{i=1}^n q_i V_i$
- La proposition de gauche peut se réécrire :
- $\forall V = (V_1, ..., V_{S+1}) = \sum_{k=1}^{m} \alpha_k H_k$, $V_1 \ge 0, ..., V_{S+1} \ge 0$ $0 \Rightarrow \sum_{k=1}^{m} \alpha_k P_k \ge 0$
 - Il s'agit d'une implication de l'absence d'opportunités d'arbitrage au sein des échéanciers atteignables
- La proposition de droite peut se réécrire :
- $\exists q_1 \ge 0, \dots, q_{S+1} \ge 0, p(V) = \sum_{k=1}^m \alpha_k P_k = \sum_{i=1}^{S+1} q_i V_i$
- $q_1, ..., q_{S+1}$ prix des actifs contingents associés aux états associés aux états $i \in \{1, ..., S+1\}$

Marchés incomplets et opportunité d'arbitrage

- Le lemme de Farkas permet d'établir que l'absence d'opportunités d'arbitrage, implique l'existence de prix d'actifs contingents <u>positifs</u>
- Tels que les prix des produits financiers traités dans le marché s'écrivent comme l'espérance (actualisée) du payoff
 - $\sum_{i=1}^{S+1} q_i V_i$
- Il n'y a pas forcément unicité des prix des actifs contingents
- Les prix des actifs contingents peuvent être nuls ...
 - Avec la version utilisée du lemme de Farkas

Farkas

Synthèse des résultats théoriques

- S'il existe un actif sans risque, avec la transformation $\tilde{q}_s = (1 + r_f) \times q_s$, les \tilde{q}_s , s = 0,1,...,S forment un système de probabilités sur les états de la nature.
- *H* : espace vectoriel des produits financiers atteignables
- Si $H = \mathbb{R}^{S+1}$, tout produit financier est duplicable
- L'absence d'opportunité d'arbitrage implique l'existence de prix d'Arrow-Debreu positifs
 - Ou d'une probabilité risque-neutre
- Si $\dim H < S + 1$, le marché est incomplet
 - Si AOA, il existe plusieurs probabilités risque-neutre
 - Unicité des prix de duplication pour les produits atteignables
- $\dim H = S + 1$ et AOA, unique probabilité risque-neutre

Synthèse des résultats théoriques

- Ces résultats ont été établis dans le cas simple d'un espace d'états de dimension finie.
- Restent vrais pour l'essentiel pour des espaces d'état très généraux, à des complications techniques près
 - Définition de l'espace des produits atteignables
 - Définition de l'AOA
 - Définition de la notion de probabilité risque-neutre
 - Utile par exemple pour la théorie de l'évaluation des options de Black et Scholes
- Les propriétés AOA ⇒ existence de Q probabilité risqueneutre et marché complet + AOA ⇒ unicité de Q sont les deux propriétés importantes de la théorie des marchés de produits financiers dérivés

UU

Synthèse des résultats théoriques

- Si l'ensemble des actifs traités est constitué de calls de strikes donnés, de l'actif sous-jacent, de l'actif sans risque
- Une condition nécessaire est suffisante pour qu'il y ait absence d'opportunité d'arbitrage est que :
 - les prix des calls décroissent en fonction du strike
 - Les prix des calls soient une fonction convexe du strike
- Le caractère nécessaire est prouvé dans les corrigés des exercices (call-spreads et butterfly)
- Le caractère suffisant est admis, mais la démonstration ne présente pas de difficulté particulière
 - Comme vu dans les cas discret et continu, on peut relier primes de calls et probabilité risque-neutre
 - Unicité seulement si continuum de strikes

89

Exercice 1 : existence de probabilités risqueneutre en marchés incomplets

- Pour simplifier les notations, on pourra prendre le cas particulier où :
- $\{A_1^0, \dots, A_1^n\} \cup \{K_1 < \dots < K_m\} = \{A_1^0 = 0, K_1 = 0, K_2 = 2, A_1^1 = 3, A_1^2 = 4, K_3 = 4, K_4 = 5, A_1^3 = 6\} \text{ et } r_f = 0$
- On étudiera ce que signifie la convexité et la décroissance de l'ensemble des points
 {(K₁, C(K₁)), (K₂, C(K₂)), (K₃, C(K₃)), (K₄, C(K₄))}
- Les formes possibles de la fonction $K \in \mathbb{R}^+ \to \mathcal{C}(K)$
- L'ensemble des probabilités risque-neutre Q
- Enfin, on s'intéressera aux problèmes suivants :
- $\min_{Q} E^{Q}[(A_{1} K)^{+}] \text{ et } \max_{Q} E^{Q}[(A_{1} K)^{+}]$
 - Indication : utiliser les résultats précédents, les approches géométriques et l'intuition financière

Exercice 1 : existence de probabilités risqueneutre en marchés incomplets

- Soit un actif sous-jacent dont le prix à échéance est noté A_1
- On suppose que A_1 est une variable aléatoire positive prenant ses valeurs dans un ensemble fini ordonné de manière croissante $\{A_1^0, ..., A_1^n\}$ $\{0 \le A_1^0 < A_1^1 < \cdots < A_1^n\}$
 - Les valeurs ne sont pas forcément équiréparties
- On considère un ensemble de strikes fini et également ordonné $\{K_1 < \cdots < K_m\}$
- Il existe un actif sans risque de taux r_f
 - On suppose que les prix des calls décroissent en fonction du strike
 - On suppose que les prix des calls soient une fonction convexe du strike
 - Plus e condition additionnelle à déterminer ...
- Montrer qu'il existe une probabilité risque-neutre Q telle que $C(K_i) = 1/(1 + r_f) E^Q[(A K_i)^+]$ pour tout K_i

Corrigé exercice 6, examen 5 mai 2014 : voir énoncé sur le site du cours

- $P(A_1 = 90) = 0.3, P(A_1 = 120) = 0.7, A_0 = 100, r_f = 0$
 - $C_H = 1_{\{A_1 = 120\}}$
 - Duplicating portfolio

$$\begin{cases} \alpha \times 120 + \beta \times 100 = 1 \\ \alpha \times 90 + \beta \times 100 = 0 \end{cases}$$

- $\alpha = 1/30, \beta = -3/100$
- Replicating price = 100/30 3 = 1/3
- $C_B = 1_{\{A_1 = 90\}}$
 - Duplicating portfolio

$$\begin{cases} \alpha \times 120 + \beta \times 100 = 0 \\ \alpha \times 90 + \beta \times 100 = 1 \end{cases}$$

• Replicating price = -100/30 + 4 = 2/3

Corrigé partiel exercice 6, examen 5 mai 2014

- $P(A_1 = 90) = 0.3, P(A_1 = 120) = 0.7, A_0 = 90, r_f = 0$
 - $C_H = 1_{\{A_1 = 120\}}$
 - Duplicating portfolio

$$\begin{cases} \alpha \times 120 + \beta \times 100 = 1 \\ \alpha \times 90 + \beta \times 100 = 0 \end{cases}$$

- $\alpha = 1/30, \beta = -3/100$
- Replicating price = 90/30 3 = 0
- $C_B = 1_{\{A_1 = 90\}}$
 - Duplicating portfolio

$$\begin{cases} \alpha \times 120 + \beta \times 100 = 0 \\ \alpha \times 90 + \beta \times 100 = 1 \end{cases}$$

• Replicating price = -90/30 + 4 = 1

Du statique au dynamique

- Exemple (modèle binomial): hausse ou baisse du prix d'un titre.
 - deux états possibles à la date 1, $\Omega_1 = \{H_1, B_1\}$
 - Pour chaque état à la date 1, deux états possibles à la date 2. $\Omega_2^H = \{H_2^H, B_2^H\}, \Omega_2^B = \{H_2^B, B_2^B\}$
 - $\Omega = \Omega_1 \times \Omega_2^H \cup \Omega_1 \times \Omega_2^B = \{H_1 H_2^H, H_1 B_2^H, B_1 H_2^B, B_1 B_2^B\}$
 - Il y a donc quatre états de la nature correspondant à quatre trajectoires de prix
- Il faudrait 4 actifs contingents aux trajectoires (pathdependent) pour dupliquer statiquement tout vecteur de paiements
- Avec la possibilité d'acheter et de vendre actif sous-jacent et actif sans risque à la date 1, il suffit de 2 actifs

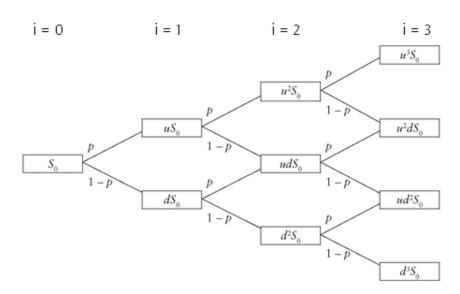
97

99

Prix d'options dans le modèle de Cox Ross et Rubinstein

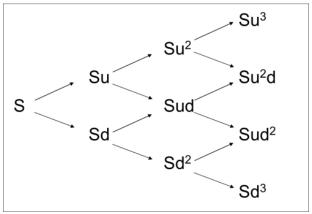
- Evolution des prix d'un action.
- En partant d'un prix initial A_0 , les prix peuvent être multipliés à chaque étape par u > 1 ou d < 1.
- On note r_f le taux sans risque entre deux périodes
- Au bout de $S \in \mathbb{N}$ étapes, il y a S + 1 valeurs possibles pour le prix à la date n, A_S : $A_0 d^S$, $A_0 u d^{S-1}$, $A_0 u^2 d^{S-2}$, ..., $A_0 u^S$
- p probabilité de hausse, q = 1 p probabilité de baisse.
 - Rappel: pour $n = 0, ..., S 1, A_n = \frac{1}{1+r_f} E^Q[A_{n+1}|A_n] =$ $A_n \frac{pu + (1-p)d}{1+r_f} \Rightarrow \mathbf{p} = \frac{1+r_f - d}{u - d}$

Actifs contingents et approches dynamiques : modèle binomial de Cox, Ross et Rubinstein



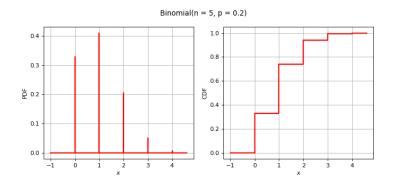
modèle de Cox Ross et Rubinstein

- Évolution des prix du sous-jacent dans un arbre binomial recombinant
- Dynamique « stationnaire »



Prix d'options dans le modèle de Cox Ross et Rubinstein

- Probabilité d'être dans l'état $s \in \{0, ..., S\}$ à la date S
 - $\tilde{q}_s = {S \choose S} p^s q^{S-s}, où {S \choose S} = \frac{S!}{(S-s)! \times s!}$
 - Le nombre de hausses du prix de l'actif sous-jacent suit une loi binomiale : https://en.wikipedia.org/wiki/Binomial distribution
 - Ci-dessous à gauche probabilités \tilde{q}_s pour S=5, p=0,2, à droite, le graphe de la fonction de répartition de la loi binomiale



Prix d'options dans le modèle de Cox Ross et Rubinstein

- Paiement à la date d'exercice S d'un call digital de strike

 K
 - Paiement de 1 si $A_S > K$, paiement de 0 si $A_S \le K$
 - Soit un paiement égal à $1_{A_S>K}$
- Le prix (à la date 0) de l'option digitale est
 - $C_b(K) = 1/(1+r_f)^S E^Q[1_{A_S > K}] = 1/(1+r_f)^S Q(A_S > K)$
- Call (option d'achat) de strike *K*
 - Paiement de $A_S K$ si $A_S > K$, paiement de 0 si $A_S \le K$
 - Soit un paiement égal à $(A_S K)^+ = \max(A_S K, 0)$
- $K \in \mathbb{R}^+ \to C(K)$ où C(K) est la prime du call de strike K
 - On va calculer C(K) en partant de $C(0) = A_0$ et des pentes de $K \to C(K)$

Prix d'options dans le modèle de Cox Ross et Rubinstein

- Loi de probabilité de l'actif
 - $K \in \mathbb{R} \to F(K) = Q(A_S \le K)$
 - *F* : fonction de répartition,
 - Caractérise la loi de probabilité de A_S
 - $K \rightarrow Q(A_S > K) = S(K) = 1 F(K)$: fonction de survie
 - Pour les lois de probabilités discrètes, la fonction de survie *S* et la fonction de répartition *F* sont constantes par morceaux

$$A_S > K \Leftrightarrow A_0 u^s d^{S-s} > K \Leftrightarrow s > \frac{\ln(K/(A_0 d^S))}{\ln(u/d)}$$

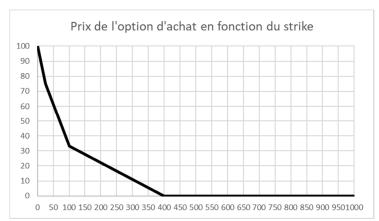
- Notons $s(K) = \left[\frac{\ln(K/(A_0 d^S))}{\ln(u/d)}\right]$
- [x]: partie entière de x (plus grand entier $\leq x$)
- $Q(A_S > K) = \sum_{S=S(K)}^S \tilde{q}_S$

Prix d'options dans le modèle de Cox Ross et Rubinstein

- Quand C(.) est dérivable : $C'(K) = 1/(1+r_f)^S Q(A_S > K)$
- $K \to Q(A_S > K)$ constante par morceaux
 - s = 0,1,...,S
 - Pour $K = A_0 u^s d^{S-s}$, saut de $\tilde{q}_S = Q(A_S = K) = Q(A_S \ge K) Q(A_S > K)$
 - Loi de probabilité discrète
 - $K \to C(K)$ linéaire par morceaux
 - $C(0) = A_0$
 - $K \in]0, A_0 d^S[$, pente de $K \to C(K)$ égale à $-\frac{1}{(1+r_f)^S}$
 - $K \in]A_0d^S, A_0ud^{S-1}[$, pente de $\frac{-1+\tilde{q}_0}{(1+r_f)^S}$
 - $K \in]A_0u^sd^{S-s}$, $A_0u^{s+1}d^{S-s-1}[$, pente de $\frac{-1+\tilde{q}_0+\cdots+\tilde{q}_s}{(1+r_f)^S}$

Prix d'options dans le modèle de Cox Ross et Rubinstein

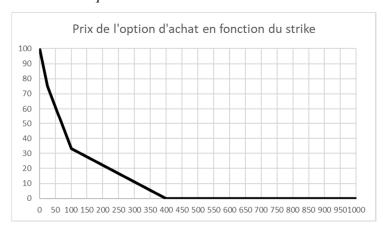
- Illustration graphique : $K \in \mathbb{R}^+ \to C(K)$ pour un modèle où le sous-jacent prend des valeurs discrètes
 - On remarque la décroissance et le caractère convexe



105

Prix d'options dans le modèle de Cox Ross et Rubinstein

- Illustration graphique : $K \in \mathbb{R}^+ \to C(K)$ pour un modèle où le sous-jacent prend des valeurs discrètes
 - On remarque la décroissance et le caractère convexe



Prix d'options dans le modèle de Cox Ross et Rubinstein

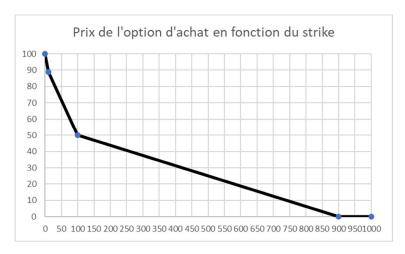
- Exemple : S = 2. Valeurs possibles pour le sous-jacent A_0d^2 , A_0ud , A_0u^2
- Choisissons $r_f = 0$, $A_0 = 100$, u = 2, d = 0.5
- D'où p = 1/3, q = 2/3
- $\tilde{q}_0 = 4/9, \, \tilde{q}_1 = 4/9, \, \tilde{q}_2 = 1/9$
- $A_0 d^2 = 25$, $A_0 u d = 100$, $A_0 u^2 = 400$
- C(0) = 100, C(25) = 75, C(100) = 33,3, C(400) = 0
- On obtient le graphe de la fonction K ∈ R⁺ → C(K) par interpolation linéaire entre les 4 points (0, C(0)), (25, C(25)), (100, C(100)), (400, C(400))

Prix d'options dans le modèle de Cox Ross et Rubinstein

- Exemple : S = 2, $r_f = 0$, $A_0 = 100$, u = 3, $d = \frac{1}{3}$
- p = 1/4, q = 3/4
- $\tilde{q}_0 = 9/16$, $\tilde{q}_1 = 6/16 = 3/8$, $\tilde{q}_2 = 1/16$
- $A_0 d^2 = \frac{100}{9} \approx 11,1, A_0 ud = 100, A_0 u^2 = 900$
- C(0) = 100, C(11.1) = 88.9, C(100) = 50, C(900) = 0
- On obtient le graphe de la fonction $K \in \mathbb{R}^+ \to C(K)$ par interpolation linéaire entre les 4 points (0, C(0)), (11.1, C(11.1)), (100, C(100)), (900, C(900))

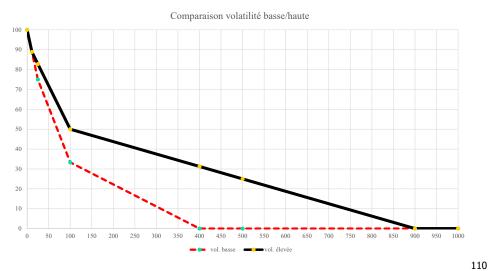
Prix d'options dans le modèle de Cox Ross et Rubinstein

• $K \in \mathbb{R}^+ \to \mathcal{C}(K)$



Prix d'options dans le modèle de Cox Ross et Rubinstein

• Les prix des calls augmentent avec la volatilité.



109