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Market Risk Modelling after  Basel III: New 
Challenges for Banks and Supervisors

 Market risks: regulatory outlook

 The rise of historical simulation

 Backtesting and VaR exceptions

 Pointwise volatility estimation: The conundrum

 Assessment of risk models under Basel III
 Limited usefulness of econometric techniques

 Hypothetical Portfolio Exercises challenged?

 Lower decay factors to mitigate disruptions in the 
computation of Risk Weighted Assets?
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Key messages for regulation
 Hidden impacts of risk modelling choices on financial 

stability and pro-cyclicality under Basel III FRTB
 Even when considering simple exposures (S&P500)
 And complexity (optional products, correlations) left aside

 Basel backtests poorly discriminates among models
 Danielsson (2002), Danielsson et al (2016)
 Focus on VaR exceptions over past year! Minsky moment

 Benchmarking on hypothetical portfolios (EBA, 2017)
 Unstable ranking of risk models calls for proper averaging 

 Promote smart model risk supervision and enhanced 
disclosure on risk methodologies

 Ongoing ECB TRIM
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Messages for market risk managers

 Favour Volatility Weighted Historical Simulation (VWHS) 
over Historical Simulation (HS) for VaR/ES computations

 Historical Simulation works poorly in stressed periods
 Backtesting over current period is useless!

 Procyclicality: patterns of VaR exceptions under stress and 
fall-back to costly Standard Approach

 Implementing Volatility Weighted Historical Simulation
 Consider smaller values of decay factor than .94 Riskmetrics

 Does not lead to extra-capital charges: Basel III capital 
metrics based on stressed period only

 Endogenous stressed period does not depend upon choice of 
decay factor

 Lower number of exceptions under stress: greater resilience
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Market risks: Basel III regulatory 
outlook
 Internal Models Approach (IMA) still applicable

 Stringent constraints on data (modellable risk 
factors) and processes (P&L eligibility tests)

 + backtesting at desk level requirements
 IMA based on 97.5% Stressed Expected Shortfall 

(ES)
 liquidity horizons : 10 days or more
 No scaling from 1D to 10D (Danielsson & Zigrand

(2006))
 1Y stressed period endogeneously computed

 Is model dependent, but in our case study example, 
was found to be mid June 2008 – mid June 2009
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Market Risk Weighted Assets (RWA): 
Basel III regulatory outlook

 Minimum capital requirements for market risk 
(January 2016)

 FRTB: Fundamental Review of the Trading Book

 Implementation delayed to 2019
 2016 monitoring exercise: increase of 75% of RWA 

compared with Basel 2.5
 Bank struggling with operational issues

 Data quality: Non Modellable Risk Factors (NMRF)
 Alignment between risk and front office models
 To a lesser extent, compliance with backtesting 

requirements

 Market risk RWA might be further inflated…
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Basel III regulatory outlook: Market 
Risk Group reopened in 2017
 Desk eligibility to internal models?

Threat of fallback to costly Standard Approach

According to ISDA could lead to x6 increase for 
FX and x4 increase for equity desks

Questions the calibration of risk weights in the 
Standard Approach

 Non Modellable Risk Factors (NMRF) charge
Roughly one third of IMA, but large ongoing 

variability and uncertainty

Could be dramatically reduced if banks to use 
settlement prices in collateral agreements
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Market Risk Weighted Assets (RWA): 
EU regulatory outlook
 EU CRR-2 (November 2016)

 Differences on key points with Basel document
 Restricted scope of modellable risk factors (MRF)

 Slightly different backtesting constraints

 EBA Technical Standards to be issued in 2021
 Eligibility to Internal Models Approach…

 ECB TRIM (Targeted Review of Internal Models)
 Still Basel 2.5, but not innocuous regarding pricing models 

and VaR methodologies

 Impact of ongoing deregulation in the US?
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Market risks: Basel III regulatory 
outlook
 Hypothetical Profit and Loss (HPL)

Banks holdings frozen over risk horizon

« Uncontaminated P&L »: not accounting for banks’ 
fees (Frésard et al. (2011)). 

Computed according to all risk factors and pricing 
tools being used by Front Office (FO)

 full revaluation is implicit when computing 
hypothetical P&L

 Backtesting: compare 1 day VaR with daily HPL 
and daily actual Profit and Loss (P&L)
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Market risks: Basel III regulatory 
outlook

1% HS VaR (based on 250 rolling days) and S&P500 
returns over past 10 years. Nominal = 1
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Market risks: Basel III regulatory 
outlook

 Backtesting based on 97.5% and 99% 1 day VaR
 Not directly on ES as in Du & Escanciano (2016)

 Number of VaR exceptions is the max of number of 
VaR exceptions computed using HPL and number of 
VaR exceptions using actual P&L (over past year)

 Allowance for up to 12 breaches for 99% VaR and 30 
breaches for 97.5% VaR 

 At trading desk level: Danciulescu (2010), Wied et 
al. (2015)

 BCBS QIS and monitoring exercises also requests 
reporting of 1D 97.5% ES + 𝑝𝑝 −values
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Market risks: Basel III regulatory 
outlook
 Desk eligibility to IMA (Internal Model

Risk-theoretical P&L (RTPL)
Changes in P&L according to bank’s internal risk 

model
Use of modellable risk factors within risk 

systems (FRTB/Basel 3)
Mapped from risk factors used in Front Office
Delta/gamma approximations, PV grids or full 

revaluation might be used in repricing books
Definition of RTPL is subject to controversy and 

needs to be clarified

 Desk not eligible to IMA if HPL and RTPL 
are too distant (criteria under scrutiny)
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The rise of historical simulation

 Huge litterature relarted to VaR/ES computations
 Historical, FHS, VWHS, EWMA, Parametric (multivariate 

Gaussian), GARCH family, EVT, CAViaR, …
 To quote a few: Kupiec (1995) Hendricks (1996), Christoffersen (1998), 

Berkowitz (2001), Berkowitz, & O’Brien (2002), Yamai & Yoshiba (2002)
Kerkhof & Melenberg (2004), Yamai & Yoshiba (2005), Campbell (2006),
Hurlin & Tokpavi (2008), Alexander (2009), Candelon et al. (2010), Wong
(2010), BCBS (2011), Rossignolo et al. (2012),  Rossignolo et al. (2013), 
Abad et al. (2014), Ziggel et al. (2014) Krämer & Wied (2015). Siburg et al.
(2015), Pelletier & Wei (2015), Nieto & Ruiz (2016) 

 Backtesting performance?
 Lack of implementation details, choice of backtest 

portfolios, historical periods make comparisons difficult

 Dealing with operational issues is also of importance
 large dimensionality: several thousands of risk factors,
 Costly to price optional products, 
 Data requirements.
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The rise of historical simulation

From Perignon & Smith (2010) 
based on 2005 data
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The rise of historical simulation
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EBA (2017) benchmarking exercise conducted over a 
(heterogeneous) panel of 50 banks with approved internal 
models



The rise of historical simulation

 Volatility Weighted Historical Simulation 
(VWHS)

 Hull & White (1998), Barone-Adesi et al. (1999)

 Volatility not constant over VaR estimation period

 Rescale returns by ratio of current volatility 
to past volatility
 𝜎𝜎𝑡𝑡 volatility at time 𝑡𝑡, 𝑟𝑟𝑡𝑡−ℎ return at 𝑡𝑡 − ℎ

 Rescaled past returns 
𝜎𝜎𝑡𝑡
𝜎𝜎𝑡𝑡−ℎ

× 𝑟𝑟𝑡𝑡−ℎ
 VWHS: empirical quantile of rescaled returns
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The rise of historical simulation
 (Location) scale models: 𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑡𝑡 × 𝜀𝜀𝑡𝑡

 GARCH: 𝜀𝜀𝑡𝑡 has a given stationary distribution

 Such as 𝑡𝑡 𝜈𝜈 : parametric approach to 𝜀𝜀𝑡𝑡
 VaR: 𝑞𝑞𝛼𝛼 𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑡𝑡 × 𝑞𝑞𝛼𝛼 𝜀𝜀𝑡𝑡

 EVT could be used to assess 𝑞𝑞𝛼𝛼 𝜀𝜀𝑡𝑡 , McNeil & Frey
(2000), Diebold et al. (2000), Jalal & Rockinger (2008)

 VWHS: same approach to VaR 
 BUT 𝑞𝑞𝛼𝛼 𝜀𝜀𝑡𝑡 empirical quantile of standardised 

returns ⁄𝑟𝑟𝑡𝑡 𝜎𝜎𝑡𝑡
 Above decomposition shows two sources of model 

risk: volatility estimation 𝜎𝜎𝑡𝑡, tails of standardized 
returns 𝜀𝜀𝑡𝑡
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Practical implementation of VWHS

 Standardised returns 𝜀𝜀𝑡𝑡 = ⁄𝑟𝑟𝑡𝑡 𝜎𝜎𝑡𝑡 not directly 
observed

 Since 𝜀𝜀𝑡𝑡 depends on unobserved volatility 𝜎𝜎𝑡𝑡
 Large uncertainty when deriving 𝝈𝝈𝒕𝒕
 Specific additional issues with GARCH(1,1) 

modelling: Pritsker (2006)
 Misspecification of 𝜀𝜀𝑡𝑡 distribution? 

 Tail dynamics only driven by volatility 𝜎𝜎𝑡𝑡
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(Var1%/VaR2.5%)/ (Φ−1(99%)/Φ−1 (97.5%) 
EWMA volatility estimates, decay factor = .8
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For Gaussian 𝜺𝜺𝒕𝒕 and well-specified decay
factor, ratio should be equal to one

Ratio higher than 1 means fat tails

Descriptive statistics of 
standardised returns 𝜺𝜺𝒕𝒕+𝟏𝟏



(Var1%/VaR2.5%)/ (Φ−1(99%)/Φ−1 (97.5%) 
EWMA volatility estimates, decay factor = .8
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𝜀𝜀𝑡𝑡 = ⁄𝑟𝑟𝑡𝑡 𝜎𝜎𝑡𝑡 show some left tail dynamics. 

Descriptive statistics of 
standardised returns 𝜺𝜺𝒕𝒕



Backtesting and VaR exceptions

 Basel III regulatory reporting
 10 days Expected Shortfall (capital requirement)

Computed over different subsets of risk factors 
(partial ES), scaled-up to various time horizons

Computed over stressed period, averaged and 
submitted to multiplier (in between 1.5 and 2)
 Computation of 10D ES from daily data and VWHS:

Giannopoulos & Tunaru (2005), Righi & Ceretta (2015) 

 1 day 99% and 97.5% VaR (backtesting)
𝑞𝑞99 𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑡𝑡 × 𝑞𝑞99 𝜀𝜀𝑡𝑡
𝑞𝑞97.5 𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑡𝑡 × 𝑞𝑞97.5 𝜀𝜀𝑡𝑡
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Backtesting and VaR exceptions

 VaR exception: whenever loss exceeds VaR

 For 250 trading days and 1% VaR, average number of 
VaR exceptions = 2.5

 For well-specified VaR model, number of VaR 
exceptions follows a Binomial distribution
 So-called « unconditional coverage ratios » or traffic

light approach (Kupiec, 1995, Basel III, 2016)

 Regulatory thresholds at bank’s level: green zone, up 
to 4 exceptions, yellow zone, in between 5 and 9 
exceptions, red zone, 10 or above

 At desk level: 12 exceptions at 1%, 30 at 2.5% 
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Volatily Weigthed Historical Simulation 
outperforms Historical Simulation

 Number of VaR exceptions over past 10 years 
(S&P 500)

1% VaR 2,5% VaR

Historical Simulation 40 89

Volatility Weighted
Historical Simulation

(RiskMetrics)

26 68

Expected 25 63
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Volatility estimation: the 
conundrum
 EWMA (Exponentially Weighted Moving Average)

 𝜎𝜎𝑡𝑡2 = 𝜆𝜆 × 𝜎𝜎𝑡𝑡−12 + 1 − 𝜆𝜆 × 𝑟𝑟𝑡𝑡2

 𝜆𝜆 : decay factor, 1 − 𝜆𝜆 speed at which new returns are 
taken into account for pointwise volatility estimation
 RiskMetrics (1996), 𝝀𝝀 = 𝟎𝟎.𝟗𝟗𝟗𝟗 « Golden number »

 Single parameter model

 EWMA is a special case of GARCH(1,1) 
 With no mean reversion of volatility.

 𝜎𝜎𝑡𝑡2 is not floored and becomes quite close to zero in 
calm periods (Murphy et al. (2014))
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Volatility estimation: the 
conundrum
 Numerous techniques to estimate decay factor 𝜆𝜆
 RiskMetrics (1996): minimizing the average squared 

error on variance estimation

 Other approaches:
 Guermat & Harris (2002) to cope with non Gaussian returns
 Pseudo likelihood: Fan & Gu (2003)
 Minimization of check-loss function: González-Rivera et al.

(2007)
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Volatility estimation: the 
conundrum
 For S&P500, Estimates of  decay factor are highly 

unstable and could range from 0.8 to 0.98 wild 
around the 0.94 RiskMetrics « golden number »
 Note that 𝜆𝜆 = 1 corresponds to plain HS

 Building volatility filters is even more intricate when 
considering different risk factors (Davé & Stahl (1998))
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Volatility estimation: the 
conundrum

 Lopez (2001), Christoffersen & Diebold (2000), 
Angelidis et al. (2007), Gurrola-Perez & Murphy
(2015) point out the issues with determining 𝜎𝜎𝑡𝑡

 Recall that high values of 𝜆𝜆 results in slower 
updates of VaR when volatility increases
 Murphy et al. (2014) suggest that CCPs typically use 

high values (.99) for decay factor.

 In case of Poisson type event risk (no memory), 
higher values of 𝜆𝜆 would be a better choice.

 No obvious way to decide about the optimal 𝜆𝜆
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Volatility estimation: the 
conundrum

Ratios of daily volatility estimates 
over past 10Y with decay factor 0.94 
and 0.8 are highly volatile

Note that by construction, means of estimated variances are equal
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Assessment of VaR (risk) models

VaR1%/VaR1% for decay factors .8 and .94 
respectively: shaky volatility estimates leads 
to large VaR estimation uncertainty and 
huge time instability. 

Ratio of nignth to first deciles =1.85 but median=1
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Assessment of risk models

 Number of VaR Exceptions over past 10 years 
(S&P 500)

 Almost same results for tests based on number 
of VaR exceptions (unconditional coverage)

1% VaR 2,5% VaR

VWHS
𝝀𝝀 = 𝟎𝟎.𝟖𝟖 28 68

VWHS
𝝀𝝀 = 𝟎𝟎.𝟗𝟗𝟗𝟗

(RiskMetrics)

26 68

Expected 25 63
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Assessment of risk models
 Number of VaR Exceptions over the one year stressed 

period

 Smaller decay factors imply prompter VaR increases when 
volatility rises and better behaviour during stressed period

 Similar results in Boucher et al. (2014), where plain HS 
(𝜆𝜆 = 1) provides poor results under stress. See also  
O'Brien & Szerszen (2014). 

1% VaR 2,5% VaR
VWHS
𝝀𝝀 = 𝟎𝟎.𝟖𝟖 1 5

VWHS
𝝀𝝀 = 𝟎𝟎.𝟗𝟗𝟗𝟗

(RiskMetrics)
6 10

Expected 2.5 6
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Assessment of risk models

 PIT (Probability Integral Transform) 
adequacy tests
 Crnkovic and Drachman (1995), Diebold et al.

(1997), Berkowitz (2001)

 Basel Committee Monitoring Exercises
 Check whether the loss distribution (instead of 

a single quantile) is well predicted.

 If 𝐹𝐹𝑡𝑡 is the well-specified (predicted) 
conditional loss distribution, 𝐹𝐹𝑡𝑡 𝑟𝑟𝑡𝑡+1 ~𝑈𝑈 0,1

 𝐹𝐹𝑡𝑡 𝑟𝑟𝑡𝑡+1 : p-values
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PIT adequacy tests
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QQ plot for p-values for 
VWHS with lambda=.8

Good news: risk models 
are not a vacuum!



PIT adequacy tests
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QQ plot for p-values for 
VWHS with lambda=.94

Bad news: PIT does not discriminate 
among risk models! (lack of conditionality)
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Histogram of p-values for VWHS and 𝝀𝝀=.94

Expected values: 25 exceptions at 1% level, 38 in between 1% and 
2.5%:good fit with VWHS

Hurlin & Tokpavi (2006), Pérignon & Smith (2008), Leccadito, Boffelli, & Urga
(2014). Colletaz et al. (2016) for more on the use of different confidence internals 

Focusing on tails: VWHS vs plain HS
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Focusing on tails: VWHS vs plain HS
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Histogram of p-values for plain HS, 𝝀𝝀=1

Expected values: 25 exceptions at 1% level, 38 
in between 1% and 2.5%:bad fit with HS 



Assessment of risk models

 Clustering of VaR exceptions, i.e. several blows 
in a row might knock-out bank’s capital

 Are VaR exceptions clustered during stressed 
periods?
 “We are seeing things that were 25-standard deviation 

moves, several days in a row”

 Quoted from David Viniar, Goldman Sachs CFO, August 
2007 in the Financial Times

 Crotty (2009), Danielsson (2008), Dowd (2009), Dowd 
et al. (2011)

 Tests based on duration between VaR exceptions
 Christoffersen & Pelletier (2004), Haas (2005), 

Candelon et al. (2010)
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Overshoots for VaR exceptions using VWHS 
and lambda=.8 at 1% confidence level
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Not too much clustering with lower 
values of decay factor



Assessment of risk models

 Conditional coverage tests
 𝐼𝐼𝑡𝑡 =1,0 depending on occurrence of an exception
 𝐸𝐸𝑡𝑡 𝐼𝐼𝑡𝑡+1 = 1%, 2.5%

 𝐸𝐸𝑡𝑡 conditional expectation

 Conditional probability of VaR exception 
consistent with confidence level

 Engle & Manganelli (2004), Berkowitz et al. (2008), 
Cenesizoglu & Timmermann (2008), Gaglianone et al.
(2012), Dumitrescu et al. (2012), White et al. (2015). 

 Instrumental variables: past VaR exceptions and 
current + past level of the VIX volatility index
 Leads to GMM type approach
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Assessment of risk models

 𝐼𝐼𝑡𝑡 = 𝛼𝛼0 + ∑𝑖𝑖=1𝐼𝐼 𝛼𝛼𝑖𝑖𝐼𝐼𝑡𝑡−𝑖𝑖 + ∑𝑗𝑗=0𝐾𝐾 𝛽𝛽𝑗𝑗𝑉𝑉𝐼𝐼𝑉𝑉𝑡𝑡−𝑗𝑗 + 𝑢𝑢𝑡𝑡
 Engle & Manganelli (2004)

 VaR model is well-specified if 𝛼𝛼0 = 1%, 2.5% and 𝛽𝛽𝑗𝑗 =
0,𝛼𝛼𝑖𝑖 = 0, 𝑖𝑖 ≥ 1

 We rather follow the logistic regression approach
Berkowitz et al. (2008)

 Choosing number of lags 𝐼𝐼,𝐾𝐾 is uneasy
Number of lags depend on confidence level
And considered portfolio/trading desk
Bayesian Information Criteria (BIC), backward model 

selection, partial autocorrelation function (PACF)  are 
not discriminant
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Assessment of risk models

 Results for S&P500 2.5% confidence level
 Red cells are acceptable: no lag for VIX, but lags 

2,3,4 or (3,4) for 𝐼𝐼𝑡𝑡−𝑖𝑖 could be considered
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Assessment of risk models
 Preliminary results suggests that 𝜆𝜆 ≤ 0.9

 Would reject 𝜆𝜆 = 0.94 (Riskmetrics standard)

 But results of statistical tests are difficult to 
interpret (depend on the chosen lags)

 Rejection for lags (3,4) acceptance for lag 3 only
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Estimation results based on March 2008 to February 2009 daily data



Assessment of risk models

 Vast litterature on model risk due to parameter 
uncertainty, choice of estimation method.
 Christoffersen & Gonçalves (2005), Alexander & Sarabia

(2012), Escanciano & Olmo (2012), Escanciano & Pei
(2012), Gourieroux & Zakoïan (2013), Boucher & Maillet
(2013), Boucher et al. (2014), Danielsson & Zhou (2015), 
Francq, & Zakoïan (2015), Danielsson, et al. (2016). 

 Our focus is more narrow: concentrate on a key 
parameter left in the shadow, i.e. decay factor, and 
implications for risk management under Basel III

 Recall that Historical Simulation, EWMA/Riskmetrics and 
FHS/VWHS are quite different 
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Tackling RWA (Risk Weighted 
Assets) variability

 VaR models with strinkingly different 
outputs would not fail backtests

Not new! But what to do with this?

 This can feed suspicion on internal models

 Hidden model complexity, tweaked RWAs?

 Standardized Basel III risk models

 Floors based on Hypothetical Portfolios 
Exercises
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Floors based on Hypothetical 
Portfolio Exercises (HPE)?

 Basel 2013 RCAP (Regulatory Consistency 
Assessment Programme) BCBS240, BCBS267 & 
EBA (2013), EBA(2017) show large variations 
across banks regarding VaR outputs for 
hypothetical portfolios
 Partly related to discrepancies under various 

jurisdictions
 Partly due to modelling choices

Lenght of data sample to estimate VaR, relative 
weights on dates in filtered historical simulation

And as shown in our study HS vs VWHS
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 (Heterogeneous) sample of 50 banks with 
approved internal models

 On the right, outcome of 99% (current) VaR 
over 10 days horizon

 Equity index futures trade on FTSE 100

 41 respondent banks

 How can we analyse variation across 
banks?
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EBA (2017) benchmarking exercise: 
Reasons for discrepancies between 
internal models
 Poor contributions to the benchmarking exercise!

 Differences in averaging: 
 over two weeks but either with daily or weekly 

data depending on banks 

 Valuation issues for more exotic trades 
 Which model has been used ? full revaluation, 

approximations made in Risk models

 Not applicable in disclosed hypothetical portfolio

 Differences in methodologies
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Differences in methodologies

48

Longer computational period similar to higher decay factor



Differences in methodologies
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Most banks in the panel use plain HS (decay factor = 1)



Differences in methodologies
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Use of scaling to cope with 10D horizon



Floors based on Hypothetical 
Portfolio Exercises (HPE)?
 Our controlled experiment shows that ranking 

of models varies dramatically through time
 Model A can much more conservative than model B 

one day, the converse could be observed next day

 Though in average models A and B provide the same 
VaRs

 This is problematic regarding the interpretation 
of HPE and RWA variability
 Above approach would favour the use of the same 

possibly misspecified 0.94 golden number…
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Tweaking internal models?
 Strategic/opportunistic choice of decay factor?

 Danielsson (2002), Pérignon et al. (2008), Pérignon & Smith
(2010), Colliard (2014), Mariathasan & Merrouche (2014)

 Sticky choice of decay factor: supervisory 
process

 Does not change average capital requirements
 Could change the pattern of VaR dynamics

 Higher decay factor leads to smoother patterns and 
ease management (risk limits)

 Regulatory capital requirements are based on stressed 
period only and on averages over past 60 days

 No procyclicality issue with using smaller decay factors
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Undue internal model 
complexity?
 Haldane and Madouros (2012), Dowd (2016) 

tackle undue model complexity

 Our approach is simple and widely documented
 No correlation modelling or pricing models of exotic 

produts is involved

 No sophisticated econometric methods

 However, HS can be fine tuned

 Making things simpler (Standard Approaches, 
output floors based on SA, leverage ratio) might 
reduce risk sensitivity
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Traps in market risk capital 
requirements
 Procyclical trap when using today’s risk models

 Ratio of IMA to SA quite large in a number of cases
Plain historical simulation or use Riskmetrics decay 

factor results in large number of VaR exceptions 
under stress and fallback to SA

 If a IMA desk is disqualified, huge increase in capital 
requirements

 Issue not foreseen: QIS are related to a calm period

 Use of outfloors based on a percentage of SA 
would not solve above issue
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Traps in market risk capital 
requirements

 Avoiding the procyclical trap
 Using lower values of decay factor for prompter 

updates in volatility prediction
 Smaller number of VaR exceptions in volatile periods
 Resilience of internal models against market tantrum
 Managing reputation (see above Goldman’s case 

study)
 Lowering decay factor should not increase capital 

requirements
 No bias in average variance estimates
 ES computed on a stressed period only + averaging
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Traps in market risk capital 
requirements

 Avoiding the FRTB procyclical trap?
 Banks are currently faced with other top priorities 

regarding desk eligilibility to IMA
 Data management to reduce NMRF scope

 PnL attribution tests: reconciliation of risk and front office 
risk representations and pricing tools, dealing with reserves 
and fair value adjustements

 Threshold number of VaR exceptions at desk level is high.

 BUT large number of desks (100?) and local or global 
market tantrums might be devastating
Forget about unfrequent recalibration of risk models!
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Conclusion

 Focus on decay factor impacts for risk 
measurement in the new Basel III setting 
Desk-level validation and back-testing

 Beware of plain historical simulation methods 
and challenge the .94 golden number
 Further research with internal bank data might 

prove useful 

 Lower decay factors for dedicated trading desks

 Challenge the outcomes of Hypothetical 
Portfolio Exercises on RWA variability
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