Aggregation and Credit Risk Measurement in Retail Banking

Ali Chabaane, BNP Paribas.
Antoine Chouillou, BNP Paribas and Evry University.
Jean-Paul Laurent, BNP Paribas and ISFA actuarial school.
Purpose of our study

- **Improve credit risk measurement**
 - Better assessment of correlation effects between credit portfolios.

- **Practical consequences of the choice of a risk measure**
 - VaR, expected shortfall,
 - Loss vs unexpected loss,
 - Sensitivity analysis.
Plan

- Credit loss modelling
 - Basel II
 - Extended approach.

- A case study in retail banking
 - Risk measures
 - Computation of capital requirements
 - Sensitivity analysis of risk measures
Default modelling: homogeneous portfolios

In portfolio k, borrower i defaults with probability PD_k when:

$$Z_{k,i} = \sqrt{\rho_k} \Psi_k + \sqrt{1 - \rho_k} \varepsilon_{k,i} < \Phi^{-1}(PD_k)$$

- **Common portfolio factor** Ψ_k.
- **Specific independent factor** $\varepsilon_{k,i}$ for a borrower i.
- **Assumption**: factors follow standard Gaussian distributions.
- **Gaussian cdf**: Φ.
- **Correlation** ρ_k.

Correlation ρ_k.
Loss distribution: homogeneous portfolio

Risk components for portfolio k:

- Marginal Probability of Default PD_k.
- Marginal Loss Given Default LGD_k.
- Portfolio Exposure At Default EAD_k.

Infinite granularity:

- Total loss L_k = sum of individual losses.
- When the number of borrowers is high, specific risk is diversified away (Gordy, 2000).

\[
L_k(\Psi_k) = EAD_k \times LGD_k \times \Phi\left(\frac{\Phi^{-1}(PD_k) - \sqrt{\rho_k \Psi_k}}{\sqrt{1 - \rho_k}}\right)
\]
Aggregation of homogeneous portfolios

- Homogeneous portfolios 1,...,K.
- Aggregate loss:

\[L = \sum_{k=1}^{K} EAD_k \times LGD_k \times \Phi \left(\frac{\Phi^{-1}(PD_k) - \sqrt{\rho_k} \Psi_k}{\sqrt{1-\rho_k}} \right) \]

- Portfolio factors:

\[\Psi_k = \sqrt{\rho \eta} + \sqrt{1-\rho} \eta_k \]

- \((\eta_k)_{1\leq k \leq K} \) and \(\eta \) follow standard Gaussian distributions.
- Systemic correlation between factors: \(\rho \)
Risk measures

- VaR of the loss distribution at the confidence level \(q \) :
 \[
 \text{VaR}_q(L) = \inf(l, P(L \leq l) \geq q).
 \]

- Expected Shortfall (the loss has a density) :
 \[
 \text{ES}_q(L) = E(L \mid L \geq \text{VaR}_q(L))
 \]

- « Unexpected loss » :
 \[
 \text{UL}_q(L) = \text{VaR}_q(L) - E(L)
 \]
Our case study

Purpose of the case study

- Comparison of the regulatory model and its extended version,
- Assessment of correlation effects,
- Assessment of risk measure choice on capital allocation.

Input data

- 14 credit lines, typical of retail banking.
Portfolio structure

<table>
<thead>
<tr>
<th>credit line</th>
<th>EAD</th>
<th>PD</th>
<th>LGD</th>
<th>correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14%</td>
<td>0,1%</td>
<td>60%</td>
<td>16,7%</td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>0,2%</td>
<td>60%</td>
<td>16,1%</td>
</tr>
<tr>
<td>3</td>
<td>7%</td>
<td>0,2%</td>
<td>60%</td>
<td>15,8%</td>
</tr>
<tr>
<td>4</td>
<td>10%</td>
<td>0,4%</td>
<td>60%</td>
<td>14,9%</td>
</tr>
<tr>
<td>5</td>
<td>10%</td>
<td>0,6%</td>
<td>60%</td>
<td>14,2%</td>
</tr>
<tr>
<td>6</td>
<td>7%</td>
<td>0,8%</td>
<td>60%</td>
<td>13,2%</td>
</tr>
<tr>
<td>7</td>
<td>8%</td>
<td>1,4%</td>
<td>60%</td>
<td>11,1%</td>
</tr>
<tr>
<td>8</td>
<td>2%</td>
<td>3,2%</td>
<td>60%</td>
<td>6,9%</td>
</tr>
<tr>
<td>9</td>
<td>6%</td>
<td>3,2%</td>
<td>60%</td>
<td>6,8%</td>
</tr>
<tr>
<td>10</td>
<td>1%</td>
<td>4,6%</td>
<td>60%</td>
<td>5,0%</td>
</tr>
<tr>
<td>11</td>
<td>1%</td>
<td>7,2%</td>
<td>60%</td>
<td>3,2%</td>
</tr>
<tr>
<td>12</td>
<td>5%</td>
<td>7,3%</td>
<td>60%</td>
<td>3,2%</td>
</tr>
<tr>
<td>13</td>
<td>7%</td>
<td>16,0%</td>
<td>60%</td>
<td>2,1%</td>
</tr>
<tr>
<td>14</td>
<td>3%</td>
<td>55,0%</td>
<td>60%</td>
<td>2,0%</td>
</tr>
</tbody>
</table>
Capital requirements

- **Capital requirements:**

- **Basel II vs multifactor model:**
 - Overestimation of capital of an order of magnitude of 25%, either with VaR or Expected Shortfall.

- **Expected Shortfall vs VaR:**
 - Expected Shortfall: 10% higher than VaR, in both setups.
Risk contributions based on total loss

- EAD_i: exposure of portfolio i.

Risk contribution for subportfolio i:

- **VaR based risk measure:**
 $$EAD_i \frac{\partial VaR_q(L)}{\partial EAD_i}$$

- **ES based risk measure:**
 $$EAD_i \frac{\partial ES_q(L)}{\partial EAD_i}$$
Risk contributions based on total loss

The VaR case

- The Expected Shortfall case

- Systemic correlation:
 - Basel: 100%,
 - Multi: 50%.
Risk contributions based on unexpected loss

- **Unexpected loss**:
 \[UL(L) = \text{VaR}_q (L) - E(L) \]

- **Risk contribution of portfolio i**:
 \[EAD_i \times \frac{\partial \text{VaR}_q (L)}{\partial EAD_i} - LGD_i \times PD_i \]

- Systemic correlation: 100% (Basel) and 50% (multi).
Sensitivity analysis: systemic correlation

VaR and ES as a function of systemic correlation

- VaR
- ES
Summary

- Extension of the regulatory model,

- Importance of risk diversification in an heterogeneous portfolio,

- Similitude between VaR and Expected Shortfall in the studied case,

- Taking into account expected loss…or not!
Annex: impact of low systemic correlation

- Systemic correlation ρ: 100% (Basel) and 5% (multi).
- Computation with total loss L.