

Aggregation and Credit Risk Measurement in Retail Banking

Ali Chabaane, BNP Paribas.

Antoine Chouillou, BNP Paribas and Evry University.

Jean-Paul Laurent, BNP Paribas and ISFA actuarial school.

Improve credit risk measurement

Better assessment of correlation effects between credit portfolios.

Practical consequences of the choice of a risk measure

- VaR, expected shortfall,
- Loss vs unexpected loss,
- Sensitivity analysis.

Credit loss modelling

- Basel II
- Extended approach.

A case study in retail banking

- Risk measures
- Computation of capital requirements
- Sensitivity analysis of risk measures

1

Default modelling : homogeneous portfolios

In portfolio k, borrower i defaults with probability PD_k when :

$$Z_{k,i} = \sqrt{\rho_k} \Psi_k + \sqrt{1 - \rho_k} \varepsilon_{k,i} < \Phi^{-1}(PD_k)$$

- Common portfolio factor Ψ_{ι} .
- Specific independent factor $\mathcal{E}_{k,i}$ for a borrower i.
- Assumption : factors follow standard Gaussian distributions.
- lacksquare Gaussian cdf : Φ .
- Correlation P_k .

Loss distribution : homogeneous portfolio

- Marginal Probability of Default PD_k .
- Marginal Loss Given Default LGD_k
- Portfolio Exposure At Default EAD_k .

Infinite granularity:

- Total loss L_k = sum of individual losses.
- When the number of borrowers is high, specific risk is diversified away (Gordy, 2000).

$$L_k(\Psi_k) = EAD_k \times LGD_k \times \Phi(\frac{\Phi^{-1}(PD_k) - \sqrt{\rho_k}\Psi_k}{\sqrt{1 - \rho_k}})$$

-

Aggregation of homogeneous portfolios

- Homogeneous portfolios 1,...,K.
- Aggregate loss:

$$L = \sum_{k=1}^{K} EAD_k \times LGD_k \times \Phi(\frac{\Phi^{-1}(PD_k) - \sqrt{\rho_k}\Psi_k}{\sqrt{1-\rho_k}})$$

Portfolio factors :

$$\Psi_k = \sqrt{\rho}\eta + \sqrt{1-\rho}\eta_k$$

- $(\eta_k)_{1 \le k \le K}$ and η follow standard Gaussian distributions.
- Systemic correlation between factors: ho

VaR of the loss distribution at the confidence level q :

$$VaR_q(L) = \inf(l, P(L \le l) \ge q).$$

Expected Shortfall (the loss has a density) :

$$ES_q(L) = E(L|L \ge VaR_q(L))$$

« Unexpected loss » :

$$UL_{q}(L) = VaR_{q}(L) - E(L)$$

Purpose of the case study

- Comparison of the regulatory model and its extended version,
- Assessment of correlation effects,
- Assessment of risk measure choice on capital allocation.

Input data

14 credit lines, typical of retail banking.

Portfolio structure

credit line	EAD	PD	LGD	correlation
1	14%	0,1%	60%	16,7%
2	20%	0,2%	60%	16,1%
3	7%	0,2%	60%	15,8%
4	10%	0,4%	60%	14,9%
5	10%	0,6%	60%	14,2%
6	7%	0,8%	60%	13,2%
7	8%	1,4%	60%	11,1%
8	2%	3,2%	60%	6,9%
9	6%	3,2%	60%	6,8%
10	1%	4,6%	60%	5,0%
11	1%	7,2%	60%	3,2%
12	5%	7,3%	60%	3,2%
13	7%	16,0%	60%	2,1%
14	3%	55,0%	60%	2,0%

Capital requirements:

	VaR	ES
Basel, systemic correlation = 100%	6,1%	6,9%
Multifactor, systemic correlation = 50%	4,6%	5,0%
Absolute variation	-1,5%	-1,9%
Relative variation	-24,7%	-27,6%

Basel II vs multifactor model:

 Overestimation of capital of an order of magnitude of 25%, either with VaR or Expected Shortfall.

Expected Shortfall vs VaR:

Expected Shortfall: 10% higher than VaR, in both setups.

• EAD_i : exposure of portfolio i.

Risk contribution for subportfolio i:

VaR based risk measure:

$$EAD_{i} \frac{\partial VaR_{q}(L)}{\partial EAD_{i}}$$

ES based risk measure:

$$EAD_i \frac{\partial ES_q(L)}{\partial EAD_i}$$

Risk contributions based on total loss

The VaR case

The Expected Shortfall case

Systemic correlation :

Basel: 100%,

Multi: 50%.

4

Risk contributions based on unexpected loss

- Unexpected loss: $UL(L) = VaR_q(L) E(L)$
- Risk contribution of portfolio i: $EAD_i \times \frac{\partial VaR_q(L)}{\partial EAD_i} LGD_i \times PD_i$
- Systemic correlation : 100% (Basel) and 50% (multi).

Sensitivity analysis: systemic correlation

Extension of the regulatory model,

- Importance of risk diversification in an heterogeneous portfolio,
- Similitude between VaR and Expected Shortfall in the studied case,
- Taking into account expected loss...or not!

Annex: impact of low systemic correlation

- Systemic correlation P: 100% (Basel) and 5% (multi).
- Computation with total loss L.