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Abstract

This papers deals with credit portfolio risk analysis. The benchmark Basel II IRB approach relies on the independence
between losses given defaults and default events. Nevertheless, empirical evidence shows that recovered values are
likely to be lower when the number of defaults increases, such as in recession periods. We consider a model embedding
Basel II that allows to deal with dependence between recovery rates and default events. We then study loss distributions
for large credit portfolios. We show that both expected credit losses and standard risk measures such as credit VaR or
Expected Shortfall tend to increase compared with the Basel II approach.

1. INTRODUCTION

In the reduced-form approach to credit initiated by Jarrow and Turnbull [1995], default dates are considered
as unpredictable stopping times and the recovery rates are usually independent of default dates. The recovery
rate may be constant (see Canabarro et al. [2003], Jarrow and Turnbull [1995] or CreditRisk+ [1997]), or
stochastic as in Moody’s KMV (see Crosby and Bohn [2002]) or CreditMetrics (see Gupton, Finger and
Bahia [1997]). The Basel II quantitative IRB approach to risk capital (see Basel Committee on Banking
Supervision [2001a,b,c])  provides a benchmark framework for credit risk assessment that follows the same
lines. This modelling choice is rather a matter of mathematical simplification, leading to analytically
tractable expressions for credit portfolio losses.

The previous approaches rely on the independence between recovery rates and default events. Nevertheless,
Altman and Kishore [1996], Altman et al. [2003], Hu and Perraudin [2002] find that recovered values are
likely to be lower when the number of default increases, such as in recession periods. This can be
highlighted for instance in the corporate bond market, where default rates increase as recovery rates
decreases, or for bank secured loans, for which default affects the recovery rate through fluctuating collateral
market value. This stylised fact can be explained by negative correlation between recovery rates and default
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rates. As a result, expected loss as well as unexpected loss seem to be quite underestimated (Altman [1996],
Frye [2000a]). Schuermann [2003], Renault and Scaillet [2003] show bimodal distributions for recovery
rates. This can be seen as a consequence of the dependence between recovery rates and default rates, these
two quantities depending upon common factors related to the business cycle.

The dependence between default events and losses given default is often introduced through a single factor
that drives both default events and recovery rates (see Jokivuolle and Peura [2000]). The recovery rate is
then modelled by specifying the collateral value distribution: for instance, Frye [2000a] claims for Gaussian
collateral value, Pykhtin [2003] for log-normal. This single factor approach is related to the structural
modelling initiated by Merton [1974], and further generalised by Black and Cox [1976], Longstaff and
Schwartz [1995], Leland [1994]. This modelling is very similar to the insurance ruin theory. When asset
value falls below a predetermined level, default occurs. The asset value is the unique driver of default events
and losses given default:  However, other effects such as liquidity shortage can drive defaults (see Cetin et
al. [2003]). This is consistent with Moody’s reporting cases where the asset value of a firm in default
exceeds the commitments to the borrowers (see Schuermann [2003]). Moreover, assuming a single risk
factor is likely to induce harsh collapse of collateral value, i.e. low recovery rates when default occurs.
Disentangling defaults and recovery rates is thus a desirable feature in credit risk modelling.

We thus propose a model consistent with the Basel II framework, which takes into account collateral value
and allows a smoother dependence between losses given default and default events. We then study the
impact of such dependence on loss distributions, expected losses and credit risk measures such as VaR and
Expected Shortfall.

Let us remark that the insurance literature deals with similar issues. For instance, Müller and Pflug [2001]
and the references therein look for ruin probabilities when the claims amounts are dependent. The claims
amounts correspond here to losses given defaults. In these approaches, there is usually no dependence
between claims amounts and the occurrence of claims which is the issue that we want to address. On the
other hand, a series of papers (see Denuit et al [2002], Genest et al [2003] and the references therein) deal
with dependence between the occurrence of claims. Meanwhile, the claims amounts are still independent of
the occurrence of claims. Let us notice that these models share the same flavour as the Basel II approach.
Though the mathematical set-up is rather different, Markovian models of the claim surplus process allow to
deal with dependencies between the claims amounts and the occurrence of claims (see Asmussen [2000]).
However, up to now, the literature regarding these models is not well developed.

The article is organised as follows: in the following section, we describe a model for portfolio credit risk,
where default events and losses given default are correlated in different ways. In section 3, we provide some
credit risk distributions for large portfolios as such that can be found in retail banking. In section 4, we
provide a credit risk assessment for such portfolios, considering the expected loss, the loss distribution and
some risk measures such as Value-at-Risk and Expected Shortfall. We study how these risk measures
depend upon correlation between asset values and default events.

2. PORTFOLIO CREDIT RISK IN AN EXTENDED BASEL II FRAMEWORK

The Basel II IRB (Internal Ratings Based) provides a benchmark approach to loan loss distributions. Given
some probabilistic modelling, the Basel II Committee proposes to compute VaR based measures of risk,
though other risk measures such as Expected Shortfall may be considered. In the following, we propose a
model that extends the regulatory model in order to better investigate correlation effects between recovery
rates (or loss given defaults) and default events. We will firstly decompose credit losses into default events
on one hand and losses given defaults (LGD in the Basel II terminology) on the other hand. As for the
modelling of default events, we will not depart from the Basel II IRB approach. More details on the Basel II
set-up can be found in found in Gordy [2000, 2003], Crouhy, Galai, and Mark [2000] and Chabaane,
Chouillou and Laurent [2003].
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2.1 Portfolio Credit Loss

Basel II aims at modelling default losses over a given time horizon for a homogeneous portfolio. The
aggregated loss of such a homogeneous portfolio of n  loans with same unit nominal is given by the sum of
individual credit losses:

1

n

j j
j

L LGD D
=

= ×� (1)

� jD  is the default indicator for the jth creditor. It is a Bernoulli random variable taking value 1 in case
creditor j is in default over the prescribed time horizon and zero otherwise.

� jLGD  stands for the loss severity if default occurs (Loss Given Default) for the jth creditor, i.e. the
amount that is non recovered in case of default. jLGD  may be deterministic or stochastic and stands
between 0 and 1.  Loss given default is equal to one minus the recovery rate on the jth creditor.

Let us remark that using the actuarial terminology, this modelling corresponds to an individual model. The
Basel II methodology is also closely related to the credit scoring practices within commercial banks. By
using the credit scoring or the qualitative econometrics terminology (see Gouriéroux [2000]), the default
indicator is a qualitative random variable while losses given default are quantitative. Let us notice that losses
given default can really be assessed only in case of default, while the random variable jLGD  is also defined
on the set 0jD = . One may wonder what would be losses given defaults, in case no default has occurred. In
a firm-value framework, potential losses given default can be seen as the difference between asset values
minus debt commitments minus some liquidation costs.
However, these quantities may be difficult to assess ex-ante, and actual losses given defaults are often
known some months after default has actually occurred. To deal with these issues, Gordy [2003] proposes a
direct modelling of the losses without trying to separate it into its default event and loss given default
components.

Let us remark that in this framework, losses occur only in case of default and thus losses due to credit
migrations are not taken into account. Whenever market credit spreads or agency ratings are available as for
traded bonds, this assumption may be questionable. As far as retail credits are concerned, one may also think
to use dynamic internal ratings to cope with credit migrations. Similarly, no interest rate effects are being
considered in this framework. As far as standard loans are concerned, the main source of risk comes from
defaults. However, when considering interest rate derivatives such as swaps or caps, one needs to carefully
deal with the dependence between default events and interest rates in order to assess loss distributions. As
mentioned above, it is also difficult to cope consistently with losses over different time horizons, since no
dynamic structure is specified.

2.2 Default events modelling

Let us firstly concentrate on the modelling of the default events. In the Basel II framework, jD  are such that

{ }1
j

j zD
Ψ <

=  where the latent variables ( )1j j n≤ ≤
Ψ  have a multivariate normal distribution with correlation

Cov( , )i jρ = Ψ Ψ .

In the credit scoring terminology, this corresponds to a multivariate probit model. Under the homogeneity
assumption, the threshold z  and the correlation parameter ρ  do not depend on the specific creditor, since
the default indicators do share the same distributions.
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Under some mild assumptions, thanks to the homogeneity assumption and De Finetti’s theorem (see Frey
and McNeil [2003]), we can then state a one factor representation of the latent variables ( )1j j n≤ ≤

Ψ :

1  jj ρ ρΨ ≡ Ψ + − Ψ  (2)

where the random variablesΨ and ( )1j j n≤ ≤
Ψ are assumed to be all independent and have standard Gaussian

distribution. jΨ  represents specific risk (or idiosyncratic risk) to credit j andΨ a common risk to all credits
in the portfolio, or systematic risk. Let us point out again that the default indicators are not independent, due
to the common factorΨ .

Thus for homogeneous portfolios, the only modelling assumption is that the latent variables follow a
Gaussian distribution. Other approaches, for instance based on the Student t-copula can be used (see Frey
and McNeil [2003]). Nevertheless, the choice of the right copula for defaults remains an open question and
we will still rely on the benchmark Gaussian copula assumption that underlies the Basel II framework. Let
us also remark that this corresponds to the individual insurance model of Denuit et al [2002].

Eventually, the threshold z can be calibrated on the common default probability PD:
[ ]1z PD−= Φ ,   (3)

where Φ stands for the Gaussian cumulative density function.

2.3 Loss Given Default modelling

2.3.1 Loss given default for a single credit

We now concentrate on the modelling of losses given defaults. We denote by C , the value of the assets at
the time horizon. The credit is assumed to have unit nominal. If default occurs, the creditor loses the quantity

[ ] ( )1 max 1 ,0LGD C C+= − = − , which is the difference between the credit exposure and the asset’s value.

Assets of the creditor are the collateral protection of the loan. If C is seen as the asset’s value at default, we
do not consider departures from the absolute priority rule. Bankruptcy costs, either fixed or proportional to
asset’s value can be embedded in our framework without changing the payoff structure. Our analysis can be
applied to senior unsecured debt. In order to take into account junior debt, we can simply change the default
threshold from 1 to the required level.

Following the standard modelling, we will assume that C  is log-normally distributed, i.e. ( )expC µ σξ= + ,
where µ  and σ  are some parameters and ξ  follows a standard Gaussian distribution.
� σ  corresponds to the asset volatility and can be inferred form stock prices.
� the drift term µ  can differ from the risk-free rate since we want to compute loss distributions under the

historical measure and also due to dividend payments.

In the portfolio credit modelling field, such a log-normal assumption is used by Pykhtin [2003] which
ensures the collateral remains positive, while Frye [2000a], Canabarro et al [2003] rather use a Gaussian
assumption which seems easier to handle.

Let us remark that for an unsecured loan, the asset’s value of the creditor is the only collateral. For secured
loans, the specification of the loss given default is more involved since it requires to deal both with the value
of the guarantee and of the assets of the creditor. For this reason, when considering secured credits such as
mortgages, most authors neglect the guarantee provided by the general assets of the firm (see Frye [2000a,b],
Jokivuolle and Peura [2000], Pykhtin [2003]) and thus their model formally collapses into ours.
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The credit loss associated with creditor j is then given by:

{ }1 ( )
1 1j

j
j PD

L eµ σ ξ
−

++

Ψ < Φ
� �= − ×� �                                         (4)

In the econometrics literature terminology, jL  follows a tobit model (see Gouriéroux [2000]). The loss on a

given creditor also corresponds to the payoff of a vulnerable put option. Thus, the expected loss jE L� �� �  can
be easily using bivariate Gaussian distributions. We refer to Johnson and Stulz [1987], Jarrow and Turnbull
[1995], Klein [1996], Klein and Inglis [2001], Augros and Tchapda [2003] for computations and discussion.

However, rather than considering the expected loss on the portfolio, 
1

n

j
j

E L
=

� �� �� , we thereafter need to

compute to loss distribution of 
1

n

j
j

L
=
� . In the option pricing terminology, this corresponds to the valuation of

options on portfolios of vulnerable options. In the insurance terminology, we want to be able to evaluate stop
loss premiums.

2.3.2 Basel II framework

We still consider homogeneous portfolios. The losses given default ( )1j j n
LGD

≤ ≤
 are then identically

distributed.

In the Basel II framework, it is moreover assumed that the ( )1j j n
LGD

≤ ≤
are both independent and

independent of the default events ( )1j j n
D

≤ ≤
. Consequently, for large portfolios, the only quantity to be

considered is the expected Loss Given Default while the ( )1j j n
LGD

≤ ≤
specific distribution is not required

(see below).

2.3.3 Correlated losses given default and asset values.

As discussed above, the independence assumption between default events and losses given defaults does not
seem to be realistic. We thereafter propose a simple model where losses given defaults are correlated
together and are also correlated with default events. This model is consistent with empirical evidence on
losses given defaults (i.e. bimodal distributions) and default events. Moreover, it can be given simple
economic interpretation and leads to rather simple interpretations. Not surprisingly, it will lead to changes in
the shape of the aggregated loss distribution and thereafter in the expected and unexpected losses.

We now introduce a correlation structure between Loss Given Default ( )1j j n
LGD

≤ ≤
and Default

Indicators ( )1j j n
D

≤ ≤
 based upon some extension of the Merton model (i.e. a one period firm value model).

In order to deal with credit portfolio distributions, the correlation structure should be emphasised. The 2n
random variables within an homogeneous credit portfolio, ( )1,i i i nξ ≤ ≤Ψ  can be seen as follows:

� homogeneity for default events, and for losses given defaults implies that the cross moments
( )Cov ,i jΨ Ψ  as well as ( )Cov ,i jξ ξ  do not depend on names , ,  i j i j≠ ,

� similarly, we must have constant correlation between Default and Loss Given Default: for a single
creditor ( iΨ  and iξ ) and between two creditors ( ),i jξΨ .
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The homogeneity assumption implies that the sequences ni1i )( ≤≤Ψ  and ni1i )( ≤≤ξ  are exchangeable. From

De Finetti’s theorem, there exist two sequences of independent standard Gaussian variables i, ΨΨ ,

1, , ,i n= � �  and i, ξξ , 1, , ,i n= � �  such that:

��

�
�

�

ξβ−+ξβ=ξ

Ψρ−+Ψρ=Ψ

jj

jj

1

1
(5)

where ,ρ β  are some correlation parameters defined on [ ]0,1 . Let us denote by ( )corr ,η ξ= Ψ  and

( )corr ,i iγ ξ= Ψ .

Thanks to the homogeneity assumption, iE ξ� �Ψ� �  is independent of 1, , ,i n= � �  and thus equal to

1

1 n

i
i

E
n

ξ
=

� �× Ψ� �
� �

� . By Cauchy-Schwarz inequality we get:
1 1 2

1 1 1n n

i i
i i

E
n n n

ξ
= =

� �× Ψ ≤ Ψ =� �
� �

� � .

Thus ( )corr , 0i ξΨ = . Similarly, ( )corr , 0iξΨ =  for all 1, , ,i n= � �

As a consequence ( ),i iξΨ  is independent from ( ),ξΨ  and can be seen as a “good” residual.

Let us now consider the correlation terms ( )corr ,i jξΨ  for i j≠ . Let us use the homogeneity assumption

again. It can be seen that i jE ξ� �Ψ� �  does not depend on ,i j  for i j≠ . Thus 
1

1 i n

i j i j
j i

E E
n

ξ ξ
+

= +

� �
� �Ψ = Ψ ×� �� �

� �
� .

By using again Cauchy-Schwarz inequality and the law of large number in 2L , we obtain that

( )corr , 0i jξΨ =  for i j≠ . As a consequence the random vectors ( ),i iξΨ  are independent for 1, , ,i n= � �

Thus, equations (5) define a proper factor structure for underlying latent variables  ni1i )( ≤≤Ψ  and

ni1i )( ≤≤ξ .Ψ and ξ  can be seen as systematic factors (common risk factors to all credits) while ( )1j j n≤ ≤
Ψ ,

( )
1j j n

ξ
≤ ≤

 are specific risks. Let us remark however that these specific risks can be correlated for a given

credit i : we will further denote by ( )corr ,i iγ ξ= Ψ . The correlation structure for i j≠  is summarised in the
following table:

1 0 0 0 0
1 0 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

i j i j

i

j

i

j

ξ ξ ξ
η

ξ η
γ

γ
ξ γ
ξ γ

Ψ Ψ Ψ
Ψ

Ψ
Ψ

Table 1 – Factor correlation structure

Let us remark that the correlation between specific risks related to default and recovery rates has to be equal
to zero for different credits as a consequence of the homogeneity assumption. Our model only involves four
parameters , , ,ρ β η γ .



– 7 –

When 0η γ= =  (i.e. no correlation between default events and losses given defaults) and 0β =  (i.e. no
correlation between losses given defaults), the model collapses into the Basel II framework. We emphasise
that well-known reduced-form models such as KMV (Crosbie and Bohn [2002]) or CreditMetrics (Gupton et
al. [1997]) treat recovery rate as a stochastic variable, independent from the default event and make a similar
assumption.

Let us remark that when the correlation between jξ and jΨ  is equal to one, the model turns out to be the
Merton model. In that framework, very simple analytical expressions of loss distributions and risk measures
can be obtained.

Correlation between default events and losses given default have been introduced in recent works under the
assumption of 100%η =  (i.e. a one factor model): Frye ([2000a]) assumed no correlation between specific
risks ( 0γ = ) while Pykhtin [2003] added specific risk correlation ( 0γ > ). It should be noticed that these
one-factor models induce harsh collapse of collateral value (i.e. strong losses given default) when default
occurs. This seems inappropriate for mortgage loans for instance.

Introducing a two-factor model ( 100%η < ) is likely to be associated with smoother loss distributions, which
will be shown in the following. Let us notice that Rosen and Sidelnikova [2002] propose a correlation
structure similar to ours, but without specific correlation ( 0γ = ).

Moreover, the correlation between the latent variables jξ  and jΨ is given by:

1 1K η ρβ γ ρ β= + − − .

This correlation has two sources: one reflects how systematic risks are correlated to business cycles, while
the other describes the idiosyncratic impact on both credit risk and market risk. As a matter of fact, the latter
allows also to cope with project finance cases for which the collateral itself drives default events (see
Pykhtin [2003]).

3. LOSS DISTRIBUTIONS FOR LARGE PORTFOLIOS

For well-diversified credit portfolios, i.e. when the nominal exposure is small compared with total exposure,
the aggregated loss can be dramatically simplified thanks to some asymptotic expansion. These large sample
approximation techniques are described in Gordy [2003] or Wilde [2001], Martin and Wilde [2002]. Finger
[1999] and Vasicek [2002] describe the application of such techniques for the CreditMetrics and KMV
portfolio manager respectively. Large sample approximations are well suited for retail portfolio risk analysis
and are thus in the core of the Basel II methodology. The following proposition states the limit distribution
for a well-diversified credit portfolio.

Proposition 3.1 Portfolio loss limit distribution: let us consider a homogeneous portfolio of n loans, for
which the loss depends on a systematic multivariate risk factorΨ . The individual losses are assumed to be
independent under PΨ. With total exposure equal to 1, the aggregated loss converges almost surely:

[ ]{ } [ ]{ }1 1

. .

1

1 1 1
j j

n a s

j jnPD PD
j

LGD L E LGD
n − −Ψ→+∞Ψ <Φ Ψ <Φ

=

� �× → = × Ψ
� �� �

�                (6)

Proof:  see appendix 6.1

Such approximation is done within the Basel II framework and is especially valid for retail portfolios. In
Basel II terminology, this is known as the infinite granularity hypothesis.
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Corollary 3.1 Basel II case: in the Basel II framework, the aggregated loss converges almost surely to:
2 / 2

BaselL e Fµ σµ µ σ
σ σ

+
Ψ

� �� � � �= Φ − − × Φ − − ×� �� � � �	 
 	 
� �
,          (7)

with:
1( )

1
PD

F
ρ

ρ

−

Ψ

� �Φ − Ψ
=Φ � �

−� �� �
.

Proof: see appendix 6.3

[ ]E LGD stands for the non conditional expectation of the random variables ( )1j j n
LGD

≤ ≤
. In the Basel II

framework, the aggregated loss is a decreasing function of a one dimensional Gaussian variable Ψ .

As stated in proposition 3.1, we do not require the independence assumption between default events and
losses given default. The infinite granularity approach can still be used:

Corollary 3.2 Correlation between defaults and losses given default: the aggregated loss involving the
systematic factor ( ),ξΨ converges almost surely to:

22 / 21 1 / 2 1 1
2 2[ ]; [ ]; [ ] 1 ; [ ] 1 ;L F G e e F Gσ β ξ βσµ σ

ξ ξγ σγ β σ β γ−− − + − −
Ψ Ψ

� �� �= Φ Φ Φ − × × Φ Φ − − Φ − −� � � �     (8)

with:
1( )

1
PD

F
ρ

ρ

−

Ψ

� �Φ − Ψ
=Φ � �

−� �� �
 and 

/
1

Gξ
µ σ β ξ

β
� �+

= Φ −� �
−� �� �

.

Proof: see appendix 6.4

The previous expressions involve the systematic correlated factor ( ),ξΨ  while all specific risks have been
diversified. F can be seen as the expected default probability while G is to be related to the expected loss
given default.

4. RISK ANALYSIS

As for market risk, in the Basel II IRB approach bank capital charges must match the credit risk exposure
through the use of an appropriate credit risk measure, computed from the loss distribution. In the Basel II
case, capital charges may be evaluated from:

� the credit losses L, as for corporate credits and mortgages ;
� the unexpected losses, namely [ ]PL E L−  for retail credits apart mortgages1.

More details may be found in Chabaane et al. [2003].

To investigate the differences between the Basel II approach and the extended one, we firstly address the
issue of expected losses.
                                                          

1 For retail credits, banks do not have capital charges for expected losses [ ]PE L , which are covered by the
credit margin.
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4.1 Comparing expected losses

The Expected Loss EL in the Basel II framework is given by (see appendix 6.3):
2 / 2

BaselEL PD eµ σµ µ σ
σ σ

+� �� � � �= × Φ − − × Φ − −� �� � � �	 
 	 
� �
(9)

In the model with correlated default events and losses given default, a technical but not complicated
computation leads to (see appendix 6.4):

21 / 2 1
correlated 2 2( ) ; ; ( ) ; ;EL PD K e PD K Kµ σµ µσ σ

σ σ
− + −� � � �= Φ Φ − − × Φ Φ − − −� � � �� � � �

(10)

where K denotes the correlation parameter: 1 1K η ρβ γ ρ β= + − − .

One should notice that the expected loss is driven by the unique global correlation parameter K, which sums
up the dependence between default events and losses given default.

( ),PD ρ and ( ), ,µ σ β  are respectively associated with the marginal distributions of default events and asset
values. For this purpose, we claim that the volatility σ  and asset correlation β  may be appraised from asset
values data, separately from default events, while default probability PD  and correlation ρ  may be
estimated from historical default rates within the portfolio. Moreover, µ  corresponds to a given expected
loss in the Basel II framework and is to be related to the leverage and to the average return of the asset.

In the Basel Committee approach, the default correlation ρ  is computed using the following formula:

min max(1 )

1
1

PDe
e

α

α

ρ λ ρ λ ρ

λ
− ×

−

= × + − ×�
�
� −=� −�

where the parameters min max, ,ρ ρ α  depend on the type of credit2.

In the following example, the default probability is set to 1%PD =  and the expected loss in the Basel II
framework to 0.2 %. Marginal correlations β  and ρ  are set respectively to 80% and 15%. In figure 1, we
represent Expected Loss for the model with correlated default events and losses given default as a function
of correlation parameter K. The three curves are associated with different levels of volatility (σ = 0%, 20%
and 50%).

Expected Loss as a function of correlation K

0,0%

0,2%

0,4%

0,6%

0,8%

0% 20% 40% 60% 80%
correlation

σ = 0%
σ = 20%
σ = 50%

Figure 1 - Expected Loss in a correlated way (EL = 0.2% for Basel II)
                                                          

2 The Basel Committee claims that these parameters should be set to min 2%ρ = , max 12%ρ = , 35α =  for
retail portfolios, min 12%ρ = , max 24%ρ = , 50%α = for corporate ones.



– 10 –

As can be seen in figure 1, the correlation effect between losses given default and default events can induce
a substantial increase of the expected loss. This should be taken into account in the pricing of such credits.
Still, one should keep in mind that for given correlations β  and ρ , the correlation parameter K is bounded
between 0 and 1 1ρβ ρ β+ − −  (i.e. 76% in our case study).

4.2 Loss distributions

Before evaluating risk measures and reckoning with their relative positions, it seems natural that the loss
distribution shapes of Basel II and its extension should be collated. In figure 2, we compare the Basel II loss
distribution, as a benchmark, to correlated approach loss distribution where volatility and default/recovery
correlation have been taken high concomitantly, in order to enlighten the double impact effect. We find that
the distribution is bimodal: when defaults occur, collateral values are likely to nosedive, such that losses are
weak, huge but not average.

Loss distribution: Basel II vs Collateral
PD = 1,00% , ρ = 15% , σ = 150% , β = 80% 

K = 40%

0

50

100

150

200

250

300

350

400

0,0% 0,2% 0,4% 0,6% 0,8% 1,0% 1,2% 1,4% 1,6% 1,8% 2,0%

Double impact

Basel II

Figure 2 – Loss Distribution: Comparison between Basel II and the extended approach
(200,000 Monte-Carlo simulations)

One should keep in mind that this example is quite extreme; still, with more consistent parameters, this
phenomenon would be noticeable too, even if less striking. Furthermore, although the expected loss appears
hardly changed, the tail distribution is dramatically widened in comparison with Basel II. This trend will be
discussed in the following section dealing with risk measures computation.

4.3 Risk measures

Supervisory authorities retained Value-at-Risk as a risk measure to evaluate regulatory capital. For a given
random variable X, we recall the Value-at-Risk expression for a confidence level α :

[ ]( )( ) inf ,VaR X t P X tα α= ≤ ≥ (11)

In the Basel II framework, the confidence level is 99.9%α = . One may notice that this risk measure is not
sub-additive and does not take into account the magnitude of large losses. To cope with this harshness, other
risk measures may be reckoned with. Expected Shortfall is being considered by large banks a reliable
alternative risk measure. For a given random variable X, with continuous distribution, the Expected Shortfall
stands for the mean of the losses beyond VaR:

( ) ( )PES X E X X VaR Xα α� �= >� � (12)
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From this expression arises that ( ) ( )VaR X ES Xα α≤ and that Expected Shortfall is a more conservative risk
measure than the regulatory one. We underline the fact that the Expected Shortfall is sub-additive while VaR
is not (see Artzner et al. [1997]). Throughout this article, the risk measures to be focused on are Value at
Risk and the Expected Shortfall.

4.3.1 Basel II framework

The monotony property3 can be applied to the Basel II aggregated loss (see appendix 6.3):

[ ]
1 1

Basel
( )  ( )

( )  
1

PD
VaR E LGD

ρ α
α

ρ

− −� �Φ + Φ
= × Φ � �

−� �� �
(13)

Moreover, the Expected Shortfall can also be derived analytically (see appendix 6.3):

[ ]
1 1

2
Basel

( ) ; (1 ) ;
( )

1

PD
ES E LGD

α ρ
α

α

− −� �Φ Φ Φ −� �= ×
−

(14)

4.3.2 Correlated default events and losses given default

In the general case of unconstrained correlation, the model involves two distinct systematic factorsΨ and ξ .
No analytical expression of Value-at-Risk or Expected Shortfall is available and these risk measures will be
thus evaluated numerically. However, in the particular case when credit and market systemic risks are
completely correlated (i.e. 100%η = ), the aggregated loss becomes a decreasing function of a standard
normal variable. The Value-at-Risk would then be analytically computable.

4.3.3 Computation methodology

Value-at-Risk and Expected Shortfall are computed for a volatility level 20%σ = , with current default
probability 1%PD = , expected loss 0.2%EL =  and default correlation 15%ρ = . VaR and Expected
Shortfall have to be seen as functions of the correlation parameters β  and η . More precisely, the quantities
we study are the following ratios:

Basel

correlated
VaR

VaR
VaR = and 

Basel

correlated
EL

ES
ES =

BaselVaR  and BaselEL  are known explicitly while risk measures for the extended model are computed by
Monte-Carlo simulations.

Tables 2 and 3 show those ratios for different levels of correlation ( ),β η , for two case study:
� 0γ = : correlation between default events and collateral values is purely systematic
� 50%γ = : correlation between default events and collateral values involves specific risk

                                                          
3 The VaR monotony property (see appendix 6.2) states that if the aggregated loss is a decreasing function of a
standard Gaussian factor, the VaR can be obtained directly from:

1

( )
/ 0 ( ) [ ( )]
~ (0,1)

L f Z
df dz VaR L f
Z N

α α−

=�
� < � = −Φ�
�
�
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     β
η 0% 20% 40% 60% 80% 100%

100,0% 113,1% 122,1% 130,3% 139,1% 145,7%
100,0% 115,6% 126,0% 135,7% 144,8% 151,5%

20% 100,7% 129,9% 143,7% 157,7% 165,4% 175,4%
100,8% 134,1% 148,5% 163,2% 172,6% 182,7%

40% 100,8% 144,3% 165,6% 181,0% 193,3% 204,1%
100,8% 149,0% 171,2% 190,2% 201,8% 215,3%

60% 99,8% 161,2% 186,3% 204,4% 219,8% 232,1%
100,0% 168,6% 194,3% 215,7% 230,6% 244,0%

80% 100,2% 179,5% 209,0% 227,8% 247,2% 261,0%
100,4% 188,7% 219,5% 236,9% 258,7% 274,8%
100,4% 192,6% 225,6% 251,1% 272,9% 281,9%
99,7% 201,2% 235,4% 261,8% 287,9% 296,9%

0%

100%

Table 2 – VaR and ES (in italic) for case study 1 (γ = 0%) as a function of correlation parameters
1,000,000 simulations

    β
η 0% 20% 40% 60% 80% 100%

158,9% 161,0% 164,2% 162,5% 159,3% 145,9%
154,8% 160,2% 165,4% 164,7% 162,4% 152,1%

20% 157,5% 175,4% 182,6% 186,8% 186,0% 172,8%
153,9% 175,6% 183,7% 188,6% 192,5% 179,8%

40% 160,2% 194,1% 207,9% 211,8% 212,6% 205,7%
156,0% 196,6% 211,6% 218,7% 219,5% 217,2%

60% 158,2% 207,4% 227,0% 238,9% 240,8% 234,1%
155,2% 210,3% 231,1% 243,0% 249,2% 243,4%

80% 159,6% 223,1% 244,1% 257,4% 264,5% 260,5%
156,0% 229,4% 249,4% 265,1% 271,2% 273,4%
158,1% 238,9% 262,7% 276,5% 283,3% 286,8%
153,9% 246,4% 268,0% 287,3% 296,3% 296,6%

0%

100%

Table 3 – VaR and ES (in italic) for case study 2 (γ = 50%) as a function of correlation parameters
1,000,000 simulations

5. CONCLUSION

Not surprisingly, taking into account the positive dependence between default events and losses given
defaults tend to increase both expected losses and credit risk measures such as VaR and Expected Shortfall.
This is associated with a change in the shape of the distribution function. To deal with these effects, we have
considered a model that encompasses Basel II and previous models dealing with such dependencies. The
model studied can be seen as a bridge between the structural approach and the reduced form approach to
credit risk by allowing several levels of dependency between default dates and recovery rates. This model is
well suited for large homogeneous portfolios. In fact, the two factors structure that we exhibit is a mere
consequence of the homogeneity assumption. Under the infinite granularity assumption, the aggregated
losses are computed explicitly as a function of the two factors. Thus, aggregation of homogeneous portfolios
remains easy. However, the computed VaR is no more additive with respect to credit exposures.
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6. APPENDIX

6.1 Aggregated loss convergence

We denote by ( )P,, ℑΩ  a space endowed with a probability measure. Q refers to the regular version of a
probability measure knowing a multivariate factorΨ . Let us consider the losses ( ) nkkL ≤  characterised by:
� ( ) nkkL ≤  are all independent knowingΨ ;

� ( ) nkkL ≤  have the same expectation under Q : [ ]k
Q LEL =Ψ ;

� ( ) nkkL ≤  have finite expectation under P and under Q.

We aim at showing that the average loss converges almost surely to ΨL when n tends to infinity. Hence,
using the law of large numbers:

1LL
n
1Q

n

1k
k =

�
�

�

�

�
�

�

�
→ Ψ

=
� (A1)

Moreover, using Fubini’s theorem, we obtain:
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Ω

Ψ
=

Ψ
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(A2)

This last assumption proves the almost surely convergence of  the loss to [ ]k
Q LEL =Ψ .

6.2 Gaussian VaR

We assume that the loss L is a strictly decreasing function of a standard Gaussian variableΨ : ( )Ψ= fL .
Hence, if g denotes the inverse function of f, still decreasing, we successively get:

[ ] [ ] [ ] [ ]0 0 0 0( ) ( ) ( )P L L P f L P g L g L≥ = Ψ ≥ = Ψ ≤ = Φ .

Then α)](1[Φf(L)VaR -1
α −=  which finally leads to:

)]([f)L(VaR 1 αΦ−= −
α (A3)

6.3 Basel II framework

We denote by ( )P,, ℑΩ  a space endowed with a probability measure. Q refers to the regular version of a
probability measure knowingΨ .Let us recall that the loss Lj for a single credit is characterised by:

{ }��

�
�
�

= −Φ<Ψρ−+Ψρ )PD(1j

j

1
j

1D

LGD
 (A4)

Expected Loss

The Expected Loss is given by [ ] PDLGDEEL ×= . The first quantity is evaluated as follows:

[ ] [ ] [ ]
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Aggregated Loss

The asymptotic property given in appendix 6.1 allows to reduce the aggregated loss ΨL to:
[ ] [ ] [ ]

[ ] [ ]
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1
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Thus, the aggregated loss is:
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Value-at-Risk

Furthermore, the aggregated loss is a decreasing function of the systematic variableΨ . In fact:
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The appendix 6.2 leads then to:

[ ]
�
�

�

�

�
�

�

�

ρ−

αΦρ+Φ
Φ×=α

−−

1

)()PD(
LGDE)(VaR

11

Basel (A7)

Expected Shortfall

The Expected Shortfall is given by: ( ) ( )PES X E X X VaR Xα α� �= >� �

Since [ ]α−Φ<Ψ⇔>Ψ −
α 1)L(VaR)(L 1 , we get:
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The analytical regulatory expression for Expected Shortfall finally falls to:
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6.4 Correlation between defaults and losses given default

We denote by ( )P,, ℑΩ  a space endowed with a probability measure. Q refers to the regular version of a
probability measure knowing ( )ξΨ, . The credit loss is characterised by:

{ })PD(1j

1
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1
j

j

1D

e1LGD
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Expected Loss

Let us recall that the expression of a credit loss is { })PD(j 1
j

j 1e1L −Φ<Ψ

+ξσ+µ ×
��
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��
� −= , where ),( jj ξΨ are

standard normal variables, with correlation β−ρ−γ+ρβη= 11K .

Thus, the Expected Loss is given by:
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This last integral is computed by the following linear change of variables:
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Finally, the expected loss is given by:
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Aggregated loss

The aggregated loss ξΨ ,L can be written as: [ ] { }���
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The specific risk factors ),( jj ξΨ  are standard Gaussian with correlation γ . This expectation has been
computed when evaluating the expected loss:
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