Credit Workshop Isaac Newton Institute 26 February 2005

Jean-Paul Laurent Professor ISFA Actuarial School, University of Lyon & Scientific Consultant, BNP-Paribas laurent.jeanpaul@free.fr, http://laurent.jeanpaul.free.fr

Joint work with X. Burtschell and J. Gregory

A comparative analysis of <u>CDO</u> ad-hoc pricing models

Credit Workshop Isaac Newton Institute 26 February 2005

Jean-Paul Laurent Professor ISFA Actuarial School, University of Lyon & Scientific Consultant, BNP-Paribas laurent.jeanpaul@free.fr, http://laurent.jeanpaul.free.fr

Joint work with X. Burtschell and J. Gregory

Model dialectics

- Benchmark model: one factor Gaussian model
 - Used by all major investments banks to communicate quotes
 - On a large and liquid market market of synthetic CDO tranches
- The oponents
 - Within the « copula family »
 - Student t (O'Kane & Schloegl, Lindskog & McNeil), Clayton (Schönbucher), double t (Hull & White), multifactor Gaussian, Marshall-Olkin (Giesecke, Lindskog & McNeil), random factor loadings (Andersen & Sidenius)
 - Intensity models
 - Affine Jump Diffusion (Hutt), Gamma (Joshi), Stochastic Networks (Davis, Backhaus & Frey, Giesecke), Hawkes (Giesecke)
 - Structural models
- United We Stand, Divided We Fall

- Model dialectics
 - Try to look for a lowest common denominator
 - *« Homogeneity » assumption: default times are exchangeable*
 - Can be expressed through joint survival functions
 - Weaker form: the dependence structure is « exchangeable »
 - Expressed through the copula of default times
 - Weaker form: the dependence structure of default indicators is exchangeable
 - Leads to a one factor representation thanks to de Finetti theorem
 - Usual de Finetti involves infinite sequences
 - Finite de Finetti, Jaynes (1986)
 - Factor representation involves signed measures

- Model dialectics
 - Non homogeneous models
 - Usually involves a factor representation
 - Loading factors will depend on names
- Factor approach holds for many intensity models
 - Let us consider Joshi (25 February 2005)
 - Compensator follows a Gamma process $\Gamma(t)$
 - Conditional survival probabilities $\exp(-c_i\Gamma(t))$
 - $\Gamma(t)$ holds for the factor for time horizon t
 - Conditionally on the factor, default indicators are independent

- Purpose of the presentation
 - Assessment of CDO pricing models in a factor framework
 - Comparisons of different models
 - Comparisons with market quotes
 - Based on tranche premiums
 - Study the relevance of standard probabilistic tools such as tail dependence or non parametric measures of dependence (Kendall's tau)
 - Study how tranche premiums vary with parameters
 - Stochastic orders theory
 - *Relate semi-analytical pricing approaches and large portfolio approximations (stochastic orders again)*

- $i = 1, \ldots, n$ names.
- τ_1, \ldots, τ_n default times.
- N_i nominal of credit *i*,
- δ_i recovery rate
- $N_i(t) = 1_{\tau_i \le t}$ default indicator
- $N_i(1-\delta_i)$ loss given default

- Factor approaches to joint distributions:
 - V: low dimensional factor
 - Conditionally on V, default times are independent.
 - Conditional default and survival probabilities:

$$p_t^{i \mid V} = Q \left(\boldsymbol{\tau}_i \leq t \mid V \right), \quad q_t^{i \mid V} = Q \left(\boldsymbol{\tau}_i > t \mid V \right).$$

- Why factor models ?
 - Tackle with large dimensions
- Need tractable dependence between defaults:
 - Parsimonious modelling
 - Semi-explicit computations for CDO tranches

- Semi-explicit pricing for CDO tranches
 - Default payments are based on the accumulated losses on the pool of credits:

$$L(t) = \sum_{1 \le i \le n} N_i (1 - \delta_i) N_i(t)$$

• Tranche premiums only involves call options on the accumulated losses

$$E\bigg[\big(L(t)-K\big)^+\bigg]$$

- Characteristic function: $\varphi_{L(t)}(u) = E\left[e^{iuL(t)}\right]$
 - By conditioning upon V and using conditional independence:

$$\varphi_{L(t)}(u) = E\left[\prod_{1 \le j \le n} \left(1 - p_t^{j|V} + p_t^{j|V}\varphi_{1-\delta_j}(uN_j)\right)\right]$$

- Distribution of L(t) can be obtained by FFT
 - Or other inversion technique
- Only need of conditional (on factor) probabilities $p_t^{i|V}$

• One factor Gaussian copula:

• $V, \overline{V}_i, i = 1, ..., n$ independent Gaussian,

$$V_i = \rho_i V + \sqrt{1 - \rho_i^2} \bar{V}_i$$

- Default times: $\tau_i = F_i^{-1}(\Phi(V_i))$
- *F_i marginal distribution function of default times*
- Conditional default probabilities:

$$p_t^{i|V} = \Phi\left(\frac{-\rho_i V + \Phi^{-1}(F_i(t))}{\sqrt{1 - \rho_i^2}}\right)$$

Student t copula

 Embrechts, Lindskog & McNeil, Greenberg et al, Mashal et al, O'Kane & Schloegl, Gilkes & Jobst

$$\begin{aligned} X_i &= \rho V + \sqrt{1 - \rho^2} \overline{V_i} \\ V_i &= \sqrt{W} \times X_i \\ \tau_i &= F_i^{-1} \left(t_v \left(V_i \right) \right) \end{aligned}$$

- $V, \overline{V_i}$ independent Gaussian variables • $\frac{V}{W}$ follows a χ^2_{V} distribution
- Conditional default probabilities (two factor model)

$$p_{t}^{i|V,W} = \Phi\left(\frac{-\rho V + W^{-1/2} t_{v}^{-1} \left(F_{i}(t)\right)}{\sqrt{1-\rho^{2}}}\right)$$

- *Clayton* copula
 - Schönbucher & Schubert, Rogge & Schönbucher, Friend & Rogge, Madan et al

$$V_i = \psi\left(-\frac{\ln U_i}{V}\right) \qquad \tau_i = F_i^{-1}\left(V_i\right) \qquad \psi(s) = \left(1+s\right)^{-1/\theta}$$

- V: Gamma distribution with parameter heta
- U_1, \ldots, U_n independent uniform variables
- Conditional default probabilities (one factor model)

$$p_t^{i|V} = \exp\left(V\left(1 - F_i(t)^{-\theta}\right)\right)$$

Double *t* model (Hull & White)

$$V_i = \rho_i \left(\frac{\nu - 2}{\nu}\right)^{1/2} V + \sqrt{1 - \rho_i^2} \left(\frac{\overline{\nu} - 2}{\overline{\nu}}\right)^{1/2} \overline{V_i}$$

• $V, \overline{V_i}$ are independent Student t variables

• with v and \overline{v} degrees of freedom

 $\tau_{i}=F_{i}^{-1}\left(H_{i}\left(V_{i}\right)\right)$

• where H_i is the distribution function of V_i

$$p_t^{i|V} = t_{\overline{v}} \left(\left(\frac{\overline{v}}{\overline{v} - 2} \right)^{1/2} \frac{H_i^{-1}(F_i(t)) - \rho_i \left(\frac{v - 2}{v} \right)^{1/2} V}{\sqrt{1 - \rho_i^2}} \right)$$

- Shock models (multivariate exponential copulas)
 - Duffie & Singleton, Giesecke, Elouerkhaoui, Lindskog & McNeil, Wong
- Modelling of default dates: $V_i = \min(V, \overline{V_i})$
 - $V, \overline{V_i}$ exponential with parameters $\alpha, 1-\alpha$
 - Default dates $\tau_i = S_i^{-1} \left(\exp \min \left(V, \overline{V_i} \right) \right)$
 - *S_i* marginal survival function
 - Conditionally on V, τ_i are independent.
- Conditional default probabilities

$$q_t^{i|V} = 1_{V>-\ln S_i(t)} S_i(t)^{1-\alpha}$$

 CDO margins (bps pa) • With respect to correlation Gaussian copula Attachment points: 3%, 10% 100 names Unit nominal Credit spreads 100 bp **5** years maturity

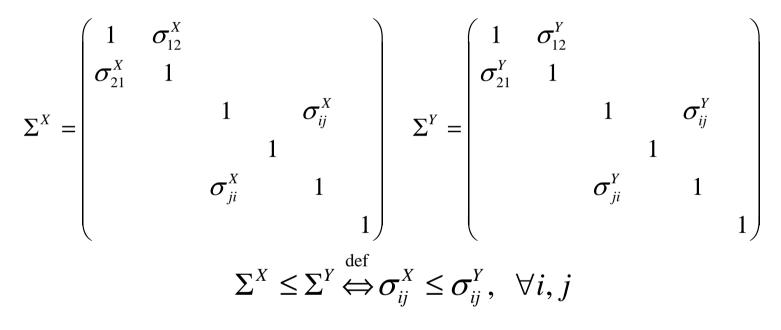
	equity	mezzanine	senior
0%	5341	560	0.03
10%	3779	632	4.6
30%	2298	612	20
50%	1491	539	36
70%	937	443	52
100%	167	167	91

- Equity tranche premiums are decreasing wrt ρ
 - General result ?
 - Supermodular function f is such that:
 - $f: \mathbb{R}^{n} \to \mathbb{R} \qquad \Delta_{i}^{\varepsilon} f(x) = f(x + \varepsilon e_{i}) f(x)$ $\forall x \in \mathbb{R}^{n}, \forall \varepsilon, \delta > 0 \qquad \Delta_{i}^{\varepsilon} \Delta_{j}^{\delta} f(x) \ge 0$
 - Supermodular order

$$X = (X_1, \dots, X_n) \qquad Y = (Y_1, \dots, Y_n)$$

 $X \leq_{\text{sm}} Y \iff E[f(X)] \leq E[f(Y)], \forall f \text{ supermodular}$

- « Supermodular » order of Gaussian vectors
 - Let X and Y be Gaussian vectors with zero mean



Müller & Scarsini (2000), Müller (2001)

 $\Sigma^X \leq \Sigma^Y \iff X \leq_{sm} Y$

- Stop-Loss » order
 - Accumulated losses: L(t), L'(t)

$$L(t) \leq_{\mathrm{sl}} L'(t) \stackrel{\mathrm{def}}{\Leftrightarrow} E\left[\left(L(t) - K\right)^{+}\right] \leq E\left[\left(L'(t) - K\right)^{+}\right], \forall K \geq 0$$

- Supermodular order of latent variables implies stop-loss order of accumulated losses
- Thus, equity tranche premium is <u>always</u> decreasing with correlation
- Guarantees uniqueness of « base correlation »
- Monotonicity properties extend to Student t, Marshall-Olkin copulas

Second issue

- Equity tranche premium decrease with correlation
- Does $\rho = 100\%$ correspond to some lower bound?
- $\rho = 100\%$ corresponds to « comonotonic » default dates:

$$(\tau_1,\ldots,\tau_n)$$
 comonotonic $\Leftrightarrow (\tau_1,\ldots,\tau_n) \stackrel{d}{=} (F_1^{-1}(U),\ldots,F_n^{-1}(U))$

• where *U* is uniform

$$(\tau_1,\ldots,\tau_n) \leq_{\mathrm{sm}} (F_1^{-1}(U),\ldots,F_n^{-1}(U))$$

- Tchen (1980)
- $\rho = 100\%$ is a <u>model free</u> lower bound for the equity tranche premium

Third issue

- Does $\rho = 0\%$ corresponds to the higher bound on the equity tranche premium?
- $\rho = 0\%$ corresponds to the independence case between default dates
- The answer is no, negative dependence can occur
- Base correlation does not always exists
 - Even in Gaussian copula models
- Factor models are usually associated with positive dependence
 - i.e. independent default dates are smaller with respect to supermodular order

- Calibration issues
 - One parameter copulas
 - Well suited for homogeneous portfolios
 - Dependence is *«* monotonic *»* in the parameter
- Calibration procedure
 - Fit Clayton, Student t, double t, Marshall Olkin parameters onto CDO equity tranches
 - Computed under one factor Gaussian model
 - Or given market quotes on equity trances
 - *Reprice mezzanine and senior CDO tranches*
 - Given the previous parameters

CDO margins (bps pa) • With respect to correlation Gaussian copula Attachment points: 3%, 10% 100 names Unit nominal Credit spreads 100 bp **5** years maturity

	equity	mezzanine	senior
0%	5341	560	0.03
10%	3779	632	4.6
30%	2298	612	20
50%	1491	539	36
70%	937	443	52
100%	167	167	91

- CDO margins (bps pa)
 With respect to correlation
 Gaussian copula
 Attachment points: 3%, 10%
 100 names
 Unit nominal
 Credit spreads 100 bp
 - **5** years maturity

	equity	mezzanine	senior
0%	5341	560	0.03
10%	3779	632	4.6
30%	2298	612	20
50%	1491	539	36
70%	937	443	52
100%	167	167	91

ρ	0%	10%	30%	50%	70%	100%
θ	0	0.05	0.18	0.36	0.66	8
$ ho_{_6}$	0%	0%	14%	39%	63%	100%
$ ho_{\!_{12}}$	0%	0%	22%	45%	67%	100%
$\rho t(4)-t(4)$	0%	12%	34%	55%	73%	100%
$\rho t(5)-t(4)$	0%	13%	36%	56%	74%	100%
$\rho t(4)-t(5)$	0%	12%	34%	54%	73%	100%
$\rho t(3)-t(4)$	0%	10%	32%	53%	75%	100%
$\rho t(4)-t(3)$	0%	11%	33%	54%	73%	100%
α	0	28%	53%	69%	80%	100%

Table 5: correspondence between parameters

ρ	0%	10%	30%	50%	70%	100%
Gaussian	560	633	612	539	443	167
Clayton	560	637	628	560	464	167
Student (6)	676	676	637	550	447	167
Student (12)	647	647	621	543	445	167
t(4)-t(4)	560	527	435	369	313	167
t(5)-t(4)	560	545	454	385	323	167
t(4)-t(5)	560	538	451	385	326	167
t(3)-t(4)	560	495	397	339	316	167
t(4)-t(3)	560	508	406	342	291	167
MO	560	284	144	125	134	167

Table 6: mezzanine tranche (bps pa)

ρ	0%	10%	30%	50%	70%	100%
Gaussian	0.03	4.6	20	36	52	91
Clayton	0.03	4.0	18	33	50	91
Student (6)	7.7	7.7	17	34	51	91
Student (12)	2.9	2.9	19	35	52	91
t(4)-t(4)	0.03	11	30	45	60	91
t(5)-t(4)	0.03	10	29	45	59	91
t(4)-t(5)	0.03	10	29	44	59	91
t(3)-t(4)	0.03	12	32	47	71	91
t(4)-t(3)	0.03	12	32	47	61	91
MO	0.03	25	49	62	73	91

Table 7: senior tranche (bps pa)

ρ	0%	10%	30%	50%	70%	100%
Gaussian	0%	0%	0%	0%	0%	100%
Clayton	0%	0%	2%	15%	35%	100%
Student (6)	3%	3%	4%	6%	13%	100%
Student (12)	0%	0%	0%	1%	4%	100%
t(4)-t(4)	0%	0%	1%	10%	48%	100%
t(5)-t(4)	0%	0%	0%	0%	0%	100%
t(4)-t(5)	0%	100%	100%	100%	100%	100%
t(3)-t(4)	0%	100%	100%	100%	100%	100%
t(4)-t(3)	0%	0%	0%	0%	0%	100%
MO	0%	28%	53%	69%	80%	100%

 Table
 8: coefficient of lower tail dependence (%)

ρ	0%	10%	30%	50%	70%	100%
Gaussian	0%	1%	6%	16%	33%	100%
Clayton	0%	3%	8%	15%	25%	100%
Student (6)	0%	0%	1%	10%	26%	100%
Student (12)	0%	0%	3%	13%	30%	100%
MO	0%	16%	36%	53%	67%	100%

Table 9: Kendall's τ (%)

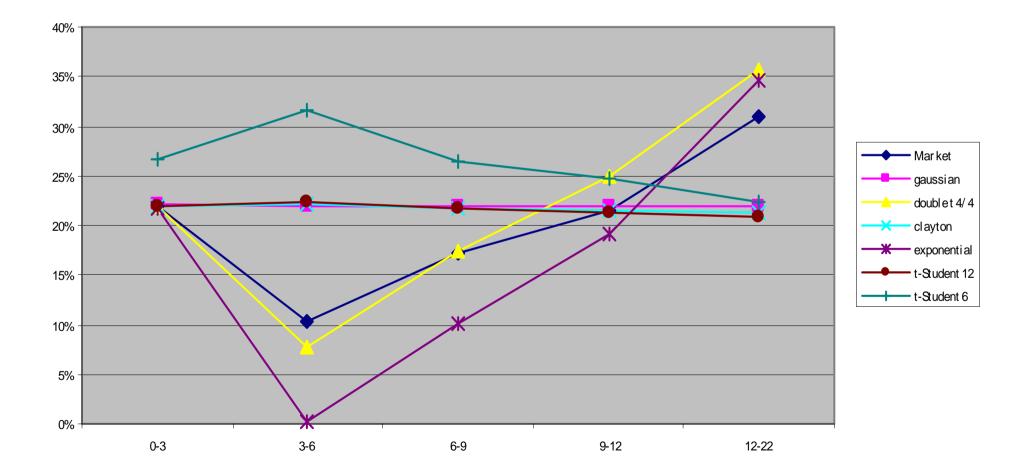
Tranches	Market	Gaussian	t(4)-t(4)	Clayton	MO	Student (12)	Student (6)
0%-3%	916	916	916	916	916	916	849
3%-6%	101	163	82	163	15	164	186
6%-9%	33	48	34	47	12	47	61
9%-12%	16	17	22	16	12	15	21
12%-22%	9	3	13	2	12	2	3

Table 15: CDO tranche premiums I-TRAXX (bps pa)

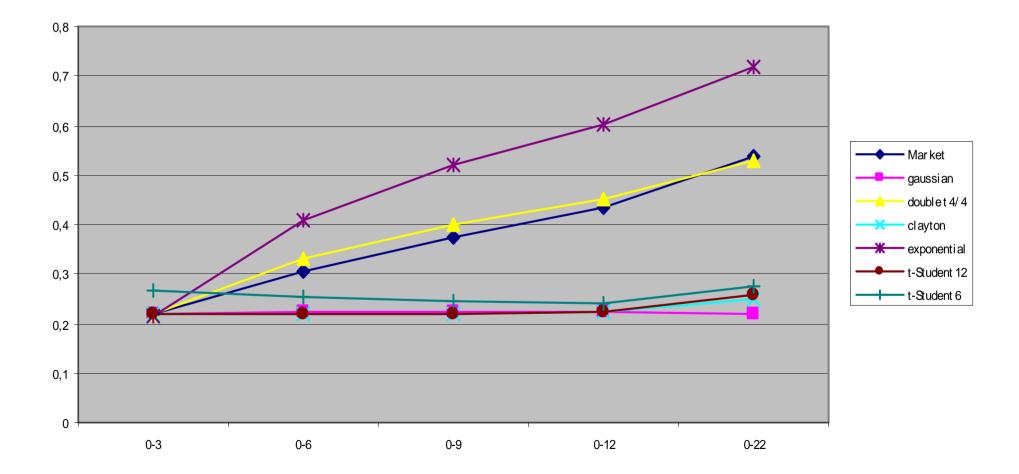
Tranches	Market	Gaussian	t(4)-t(4)	Clayton	MO	Student (12)	Student (6)
0%-3%	916	916	916	916	916	916	849
0%-6%	466	503	456	504	417	504	490
0%-9%	311	339	305	339	273	340	336
0%-12%	233	253	230	253	203	254	253
0%-22%	128	135	128	135	114	135	135

Table 16: CDO tranche premiums I-TRAXX (bps pa)

Implied Compound Correlation



Implied Base Correlation



Model risk: choice of copula

- Related results:
 - Student vs Gaussian
 - Frey & McNeil, Mashal et al
 - Calibration on asset correlation
 - Distance between Gaussian and Student is bigger for low correlation levels
 - And extremes of the loss distribution
 - Joint default probabilities increase as number of degrees of freedom decreases
 - Calibration onto joint default probabilities
 - or default correlation, or aggregate loss variance
 - O'Kane & Schloegl, Schonbucher
 - Gaussian, Clayton and Student t are all very similar

- Factor models of default times:
 - Simple computation of CDO's
- Gaussian, Clayton and Student *t* copulas provide very similar patterns
- Shock models (Marshall-Olkin) quite different
- Double *t* provides intermediate results