

# Fast Analytic Techniques for Pricing Synthetic CDOs

#### Credit Risk Summit Europe 13 October 2004

Jean-Paul Laurent
Professor, ISFA Actuarial School, University of Lyon
& Scientific Consultant, BNP-Paribas

laurent.jeanpaul@free.fr, http:/laurent.jeanpaul.free.fr

Joint work with Jon Gregory, Head of Credit Derivatives Research, BNP Paribas



#### Fast Analytic Techniques for Pricing Synthetic CDOs

- Pricing of CDO tranches
  - Premiums involves loss distributions
  - Computation of loss distributions in factor models
- Model risk: choice of copula
  - Default probabilities in Gaussian, Student, Clayton and Shock models
  - Empirical comparisons
- Risk analysis
  - Sensitivity with respect to credit curves
  - Correlation parameters

- $i = 1, \ldots, n$  names.
- $\tau_1, \dots, \tau_n$  default times.
- $N_i$  nominal of credit i,
- $\bullet$   $\delta_i$  recovery rate
- Default indicator  $N_i(t) = 1_{\tau_i \le t}$ ,  $N_i(1 \delta_i)$  loss given default
- Default payments are based on the accumulated losses on the pool of credits

$$L(t) = \sum_{1 \le i \le n} N_i (1 - \delta_i) N_i(t)$$

- Tranches with thresholds  $0 \le A \le B \le \sum N_j$ 
  - *Mezzanine: losses are between A and B*
- Cumulated payments at time *t on mezzanine tranche*

$$M(t) = (L(t) - A) 1_{[A,B]}(L(t)) + (B - A) 1_{[B,\infty[}(L(t))$$

Payments on default leg:

$$\Delta M(t) = M(t) - M(t^{-})$$
 at time  $t \leq T$ 

- Payments on premium leg:
  - periodic premium,
  - proportional to outstanding nominal: B A M(t)

- Upfront premium:  $E\left|\int_0^T B(t)dM(t)\right|$ 
  - ullet B(t) discount factor, T maturity of CDO
- Integration by parts  $B(T)E[M(T)] + \int_0^T E[M(t)]dB(t)$ 
  - Where  $E[M(t)] = (B-A)Q(L(t) > B) + \int_A^B (x-A)dF_{L(t)}(x)$
- Premium only involves loss distributions
- Contribution of names to the PV of the default leg
  - See « Basket defaults swaps, CDO's and Factor Copulas » available on www.defaultrisk.com

- Factor approaches to joint distributions:
  - V: low dimensional factor
  - Conditionally on V, default times are independent.
  - Conditional default and survival probabilities:

$$p_t^{i\mid V} = Q\left(\tau_i \le t \mid V\right), \quad q_t^{i\mid V} = Q\left(\tau_i > t \mid V\right).$$

- Why factor models ?
  - Tackle with large dimensions
- Need tractable dependence between defaults:
  - Parsimonious modeling
  - Semi-explicit computations for CDO tranches

• Accumulated loss at 
$$t$$
:  $L(t) = \sum_{1 \le i \le n} N_i (1 - \delta_i) N_i(t)$ 

- Where  $N_i(t) = 1_{\tau_i \le t}$ ,  $N_i(1 \delta_i)$  loss given default.
- Characteristic function:  $\varphi_{L(t)}(u) = E\left[e^{iuL(t)}\right]$

By conditioning: 
$$\varphi_{L(t)}(u) = E\left[\prod_{1 \leq j \leq n} \left(1 - p_t^{j|V} + p_t^{j|V} \varphi_{1-\delta_j}(uN_j)\right)\right]$$

- Distribution of L(t) can be obtained by FFT
  - Or other inversion technique
- Only need of conditional probabilities

- CDO premiums only involve loss distributions
- One hundred names, same nominal.
- Recovery rates: 40%
- Credit spreads uniformly distributed between 60 and 250 bp.
- Gaussian copula, correlation:50%
- 10<sup>5</sup> Monte Carlo simulations



Loss distribution over time for the table B example with 50% correlation for the semi-explicit approach (top) and Monte Carlo simulation (bottom)

#### B. Pricing of five-year maturity CDO tranches

|      | Equity  | Equity (0-3%) |       | Mezzanine (3-14%) |       | 4-100%) |
|------|---------|---------------|-------|-------------------|-------|---------|
|      | SE      | MC            | \$E   | MC                | SE    | MC      |
| 0%   | 8,219.4 | 8,228.5       | 816.2 | 814.3             | 0.0   | 0.0     |
| 20%  | 4,321.1 | 4,325.3       | 809.4 | 806.9             | 13.7  | 13.7    |
| 40%  | 2,698.8 | 2,696.7       | 734.3 | 731.4             | 33.4  | 33.2    |
| 60%  | 1,750.6 | 1,738.5       | 641.0 | 637.8             | 54.1  | 53.7    |
| 80%  | 1,077.5 | 1,067.9       | 529.5 | 526.9             | 77.0  | 76.6    |
| 100% | 410.3   | 406.6         | 371.2 | 367.0             | 110.4 | 109.6   |

Premiums in basis points per annum as a function of correlation for 5-year maturity CDO tranches on a portfolio with credit spreads uniformly distributed between 60 and 250bp. The recovery rates are 40%

- Semi-explicit vs MonteCarlo
- One factor Gaussian copula
- CDO tranches margins with respect to correlation parameter

- One factor Gaussian copula:
  - $V, \bar{V}_i, i = 1, ..., n$  independent Gaussian,

$$V_i = \rho_i V + \sqrt{1 - \rho_i^2} \bar{V}_i$$

- Default times:  $\tau_i = F_i^{-1}(\Phi(V_i))$
- ullet  $F_i$  marginal distribution function of default times
- Conditional default probabilities:  $p_t^{i|V} = \Phi\left(\frac{-\rho_i V + \Phi^{-1}(F_i(t))}{\sqrt{1-\rho_i^2}}\right)$

#### Student t copula

Embrechts, Lindskog & McNeil, Greenberg et al, Mashal et al,
 O'Kane & Schloegl, Gilkes & Jobst

$$\begin{cases} X_{i} = \rho V + \sqrt{1 - \rho^{2}} \overline{V}_{i} \\ V_{i} = \sqrt{W} \times X_{i} \\ \tau_{i} = F_{i}^{-1} \left( t_{v} \left( V_{i} \right) \right) \end{cases}$$

- $V, \overline{V_i}$  independent Gaussian variables
- $\frac{v}{W}$  follows a  $\chi_v^2$  distribution
- Conditional default probabilities (two factor model)

$$p_{t}^{i|V,W} = \Phi\left(\frac{-\rho V + W^{-1/2}t_{v}^{-1}(F_{i}(t))}{\sqrt{1-\rho^{2}}}\right)$$

#### Clayton copula

Schönbucher & Schubert, Rogge & Schönbucher, Friend & Rogge,
 Madan et al

$$V_i = \psi\left(-\frac{\ln U_i}{V}\right) \quad \tau_i = F_i^{-1}\left(V_i\right) \quad \psi(s) = \left(1+s\right)^{-1/\theta}$$

- V: Gamma distribution with parameter  $\theta$
- $U_1,...,U_n$  independent uniform variables
- Conditional default probabilities (one factor model)

$$p_t^{i|V} = \exp\left(V\left(1 - F_i(t)^{-\theta}\right)\right)$$

- Frailty model: multiplicative effect on default intensity
- Copula:  $C(u_1, \ldots, u_n) = (u_1^{-\theta} + \ldots + u_n^{-\theta} n + 1)^{-1/\theta}$

- Shock models for previous models
  - Duffie & Singleton, Giesecke, Elouerkhaoui, Lindskog & McNeil, Wong
- Modeling of default dates:  $\tau_i = \min(\bar{\tau}_i, \tau)$ 
  - $Q(\tau_i = \tau_j) \ge Q\left(\tau \le \min(\bar{\tau}_i, \bar{\tau}_j)\right) > 0$  simultaneous defaults.
  - Conditionally on  $\tau$ ,  $\tau_i$  are independent.

$$Q(\tau_1 \le t_1, \dots, \tau_n \le t_n \mid \tau) = \prod_{1 \le i \le n} Q(\tau_i \le t_i \mid \tau)$$

Conditional default probabilities (one factor model)

$$p_t^{i|\tau} = 1_{\tau > t} Q(\bar{\tau}_i \le t) + 1_{\tau \le t}$$

#### Calibration issues

- One parameter copulas
- Well suited for homogeneous portfolios
  - See later on for sector effects
- Dependence is « monotonic » in the parameter

#### Calibration procedure

- Fit Clayton, Student, Marshall Olkin parameters onto first to default or CDO equity tranches
  - Computed under one factor Gaussian model
- Reprice n<sup>th</sup> to default, mezzanine and senior CDO tranches
  - Given the previous parameters

- First to default swap premium vs number of names
  - From n=1 to n=50 names
  - Unit nominal
  - $Credit\ spreads = 80\ bp$
  - Recovery rates = 40 %
  - *Maturity* = 5 years
  - Basket premiums in bppa
  - Gaussian correlation parameter= 30%
- MO is different
- Kendall's tau ?

| Names   | Gaussian | Student (6) | Student (12) | Clayton | МО   |
|---------|----------|-------------|--------------|---------|------|
| 1       | 80       | 80          | 80           | 80      | 80   |
| 5       | 332      | 339         | 335          | 336     | 244  |
| 10      | 567      | 578         | 572          | 574     | 448  |
| 15      | 756      | 766         | 760          | 762     | 652  |
| 20      | 917      | 924         | 920          | 921     | 856  |
| 25      | 1060     | 1060        | 1060         | 1060    | 1060 |
| 30      | 1189     | 1179        | 1185         | 1183    | 1264 |
| 35      | 1307     | 1287        | 1298         | 1294    | 1468 |
| 40      | 1417     | 1385        | 1403         | 1397    | 1672 |
| 45      | 1521     | 1475        | 1500         | 1492    | 1875 |
| 50      | 1618     | 1559        | 1591         | 1580    | 2079 |
| Kendall | 19%      |             |              | 8%      | 33%  |



- From first to last to default swap premiums
  - 10 names, unit nominal
  - Spreads of names uniformly distributed between 60 and 150 bp
  - $Recovery\ rate = 40\%$
  - Maturity = 5 years
  - Gaussian correlation: 30%
- Same FTD premiums imply consistent prices for protection at all ranks
- Model with simultaneous defaults provides very different results

| Rank | Gaussian | Student (6) | Student (12) | Clayton | МО  |
|------|----------|-------------|--------------|---------|-----|
| 1    | 723      | 723         | 723          | 723     | 723 |
| 2    | 277      | 278         | 276          | 274     | 160 |
| 3    | 122      | 122         | 122          | 123     | 53  |
| 4    | 55       | 55          | 55           | 56      | 37  |
| 5    | 24       | 24          | 25           | 25      | 36  |
| 6    | 11       | 10          | 10           | 11      | 36  |
| 7    | 3.6      | 3.5         | 4.0          | 4.3     | 36  |
| 8    | 1.2      | 1.1         | 1.3          | 1.5     | 36  |
| 9    | 0.28     | 0.25        | 0.35         | 0.39    | 36  |
| 10   | 0.04     | 0.04        | 0.06         | 0.06    | 36  |
|      |          |             |              |         |     |



- CDO margins (bp)
  - With respect to correlation
  - Gaussian copula
  - Attachment points: 3%, 10%
  - 100 names
  - Unit nominal
  - Credit spreads 100 bp
  - 5 years maturity

|      | equity | mezzanine | senior |
|------|--------|-----------|--------|
| 0 %  | 5341   | 560       | 0.03   |
| 10 % | 3779   | 632       | 4.6    |
| 30 % | 2298   | 612       | 20     |
| 50 % | 1491   | 539       | 36     |
| 70 % | 937    | 443       | 52     |
| 100% | 167    | 167       | 91     |



| ρ            | 0%  | 10% | 30% | 50% | 70% | 100% |
|--------------|-----|-----|-----|-----|-----|------|
| Gaussian     | 560 | 633 | 612 | 539 | 443 | 167  |
| Clayton      | 560 | 637 | 628 | 560 | 464 | 167  |
| Student (6)  | 676 | 676 | 637 | 550 | 447 | 167  |
| Student (12) | 647 | 647 | 621 | 543 | 445 | 167  |
| MO           | 560 | 284 | 144 | 125 | 134 | 167  |

Table 8: mezzanine tranche (bp pa)

| ρ            | 0%   | 10% | 30% | 50% | 70% | 100% |
|--------------|------|-----|-----|-----|-----|------|
| Gaussian     | 0.03 | 4.6 | 20  | 36  | 52  | 91   |
| Clayton      | 0.03 | 4.0 | 18  | 33  | 50  | 91   |
| Student (6)  | 7.7  | 7.7 | 17  | 34  | 51  | 91   |
| Student (12) | 2.9  | 2.9 | 19  | 35  | 52  | 91   |
| MO           | 0.03 | 25  | 49  | 62  | 73  | 91   |

Table 9: senior tranche (bp pa)

#### Related results:

- Student vs Gaussian
  - Frey & McNeil, Mashal et al
  - Calibration on asset correlation
  - Distance between Gaussian and Student is bigger for low correlation levels
  - And extremes of the loss distribution
  - Joint default probabilities increase as number of degrees of freedom decreases
- Calibration onto joint default probabilities
  - or default correlation, or aggregate loss variance
  - O'Kane & Schloegl, Schonbucher
- Gaussian, Clayton and Student t are all very similar

#### Related results:

- Calibration to the correlation smile
  - Gilkes & Jobst, Greenberg et al : Student and Gaussian very similar
- Clayton vs Gaussian
  - Madan et al
  - For well chosen parameters, Clayton and Gaussian are close
  - Calibration on Kendall's tau?

#### Conclusion:

- Mapping of parameters for Gaussian, Clayton, Student
  - Such that CDO tranches, joint default probabilities, default correlation, loss variance, spread sensitivities are well matched
  - Even though dynamic properties are different



#### Risk analysis: sensitivity with respect to credit curves

- Computation of Greeks
  - Changes in credit curves of individual names
  - Changes in correlation parameters
- Greeks can be computed up to an integration over factor distribution
  - Lengthy but easy to compute formulas
  - The technique is applicable to Gaussian and non Gaussian copulas
  - See « I will survive », RISK magazine, June 2003, for more about the derivation.

#### Risk analysis: sensitivity with respect to credit curves

- Hedging of CDO tranches with respect to credit curves of individual names
- Amount of individual CDS to hedge the CDO tranche
- Semi-analytic : some seconds
- Monte Carlo more than one hour and still shaky



- CDO premiums (bp pa)
  - with respect to correlation
  - Gaussian copula
  - Attachment points: 3%, 10%
  - 100 names, unit nominal
  - 5 years maturity, recovery rate 40%
  - Credit spreads uniformly distributed between 60 and 150 bp
- Equity tranche premiums decrease with correlation
- Senior tranche premiums increase with correlation
- Small correlation sensitivity of mezzanine tranche

| ρ    | equity | mezzanine | senior |
|------|--------|-----------|--------|
| 0 %  | 6176   | 694       | 0.05   |
| 10 % | 4046   | 758       | 5.8    |
| 30%  | 2303   | 698       | 23     |
| 50 % | 1489   | 583       | 40     |
| 70 % | 933    | 470       | 56     |

Gaussian copula with sector correlations

- Analytical approach still applicable
- "In the Core of Correlation", Risk Magazine, October

#### TRAC-X Europe

- Names grouped in 5 sectors
- Intersector correlation: 20%
- Intrasector correlation varying from 20% to 80%
- Tranche premiums (bp pa)

# Increase in intrasector correlation

- Less diversification
- Increase in senior tranche premiums
- Decrease in equity tranche premiums

```
1 60% 60%

60% 1 60% 20%

60% 60% 1

1

1 1

1 60% 60%

20%
60% 1 60%
60% 60% 1
```

|     | 0-3%   | 3-6%  | 6-9%  | 9-12% | 12-22% |
|-----|--------|-------|-------|-------|--------|
| 20% | 1273.9 | 287.5 | 93.4  | 33.3  | 6.0    |
| 30% | 1226.6 | 294.4 | 102.7 | 39.9  | 7.9    |
| 40% | 1168.9 | 303.5 | 114.0 | 47.3  | 10.3   |
| 50% | 1100.5 | 314.2 | 127.6 | 56.3  | 13.3   |
| 60% | 1020.9 | 325.8 | 143.8 | 67.2  | 17.0   |
| 70% | 929.1  | 337.5 | 163.6 | 80.8  | 21.6   |
| 80% | 821.9  | 349.3 | 188.0 | 98.8  | 27.2   |

- Implied flat correlation
  - With respect to intrasector correlation
- \* premium cannot be matched with flat correlation
  - Due to small correlation sensitivities of mezzanine tranches
- Negative correlation smile

```
1 60% 60%

60% 1 60% 20%

60% 60% 1

1

1 1

1 60% 60%

20% 60% 1 60%

60% 60% 1
```

|     | 0-3%  | 3-6%  | 6-9%  | 9-12% | 12-22% |
|-----|-------|-------|-------|-------|--------|
| 20% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0%  |
| 30% | 22.2% | 22.6% | 22.1% | 22.2% | 22.0%  |
| 40% | 25.0% | 27.6% | 25.2% | 24.6% | 24.2%  |
| 50% | 28.5% | *     | 29.7% | 27.3% | 26.8%  |
| 60% | 32.8% | *     | 40.5% | 30.6% | 29.8%  |
| 70% | 44.9% | *     | *     | 34.8% | 33.1%  |
| 80% | 44.8% | *     | *     | 41.3% | 37.1%  |



- Pairwise correlation sensitivities
  - not to be confused with sensitivities to factor loadings

$$V_i = \rho_i V + \sqrt{1 - \rho_i^2} \bar{V}_i$$

- Correlation between names i and j:  $\rho_i \rho_j$
- Sensitivity wrt factor loading: shift in  $\rho_i$
- All correlations involving name i are shifted

- Pairwise correlation sensitivities
  - Local effect

- Pairwise Correlation sensitivities
  - Protection buyer
- 50 names
  - *spreads* 25, 30,..., 270 *bp*
- Three tranches:
  - attachment points: 4%, 15%
- Base correlation: 25%
- Shift of pair-wise correlation to 35%
- Correlation sensitivities wrt the names being perturbed
- equity (top), mezzanine (bottom)
  - Negative equity tranche correlation sensitivities
  - Bigger effect for names with high spreads







- Senior tranche correlation sensitivities
  - Positive sensitivities
  - Protection buyer is long a call on the aggregated loss
    - Positive vega
  - Increasing correlation
    - Implies less diversification
    - Higher volatility of the losses
- Names with high spreads have bigger correlation sensitivities



# Conclusion

- Factor models of default times:
  - Simple computation of CDO's
    - Tranche premiums and risk parameters
- Gaussian, Clayton and Student t copulas provide very similar patterns
- Shock models (Marshall-Olkin) quite different
- Possibility of extending the 1F Gaussian copula model
  - To deal with intra and inter-sector correlation
  - Compute correlation sensitivities