
1 

Credit risk models 
Jean-Paul Laurent 

laurent.jeanpaul@free.fr  
ISFA Actuarial School, Université Lyon I 

50, Avenue Tony Garnier, 69007 LYON, FRANCE 
 
 

August 2007 
Revised: March 2008 

 
 
 
Keywords: credit risk, loss distributions, individual model, Gaussian copula, factor models 
 
 
 
Introduction 
 
The computation of the distribution of aggregate losses in credit portfolios has become 
especially important for risk management and securitization purposes. Banks and financial 
institutions need to assess the risks within their credit portfolios both for regulatory 
requirements and for internal risk management: for instance, they may compute risk measures 
such as the Value at Risk or the Expected Shortfall associated with their credit risk exposure. 
Credit risk has been transferred from banks to other investors such as insurance companies or 
hedge funds which act with respect to commercial banks as reinsurance companies with 
respect to insurance firms. This securitization process involves some “tranching” of credit risk 
similar to stop-loss reinsurance. Specific products such as credit default swaps and single 
tranche Collateralized Debt Obligations (CDOs thereafter, see Tavakoli [1] for a description 
of the CDO market) have been designed for such risk transfer. The computation of the CDO 
tranche premiums also involves the aggregate credit loss distributions over different time 
horizons. The purpose of this article is to describe the most commonly used approach to 
compute such loss distributions. Before this, we briefly review the risks involved in a credit 
portfolio 
 
I) An overview of risks involved 
 
I.1) Default risk 
 
Default risk is related to the inability of a borrower to reimburse a loan or a bond. More 
precisely, one can think of different credit events such as: 
 

- the failure to meet payment obligations when due, 
- bankruptcy (for non-sovereign entities) or Moratorium (for sovereign entities only), 
- repudiation, 
- material adverse restructuring of debt, 
- obligation acceleration or obligation default. 

 
The definition of a credit event hinges on the relevant bankruptcy rules that depend 
themselves upon geographical regions, quality of the borrower and seniority of the loan. For 
example, personal bankruptcy could be accessed more easily in the US than in the UK. The 
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same comparison also holds for corporates. This will result in differences in frequency and 
claim severity. Let us additionally remark that as far as retail credit are concerned, the banks 
need to decide at which stage a loan is actually in default. For instance, a single outstanding 
payment on a mortgage is not usually considered as a default event. We refer to de Malherbe 
[2] for a detailed quantitative assessment of the credit default swaps covenants. 
 
I.2) Change in credit quality: credit migrations, change in credit spreads 
 
In addition to default risk, credit migrations are associated with changes in credit quality. For 
example, in financial markets, even if default-free interest rates remain constant, defaultable 
bond prices change prior to default. This is also known as credit spread risk. For example, an 
increase in default probability following a credit rating downgrading, adverse earnings 
announcements, should lead to a drop in the company’s bond prices. This is not specific to 
corporates; default probabilities for individuals usually increase when the borrower becomes 
unemployed.  
 
Let us emphasize that credit contracts may have much longer maturities than insurance 
contracts. For example, in a typical 30 Y mortgage, the annuities remain fixed even if the 
credit quality of the borrower deteriorates: the lender cannot raise payments yearly as in the 
insurance markets. 
 
I.3) Recovery risk 
 
In case of default, the lender only gets a fraction of the promised payments. In the most severe 
cases, no further cash-flows are being paid by the borrower. In case of bankruptcy, the assets 
of the defaulted firm are being sold to investors and the proceeds are used to reimburse the 
lenders. After liquidation, the proceeds may excess the commitments to the lenders, which 
means that the loss severity can be equal to zero. For simplicity, we will thereafter consider 
that the loss given default (LGD) is equal to the difference between the face value of the loan 
or the bond and the recovered value. As a consequence, losses given default are bounded. 
 
I.4) Dependence between defaults 
 
Since common macroeconomic factors, such as business cycles, level of unemployment, 
shifts in monetary policy drive both default frequency and credit loss severity, we cannot rely 
on the standard insurance framework and we need to cope with dependence between default 
events. Macroeconomic shocks can be considered as exogenous to defaults are usually lead to 
positive dependence. Dependence can also occur at a local level due to interactions between 
firms. For example, default of a bank can be seen as a bad signal with respect to the assets of 
its competitors in an incomplete information framework. Conversely, default of a firm could 
raise the market power of competitors, leading to extra-profits and an increase in credit 
quality. As can be seen from these examples, defaults can be informative with respect to the 
credit quality of survivors; this is known as contagion effects or “infectious defaults”. 
 
We will further detail the most commonly used approaches to the dependence between 
defaults as far as the computation of loss distributions is involved. Dependence usually results 
in much fatter tails and an increase in senior tranches CDO premiums, which correspond to 
stop-loss reinsurance premiums in insurance markets. 
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II) Computation of loss distributions 
 
II.1) Marginal default probabilities 
 
The individual default probabilities of the obligors within a credit portfolio are a key input in 
the computation of aggregate loss distributions. 
 
As far as retail portfolios are involved, banks could either use internal data or if available 
public information about defaults and obligors individual characteristics. Usually, obligors are 
grouped in homogeneous clusters and thus marginal default probabilities depend upon static 
observables, such as age, marital status and so on. Credit scoring techniques based upon 
logistic regression or classification techniques are routinely used. For instance in the US, 
FICO scores have almost become a market standard. 
 
When it comes to corporate obligors, the number of obligors is usually much smaller, and 
especially for investment grade bonds. Thus, the number of observed defaults is much smaller 
which leads to some statistical difficulties. To assess the magnitude of default probabilities, 
creditors need to rely on the analysis of financial statements. This can be done at the lender’s 
level, usually within credit department of lending banks or thanks to the rating agencies. 
While the financial analysis is forward looking and rates obligors along a discrete grid, further 
data analysis is required to translate credit ratings into default probability as illustrated by 
Moody’s historical default rates of bond issuers. 
 
Another approach that can be thought of, especially for publicly traded companies, is the use 
of the Stock market. In the structural model of Merton, default occurs if the market value of 
the company’s assets falls below a prespecified threshold. The lower the value of the stock, 
the smaller the distance to the default barrier and the more likely default will occur. This is 
the route followed by Kealhofer [3]. 
 
Historical and market implied default probabilities 
 
In frictionless and arbitrage-free financial markets, prices of financial securities are computed 
as the expectation of the discounted risky cash-flows. Let us consider a simplified defaultable 
bond with a single promised cash-flow of 1 $ to be paid at time t. In case of default, we 
assume that no payment will be made (recovery rate is equal to zero). Let us denote by B  the 
market price for such a bond and by r, the (continuously compounded) discount rate for 
maturity t. ( )rtB e Q tτ−= > , where τ  denotes the default date and ( )Q tτ >  is the survival 
probability. If the previous defaultable discount bond is actually traded, the survival 
probability can be readily computed as ( ) rtQ t B eτ > = × . It appears that the default 
probabilities extracted from bond prices are higher that default probabilities computed from 
historical data on defaults. Investors require a risk premium to hold defaultable bonds, 
reflecting imperfect diversification of default risk: if default events of obligors were 
independent and the number of obligors very large, default risk could be perfectly diversified 
thanks to the law of large numbers. This is the classical framework in insurance theory and in 
such a competitive market, the computation of bond prices should follow the “pure premium 
actuarial rule”, meaning that default probabilities implied from financial markets should equal 
the “historical default probabilities”. For high quality names, say AAA bonds, default are rare 
events, the number of traded bonds small and the dependence between default events is larger 
than for high yield names since extreme macroeconomic factors drive defaults of such firms. 
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Not surprisingly, the ratio of market implied and historical default probabilities is larger for 
these high quality names compared with speculative bonds. 
 
Credit risk measurement usually involves historical default probabilities, while securitization 
and risk transfer (typically the pricing of CDO tranches) requires the use of market implied 
probabilities. We will thereafter denote by 1, , nF F…  the marginal distribution functions 
associated with the names in the credit portfolio, that can be either historical or market 
implied depending on the context. 
 
II.1) Individual and collective models 
 
Let us denote by 1, , nτ τ…  the default dates of n obligors, by { } { }11( ) 1 , , ( ) 1

nnt tN t N tτ τ≤ ≤= =…  the 

corresponding default indicators for some given time horizon t and by iLGD  the loss given 
default on name i. We assume that the maximum loss is normalized to unity, the aggregate 
loss on the credit portfolio for time horizon t is then given by: 

 
1

1( ) ( )
n

i i
i

L t LGD N t
n =

= ×∑  

Let us remark that we only cope with defaults (or “realized losses”) and not losses due to 
changes in credit quality of non defaulted bonds. As can be seen from the previous equation, 
the standard credit risk model is an individual model. 
 
Structural models and Gaussian copulas 
 
Inspired by the structural approach of Merton, defaults occur whenever assets fall below a 
prespecified threshold (see Gupton et al [4], Finger [5], Kealhofer [3]). In the multivariate 
case, dependence between default dates ensues dependence between asset price processes. On 
the other hand, the most commonly used approach states that default dates are associated with 
a Gaussian copula (Li [6]). Thus, default indicators follow a multivariate Probit model. For 
simplicity, the Gaussian copula model can be viewed as a one period structural model. 
Consequently, Hull, Pedrescu & White [7] show that from a practical point of view, the 
copula and structural approaches lead to similar loss distributions. Burtschell et al. [8] point 
out that in many cases, the computation of the loss distribution is rather robust with respect to 
the choice of copula. 
 
For simplicity, we will thereafter assume that iLGD  is non stochastic. We will thus 
concentrate upon the modeling of dependence between default dates rather than upon the 
recovery rates. For large credit portfolios, taking into account stochastic losses given defaults 
has only a small impact on the loss distribution provided that losses given defaults are 
independent of default indicators. Altman et al. [9] analyze the association between default 
and recovery rates on corporate bond over the period 1982-2002; they show negative 
dependence, i.e. defaults are more severe and frequent during recession periods. An analysis 
of the changes in the loss distributions due to recovery rates possibly correlated with default 
dates is provided in Frye [9], [10] or in Chabaane et al. [11]; this usually results in fatter tails 
of the loss distributions. 
 
The assumption that default indicators are independent given a low dimensional factor is 
another key ingredient in credit risk models (see Wilson [12], [13], Gordy [14], Crouhy et al. 
[15], Pykhtin & Dev [16], Frey & McNeil [17]). This dramatically reduces the numerical 
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complexities when computing loss distributions. While commercial packages usually involve 
several factors, we will further restrict to the case of a single factor which eases the 
exposition. This is also the idea behind the regulatory Basel II framework (see Gordy [18]). 
Thus, in the Gaussian copula (or multivariate Probit) approach, the latent variables associated 
with default indicators { }( ) 1 , 1, ,

ii tN t i nτ ≤= = …  can be written as: 
21 , 1, ,i i i iV V V i nρ ρ= + − = …  where 1, , , nV V V…  are independent standard Gaussian 

variables. The default times are then expressed as: ( )1 ( )i i iF Vτ −= Φ  where Φ  denotes the 

Gaussian cdf. In other words default of name i occurs before t if and only if ( )1 ( )i iV F t−≤ Φ . 
It can be easily checked that default dates are independent given the factor V and that the 

conditional default probabilities can be written as ( ) ( )1

2

( )

1
i i

i

i

F t V
P t V

ρ
τ

ρ

−⎛ ⎞Φ −
⎜ ⎟≤ = Φ
⎜ ⎟−⎝ ⎠

, 

1, ,i n= … . Let us remark that thanks to the theory of stochastic orders, increasing any of the 
correlation parameters 1, , nρ ρ…  leads to an increase in the dependence of the default times 

1, , nτ τ…  with respect to the supermodular order. The corresponding copula of default times is 
known as the one factor Gaussian copula. 
 
Clearly, determining the correlation parameters is not an easy task especially when the 
number of names involved in the credit portfolio is large. Extra simplicity consists in 
grouping names in homogeneous portfolios with respect to sector or geographical region. We 
refer to Gregory & Laurent [19] for a discussion of this approach. The easier to handle 
approach consists in assuming some kind of homogeneity at the portfolio level. For instance, 
we can assume that the correlation parameter is name independent. This is known as the “flat 
correlation” approach. This both underlies the computations of risk measures in the Basel II 
agreement framework and of CDO tranches premiums. 
 
Let us also remark that when the marginal default probabilities are equal, i.e. 

1( ) ( )nF t F t= =… , then the default indicators 1( ), , ( )nN t N t…  are exchangeable. Conversely, 
when the default indicators are exchangeable, one can think of using de Finetti’s theorem 
which states the existence of univariate factor such that the default indicators are conditionally 
independent given that factor. In other words, for “homogeneous portfolios”, the assumption 
of a one dimensional factor is not restrictive. The only assumption to be made is upon the 
distribution of conditional default probabilities. We refer to Burtschell et al. [8], [20] for some 
discussion of different mixing distributions. 
 
Computation of loss distributions 
 
Let us now discuss the computation of aggregate loss distribution in the previous framework. 
The simplest case corresponds to the previous homogeneous case. We then denote by 

( )t ip P t Vτ= ≤�  the unique conditional default probability for time horizon t. Thanks to the 
homogeneity assumption, the probability of k defaults within the portfolio ( 0,1, ,k n= … ) or 

equivalently the probability that the aggregate loss ( )L t  equals k
n

 can be written as 

( ) ( )1 n kk
t

n
p p dp

k
ν−⎛ ⎞

−⎜ ⎟
⎝ ⎠

∫ � � �  where tν  is the distribution of tp� . In other words, the loss 
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distribution is a binomial mixture. Let us denote by ϕ  the density function of a standard 
Gaussian variable. We can equivalently write 

( ) ( )( )( ) 1 ( )
n kk

i i
kP L t P t v P t v v dv
n

τ τ ϕ
−⎛ ⎞= = ≤ − ≤⎜ ⎟

⎝ ⎠ ∫
\

 which can be computed numerically 

thanks to a Gaussian quadrature. 
 
An interesting feature of the above approach is the simplicity of distributions for large 
homogeneous portfolios. Thanks to de Finetti’s theorem, the aggregate loss ( )L t  converges 

almost surely and in mean to ( )1

2

( )

1
t

F t V
p

ρ

ρ

−⎛ ⎞Φ −
= Φ⎜ ⎟⎜ ⎟−⎝ ⎠

�  as the number of names tends to 

infinity. In the credit risk context this idea was firstly put in practice by Vasicek [21]. It is 
known as the Large Portfolio Approximation. Further asymptotic developments, such as the 
saddlepoint expansion techniques have been used, starting from Martin et al. [22]. 
 
Let us now consider the computation of the aggregate loss distribution for a given time 
horizon within the Gaussian copula framework without any homogeneity or asymptotic 
approximation. This is based on the computation of the characteristic function of the 
aggregate loss. We further denote by ( )( ) ( ) exp ( )L t u E iuL tϕ = ⎡ ⎤⎣ ⎦ . Thanks to the conditional 
independence upon the factor V, we can write 

( )1

( ) 2
1

( )
( ) 1 1 ( )

1

jLGDn iuj j n
L t

j j

F t v
u e v dv

ρ
ϕ ϕ

ρ

−

=

⎛ ⎞⎛ ⎞⎛ ⎞Φ − ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟= +Φ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
∏∫

\

. The previous integral can 

be easily computed by using a Gaussian quadrature. Let us also remark that the computation 
of the characteristic function of the loss can be adapted without extra complication when the 
losses given default iLGD  are stochastic but (jointly) independent together with the latent 
variables 1, , , nV V V… . The computation of the loss distribution can then be accomplished 
thanks to the inversion formula and some Fast Fourier Transform algorithm (see Laurent & 
Gregory [23]). A slightly different approach, based on recursions is discussed in Andersen, 
Sidenius & Basu [24]. The previous approach is routinely used for portfolios of 
approximately one hundred names. 
 
Let us remark that since the standard assumption states that the copula of default times is 
Gaussian, we are able to derive aggregate loss for different time horizons. This is of great 
practical importance for the computation of CDO tranche premiums, which actually involves 
loss distributions over different time horizons. 
 
Conclusion 
 
The computation of the loss distributions is of great importance for credit risk assessment and 
the pricing of credit risk insurance.  
 
Standard risk measures involved in the credit field, such as the Value at Risk and the 
Expected Shortfall, can be easily derived from the loss distribution. At this stage, let us 
remark that the risk aggregation of different portfolios is not straightforward when these do no 
share the same factor. The Basel II framework makes the strong assumption that the same 
factor applies to all credit portfolios. Moreover thanks to some large portfolio approximation, 
the aggregate losses are comonotonic: they only depend upon the unique factor. In that 
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simplified framework, Value at Risk and Expected Shortfall of the wholly aggregate portfolio 
are obtained by summation thanks to the comonotonic additive property of the previous risk 
measures. This departs from the Solvency II framework in insurance. 
 
As far as the pricing of credit insurance and more precisely of CDO tranches is involved, one 
needs to compute stop-loss premiums ( )( )E L t k +⎡ ⎤−⎣ ⎦  for different time horizons t and 

“attachment points” k. Thanks to the semi-analytical techniques detailed above, these 
computations can be carried out very quickly and have now become the standard framework 
used by market participants. 
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