Applying Dynamic Hedging Techniques to Credit Derivatives

Credit Risk Summit 2000 London October 2000

Jean-Paul LAURENT
Professor, ISFA Actuarial School, University of Lyon,
Scientific Advisor, BNP PARIBAS, Fixed Income Research and Strategies

Correspondence

laurent.jeanpaul@online.fr or jean-paul.laurent@univ-lyon1.fr

Web page: http://laurent.jeanpaul.free.fr/

On the Edge of Completeness: Purpose and main ideas

• Purpose:

- <u>risk-analysis</u> of exotic credit derivatives:
 - >dynamic default swaps, credit spread options, basket default swaps.
- pricing and <u>hedging</u> exotic credit derivatives.

Main ideas:

- distinguish between credit spread volatility and default risk.
- <u>dynamic</u> hedge of exotic default swaps with <u>standard</u> default swaps.
- Reference paper: "On the edge of completeness", RISK, October 1999.

On the Edge of completeness: Overview

• Modelling credit derivatives: the state of the art

• Trading credit risk: closing the gap between

supply and demand

- A new approach to credit derivatives modelling:
 - closing the gap between pricing and hedging
 - disentangling default risk and credit spread risk

Modelling credit derivatives: the state of the art

- Modelling credit derivatives : Where do we stand ?
- Financial industry approaches
 - Plain default swaps and risky bonds
 - credit risk management approaches

- The Noah's arch of credit risk models
 - "firm-value" models
 - risk-intensity based models
 - Looking desperately for a hedging based approach to pricing.

Modelling credit derivatives: Where do we stand? Plain default swaps

- Static arbitrage of plain default swaps with short selling underlying bond
 - plain default swaps hedged using underlying risky bond
 - "bond strippers": allow to compute prices of risky zerocoupon bonds
 - repo risk, squeeze risk, liquidity risk, recovery rate assumptions
- Computation of the P&L of a book of default swaps
 - Involves the computation of a P&L of a book of default swaps
 - The P&L is driven by changes in the credit spread curve and by the occurrence of default.

Modelling credit derivatives: Where do we stand? Credit risk management

 Assessing the varieties of risks involved in credit derivatives

- Specific risk or credit spread risk
 - *prior to default*, the P&L of a book of credit derivatives is driven by changes in credit spreads.
- Default risk
 - in case of default, if unhedged,
 - In the P&L of a book of credit derivatives.

Modelling credit derivatives: Where do we stand? The Noah's arch of credit risk models

- "firm-value" models:
 - Modelling of firm's assets
 - First time passage below a critical threshold

- Default arrivals are no longer <u>predictable</u>
- Model conditional local probabilities of default $\lambda(t)$ dt
- τ : default date, $\lambda(t)$ risk intensity or hazard rate

$$\lambda(t)dt = P[\tau \in [t, t + dt | \tau > t]$$

- Lack of a <u>hedging based approach</u> to pricing.
 - Misunderstanding of hedging against default risk and credit spread risk

Trading credit risk: Closing the gap between supply and demand

- From stone age to the new millennium:
 - Several stages in the « equitization » of credit risk.
 - Financial intermediaries are more sophisticated.
 - Transferring risk from commercial banks to institutional investors:
 - > Securitization.
 - ➤ Default Swaps
 - ➤ Dynamic Default Swaps, Basket Credit Derivatives.
 - ➤ Credit Spread Options
 - The previous means tend to be more integrated.

Trading credit risk: Closing the gap between supply and demand

• Securitization of credit risk:

- simplified scheme:
 - No residual risk remains within SPV.
 - All credit trades are <u>simultaneous</u>.

Trading Credit Risk: Closing the gap between supply and demand

- Financial intermediaries provide structuring and arrangement advice.
 - Credit risk seller can transfer loans to SPV or instead use default swaps
- good news: low capital at risk for investment banks
- Good times for modelling credit derivatives
 - No need of <u>hedging</u> models
 - credit pricing models are used to ease risk transfer
 - need to assess the risks of various tranches

Trading Credit Risk: Closing the gap between supply and demand

- There is room for financial intermediation of credit risk
 - The transfers of credit risk between commercial banks and investors may not be <u>simultaneous</u>.
 - Since at one point in time, demand and offer of credit risk may not match.
 - ➤ Meanwhile, credit risk remains within the balance sheet of the financial intermediary.
 - It is not further required to find customers with exact opposite interest at every new deal.
 - Residual risks remain within the balance sheet of the financial intermediary.

Credit risk management without hedging default risk

• Emphasis on:

- portfolio effects: correlation between default events
- posting collateral
- computation of capital at risk, risk assessment

Main issues:

- capital at risk can be high
- what is the competitive advantage of investment banks

Credit risk management with hedging default risk

• Trading against other dealers enhances ability to transfer credit risk by lowering capital at risk

New ways to transfer credit risk: <u>dynamic default swaps</u>

- Anatomy of a general dynamic default swap
 - A dynamic default swap is like a standard default swap but with variable nominal (or exposure)
 - However the periodic premium paid for the credit protection remains fixed.
 - The protection payment arises at default of one given single risky counterparty.
- Examples
 - >cancellable swaps
 - > quanto default swaps
 - redit protection of <u>vulnerable</u> swaps, OTC options (standalone basis)
 - redit protection of a portfolio of contracts (full protection, excess of loss insurance, partial collateralization)

A new approach to credit derivatives modelling based on an <u>hedging</u> point of view

- Rolling over the hedge:
 - Short term default swaps v.s. long-term default swaps
 - Credit spread <u>transformation risk</u>
- Dynamic Default Swaps, Basket Default Swaps
 - Hedging default risk through <u>dynamics holdings</u> in standard default swaps
 - Hedging credit spread risk by choosing appropriate default swap maturities
 - Closing the gap between <u>pricing</u> and <u>hedging</u>
- Practical hedging issues
 - Uncertainty at default time
 - Managing net residual premiums

Long-term Default Swaps v.s. Short-term Default Swaps Rolling over the hedge

Purpose:

- Introduction to dynamic trading of default swaps
- Illustrates how default and credit spread risk arise
- Arbitrage between long and short term default swap
 - sell one long-term default swap
 - buy a series of short-term default swaps

• Example:

- default swaps on a FRN issued by BBB counterparty
- 5 years default swap premium : 50bp, recovery rate = 60%

Long-term Default Swaps v.s. Short-term Default Swaps Rolling over the hedge

- Rolling over short-term default swap
 - at inception, one year default swap premium: 33bp
 - cash-flows after one year:

- Buy a one year default swap at the end of every yearly period, if no default:
 - Dynamic strategy,
 - <u>future</u> premiums depend on <u>future</u> credit quality
 - future premiums are unknown

Long-term Default Swaps v.s. Short-term Default Swaps Rolling over the hedge

• Risk analysis of rolling over short term against long term default swaps

- Exchanged cash-flows:
 - Dealer receives 5 years (fixed) credit spread,
 - Dealer pays 1 year (variable) credit spread.
- Full one to one protection at default time
 - the previous strategy has <u>eliminated</u> one source of risk, that is <u>default risk</u>

Long-term Default Swaps v.s. Short-term Default Swaps Rolling over the hedge

- negative exposure to an <u>increase</u> in <u>short-term</u> default swap premiums
 - if short-term premiums increase from 33bp to 70bp
 - reflecting a lower (short-term) credit quality
 - and no default occurs before the fifth year

- Loss due to negative carry
 - long position in long term credit spreads
 - short position in short term credit spreads

Hedging exotic default swaps: main features

- Exotic credit derivatives can be *hedged* against <u>default</u>:
 - Constrains the <u>amount</u> of underlying <u>standard</u> default swaps.
 - Variable amount of standard default swaps.
 - Full protection at default time by construction of the hedge.
 - No more <u>discontinuity</u> in the P&L at default time.
 - "Safety-first" criteria: main source of risk can be hedged.
 - Model-free approach.
- Credit spread exposure has to be hedged by other means:
 - Appropriate choice of maturity of underlying default swap
 - Computation of sensitivities with respect to changes in credit spreads are <u>model dependent</u>.

Hedging Default Risk in Dynamic Default Swap

• Dynamic Default Swap

- client pays to dealer a periodic premium $p_T(C)$ until default time τ , or maturity of the contract T.
- dealer pays $C(\tau)$ to client at default time τ , if $\tau \le T$.

Hedging side:

- <u>Dynamic</u> strategy based on <u>standard</u> default swaps:
- At time t, hold an amount C(t) of standard default swaps
- $-\lambda(t)$ denotes the periodic premium at time t for a short-term default swap

Hedging Default Risk in Dynamic Default Swaps

• **Hedging side:**

- Amount of standard default swaps equals the (variable)
 credit exposure on the dynamic default swap.
- Net position is a "basis swap":

Credit derivatives dealer
$$\frac{\lambda(t) \ C(t) \ \text{until default}}{\int_{P_{T}(C) \ \text{until default}}} \text{Market+Client}$$

• The client transfers credit spread risk to the credit derivatives dealer

Closing the gap between pricing and hedging

- Risky discount factors
 - Discount bond prices
 - Short term credit spreads
- PV of plain and dynamic default swaps
 - Default payment leg, premium payment leg
 - Default intensity and short term default swap premiums
- Cost of rolling over the hedge
- Dynamics of the PV of dynamic default swaps
 - Looking at theta effects
- Hedging credit spread risk
- Credit spread options

Closing the gap between pricing and hedging Risky discount factors

- τ , default time, $P_t(\tau \in [t,t+dt[\mid \tau>t) = \lambda(t)dt, \lambda \text{ default intensity.}$
- $I(t)=1_{\{\tau>t\}}$ indicator function.
 - I(t) jumps from 1 to 0 at time τ .
- $\mathbf{E}_{t}[I(t)-I(t+dt)]=\mathbf{E}_{t}[1_{\{\tau\in[t,t+dt[\}\}}]=\mathbf{P}_{t}(\tau\in[t,t+dt[)]=\lambda(t)I(t)dt$
- Thus $-\lambda(t)$ is the expected relative variation of I(t) and:

$$E_{t}\left[1_{\{\tau>T\}}\right] = 1_{\{\tau>t\}} E_{t} \left| \exp{-\int_{t}^{T} \lambda(s) ds} \right|$$

- Think of I(t) as a stochastic nominal amortizing at rate $\lambda(t)$
 - Parallels mortgages where τ and λ , prepayment date and rate.
- Risky discount bond with maturity T: pays $1_{\{\tau>t\}}$ at time T
 - Denote by $\overline{B}(t,T)$ its *t*-time price and by r() risk-free short rate

Closing the gap between pricing and hedging Risky discount factors

Risky discount bond price:

$$\overline{B}(t,T) = E_t \left[1_{\{\tau > T\}} \exp - \int_t^T r(s) ds \right] = 1_{\{\tau > t\}} E_t \left[\exp - \int_t^T (r + \lambda)(s) ds \right]$$

- $-\lambda$ is the short term credit spread
- More generally let X_T be a payoff paid at T, if $\tau > T$:

$$PV_X(t) = E_t \left[X_T 1_{\{\tau > T\}} \exp - \int_t^T r(s) ds \right] = 1_{\{\tau > t\}} E_t \left[X_T \exp - \int_t^T (r + \lambda)(s) ds \right]$$

• $\exp-\int_{t}^{T}(r+\lambda)(s)ds$ stochastic risky discount factor

Closing the gap between pricing and hedging: PV of plain default swaps

- *Before default*, time *u* -PV of a plain default swap:
 - Maturity T, continuously paid premium p, recovery rate δ
 - Risk-free short rate r, default intensity λ
 - $-E_{\mu}$ expectation conditional on information carried by financial prices.

$$E_{u} \left[\int_{u}^{T} \left(\exp - \int_{u}^{t} (r + \lambda)(s) ds \right) \times \left((1 - \delta) \lambda(t) - p \right) dt \right]$$

- $-r + \lambda$ is the « risky » short rate : payoffs discounted at a higher rate
- Similar to an index amortizing swap (payments only if no prepayment).
- **PV of default payment leg** $E_u \left[\int_u^T \left(\exp{-\int_u^t (r+\lambda)(s) ds} \right) \times (1-\delta)\lambda(t) dt \right]$
- **PV of premium payment leg** $p \times E_u \left[\int_u^T \left(\exp{-\int_u^t (r+\lambda)(s) ds} \right) dt \right]$

Closing the gap between pricing and hedging: PV of plain default swaps

- Current market premium $p_{u,T}$ is such that PV=0.
- Pricing equation:

$$E_{u}\left[\int_{u}^{T}\left(\exp-\int_{u}^{t}\left(r+\lambda\right)(s)ds\right)\times\left((1-\delta)\lambda(t)-p_{u,T}\right)dt\right]=0$$

• For short maturities T=u+du, pricing equation provides:

$$p_{u,T} = (1 - \delta)\lambda(u)$$

- And for digital default swaps ($\delta=0$), we get: $p_{u,T}=\lambda(u)$
- λ , default intensity = short term default swap premium

Closing the gap between pricing and hedging: PV of dynamic default swaps

- Before default, time t -PV of a dynamic default swap
 - Payment $C(\tau)$ at default time if $\tau < T$:
- PV of default payment leg

$$PV(u) = E_u \left[\int_{u}^{T} \left(\exp - \int_{u}^{t} (r + \lambda)(s) ds \right) C(t) \lambda(t) ds \right]$$

- This embeds the plain default swap case where $C(\tau)=1-\delta$
- **PV of premium payment leg** $p \times E_u \left[\int_u^T \left(\exp{-\int_u^t (r+\lambda)(s) ds} \right) dt \right]$
 - Same as in the case of plain default swap

Closing the gap between pricing and hedging Cost of rolling over the hedge

- What is the cost of hedging default risk?
- PV of default payment leg:

$$E\begin{bmatrix} \int_{0}^{T} \left(\exp{-\int_{0}^{t} (r+\lambda)(s) ds} \right) \lambda(t)C(t)dt \\ \text{Discounting term} \\ \end{bmatrix}$$
Premium paid at time t on protection portfolio

- equals PV of premiums paid on the hedging portfolio.
- Pricing and rolling over the hedge approaches are consistent.

Exemple: defaultable interest rate swap

- Consider a defaultable interest rate swap (with unit nominal)
 - We are <u>default-free</u>, our counterparty is <u>defaultable</u> (default intensity $\lambda(t)$).
 - We consider a (fixed-rate) *receiver* swap on a <u>standalone</u> basis.
- Recovery assumption, payments in case of default:
 - if default at time τ , compute the <u>default-free</u> value of the swap: PV_{τ} $\delta(PV_{\tau})^{+} + (PV_{\tau})^{-} = PV_{\tau} - (1 - \delta)(PV_{\tau})^{+}$
 - and get:
 - $-0 \le \delta \le 1$ recovery rate, $(PV_{\tau})^{+} = Max(PV_{\tau}, 0)$, $(PV_{\tau})^{-} = Min(PV_{\tau}, 0)$
 - In case of default,
 - \triangleright we <u>receive</u> default-free value PV_{τ}
 - > minus
 - \triangleright loss equal to $(1-\delta)(PV_{\tau})^+$.

Exemple: defaultable interest rate swap

- Using a hedging instrument rather than a credit reserve
 - Consider a <u>dynamic default swap</u> paying $(1-\delta)(PV_{\tau})^+$ at default time τ (if $\tau \le T$), where PV_{τ} is the present value of a default-free swap with *same fixed rate* than defaultable swap.
 - At default, we receive $(1-\delta)(PV_{\tau})^{+} + PV_{\tau} (1-\delta)(PV_{\tau})^{+} = PV_{\tau}$
 - PV of default payment leg is equal to the Present Value of the loss $(1-\delta)(PV_{\tau})^{+}$

$$E\left[\int_{0}^{T} \left(\exp-\int_{0}^{t} (r+\lambda)(u)du\right) \lambda(t) (1-\delta) (PV_{t})^{+} dt\right]$$

- Hedge against default by holding $(PV_t)^+$ ordinary default swaps at time t.

Exemple: defaultable interest rate swap

Randomly exercised swaption:

- Assume for simplicity no recovery ($\delta=0$).
- Interpret default time as a random time τ with intensity $\lambda(t)$.
- At that time, defaulted counterparty "exercises" a swaption, i.e. decides
 whether to cancel the swap according to its present value.
- PV of default-losses equals price of that randomly exercised swaption

American Swaption

- PV of <u>American swaption</u> equals the supremum over all possible stopping times of randomly exercised swaptions.
 - > But, the upper bound can be reached for special default arrival dates:
 - $\triangleright \lambda(t)=0$ above exercise boundary and $\lambda(t)=\infty$ on exercise boundary
 - ➤ Usually, PV of American swaption >> PV of default payment leg.

Explaining theta effects with and without hedging

- Different aspects of "carrying" credit contracts through time.
 - Assume "historical" and "risk-neutral" intensities are equal.
- Consider a short position in a dynamic default swap.
- Present value of the deal provided by:

$$PV(u) = E_u \left[\int_{u}^{T} \left(\exp - \int_{u}^{t} (r + \lambda)(s) ds \right) \times \left(p_T - \lambda(t)C(t) \right) dt \right]$$

• (after computations) Net expected capital gain:

$$E_{u}\left[PV(u+du)-PV(u)\right] = \left(r(u)+\lambda(u)\right)PV(u)du + \left(\lambda(u)C(u)-p_{T}\right)du$$

- Accrued cash-flows (received premiums): $p_T du$
 - By summation, Incremental P&L (if no default between u and u+du):

$$r(u)PV(u)du + \lambda(u)(C(u) + PV(u))du$$

Explaining theta effects with and without hedging

- Apparent extra return effect: $\lambda(u)(C(u) + PV(u))du$
 - But, probability of default between u and u+du: $\lambda(u)du$.
 - Losses in case of default:
 - \triangleright Commitment to pay: C(u)
 - \triangleright Loss of PV of the credit contract: PV(u)
 - \triangleright PV(u) consists in <u>unrealised</u> capital gains or losses in the credit derivatives book that "disappear" in case of default.
 - Expected loss charge: $\lambda(u)(C(u) + PV(u))du$
- Hedging aspects:
 - If we hold C(u) + PV(u) short-term digital default swaps, we are protected at default-time (no jump in the P&L).
 - Premiums to be paid: $\lambda(u)(C(u) + PV(u))du$
 - Same average rate of return, but smoother variations of the P&L.

Hedging default risk in dynamic default swaps

• PV at time u of a digital default swap

$$PV(u) = 1_{\{\tau > u\}} E_u \left[\int_u^T \left(\exp - \int_u^t (r + \lambda)(s) ds \right) \times \left(\lambda(t) - p \right) dt \right] + 1_{\{\tau \le u\}} \exp \int_\tau^u r(t) dt$$

- At default time τ , PV switches from $E_u \left[\int_u^T \left(\exp{-\int_u^t (r+\lambda)(s) ds} \right) \times (\lambda(t) p) dt \right]$
- to one (default payment). If digital default swap at the money, $dPV(\tau)=1$
- PV at time u of a dynamic default swap with payment $C: PV_C(u)$

$$1_{\{\tau>u\}}E_u\left[\int_u^T\left(\exp-\int_u^t(r+\lambda)(s)ds\right)\times\left(\lambda(t)C(t)-p_C\right)dt\right]+1_{\{\tau\leq u\}}C(\tau)\exp\int_\tau^u r(t)dt$$

- At default time τ , PV switches from predefault market value to $C(\tau)$
- Rolling over the hedge: we hold C(u) digital default swaps
 - Variation of PV on the hedging portolio C(u) dPV(u)
 - At default time τ , PV hedging portfolio jumps of $C(\tau)dPV(\tau)=C(\tau)$
- Complete hedge involves holding $C(u)+PV_C(u)$ default swaps: model free.

Hedging Default risk and credit spread risk in Dynamic Default Swaps

- Purpose: joint hedge of default risk and credit spread risk
- Hedging *default risk* only constrains the <u>amount</u> of underlying standard default swap.
 - Maturity of underlying default swap is arbitrary.
- Choose maturity to be protected against credit spread risk
 - PV of dynamic default swaps and standard default swaps are sensitive to the level of credit spreads
 - Sensitivity of standard default swaps to a shift in credit spreads increases with maturity
 - Choose maturity of underlying default swap in order to <u>equate</u> <u>sensitivities</u>.

Example:

- dependence of simple default swaps on defaultable forward rates.
- Consider a *T*-maturity default swap with continuously paid premium *p*.
 Assume zero-recovery (digital default swap).
- PV (at time 0) of a long position provided by:

$$PV = E \left[\int_{0}^{T} \left(\exp - \int_{0}^{t} (r + \lambda)(s) ds \right) \times (\lambda(t) - p) dt \right]$$

- where r(t) is the short rate and $\lambda(t)$ the default intensity.
- Assume that r(.) and $\lambda(.)$ are independent.
- -B(0,t): price at time 0 of a t-maturity default-free discount bond
- f(0,t): corresponding forward rate

$$B(0,t) = E \left[\exp - \int_0^t r(u) du \right] = \exp - \int_0^t f(0,u) du$$

- Let $\overline{B}(0,t)$ be the defaultable discount bond price and $\overline{f}(0,t)$ the corresponding instantaneous forward rate:

$$\overline{B}(0,t) = E\left[\exp{-\int_{0}^{t} (r+\lambda)(u)du}\right] = \exp{-\int_{0}^{t} \overline{f}(0,u)du}$$

- Simple expression for the PV of the *T*-maturity default swap:

$$PV(T) = \int_{0}^{T} \overline{B}(0,t) \left(\overline{f}(0,t) - f(0,t) - p\right) dt$$

- The derivative of default swap present value with respect to a shift of defaultable forward rate $\bar{f}(0,t)$ is provided by:

$$\frac{\partial PV}{\partial \overline{f}}(t) = PV(t) - PV(T) + \overline{B}(0,t)$$

 $\triangleright PV(t)-PV(T)$ is usually small compared with $\overline{B}(0,t)$.

- Similarly, we can compute the sensitivities of plain default swaps with respect to default-free forward curves f(0,t).
- And thus to <u>credit spreads</u>.
- Same approach can be conducted with the *dynamic default* swap to be hedged.
 - All the <u>computations</u> are *model dependent*.
- Several maturities of underlying default swaps can be used to match sensitivities.
 - For example, in the case of **defaultable** interest rate swap, the nominal amount of default swaps $(PV_{\tau})^+$ is usually small.
 - ightharpoonup Single default swap with nominal $(PV_{\tau})^+$ has a smaller sensitivity to credit spreads than defaultable interest rate swap, even for long maturities.
 - ➤ Short and long positions in default swaps are required to hedge *credit spread* risk.

- Denote by $I(u)=1_{\{\tau>u\}}$, dI(u)= variation of jump part.

Digital default swap:
- **PV prior to default:**
$$PV^{b}(u) = E_{u} \left[\int_{u}^{T} \left(\exp{-\int_{u}^{t} (r+\lambda)(s) ds} \right) \times (\lambda(u) - p) dt \right]$$

- PV after default: $PV^b(u) = \exp \int r(t)dt$
- PV whenever: $PV(u) = I(u) \stackrel{\tau}{P} V^b(u) + (1 I(u)) PV^a(u)$

$$dPV(u) = \left(PV^{b}(u) - PV^{a}(u)\right)dI(u) + I(u)dPV^{b}(u) + \left(1 - I(u)\right)dPV^{a}(u)$$

Discountinuous part default risk

Continuous part (credit spread risk)

- Continuous part is hedged by usual delta, gamma analysis,
- Discontinuous part: constrains the amount of hedging default swaps
 - After hedging default risk, no jump in the PV at default time.

Hedging credit spread options

- Option to enter a given default swap with premium p, maturity T' at exercise date T.
 - Call option provides positive payoff if credit spreads increase.
 - ➤ Credit spread risk
 - If default prior to T, cancellation of the option
 - ➤ Default risk
- The PV is of the form $PV(u) = 1_{\{\tau > u\}} PV^b(u)$
 - Hedge default risk by holding an amount of $PV^b(u)$ default swaps.
 - $-PV^{b}(u)$ is usually small compared with payments involved in default swaps.
 - $-PV^b(u)$ depends on risk-free and risky curves (mainly on credit spreads).
 - Credit spread risk is also hedged through default swaps.
- Our previous framework for hedging default risk and credit spread risk still holds.

Real World hedging and risk-management issues

- uncertainty at default time
 - illiquid default swaps
 - recovery risk
 - simultaneous default events

Managing net premiums

- Maturity of underlying default swaps
- Lines of credit
- Management of the carry
- Finite maturity and discrete premiums
- Correlation between hedging cash-flows and financial variables

New ways to transfer credit risk: Basket default swaps

- Consider a basket of *M* risky bonds
 - <u>multiple</u> counterparties
- First to default swaps
 - protection against the first default
- N out of M default swaps (N < M)
 - protection against the first N defaults
- Hedging and valuation of basket default swaps
 - involves the joint (<u>multivariate</u>) modelling of default arrivals of issuers in the basket of bonds.
 - Modelling accurately the <u>dependence</u> between default times is a critical issue.

Hedging Default Risk in Basket Default Swaps

- Example: first to default swap from a basket of two risky bonds.
 - If the first default time occurs before maturity,
 - The seller of the first to default swap pays the non recovered fraction of the defaulted bond.
 - Prior to that, he receives a periodic premium.
- Assume that the two bonds cannot default <u>simultaneously</u>
 - We moreover assume that default on one bond has no effect on the credit spread of the remaining bond.
- How can the seller be protected at default time ?
 - The only way to be protected at default time is to hold <u>two</u> default swaps with the *same nominal* than the *nominal* of the bonds.
 - The *maturity* of underlying default swaps does not matter.

Real world hedging and risk-management issues Case study: hedge ratios for first to default swaps

- Consider a first to default swap associated with a basket of two defaultable loans.
 - Hedging portfolios based on standard underlying default swaps
 - Uncertain hedge ratios if:
 - > <u>simultaneous</u> default events
 - > Jumps of credit spreads at default times
- Simultaneous default events:
 - If counterparties default *altogether*, holding the *complete* set of default swaps is a <u>conservative</u> (and thus <u>expensive</u>) hedge.
 - In the *extreme* case where default *always* occur altogether, we only need a <u>single</u> default swap on the loan with largest nominal.
 - In other cases, holding a fraction of underlying default swaps does not hedge default risk (if only one counterparty defaults).

Real world hedging and risk-management issues Case study: hedge ratios for first to default swaps

- What occurs if there is a <u>jump in the credit spread</u> of the second counterparty after <u>default</u> of the first?
 - default of first counterparty means *bad news* for the second.
- If hedging with short-term default swaps, no capital gain at default.
 - Since PV of short-term default swaps is not sensitive to credit spreads.
- This is not the case if hedging with long term default swaps.
 - If credit spreads jump, PV of long-term default swaps jumps.
- Then, the amount of hedging default swaps can be <u>reduced</u>.
 - This reduction is model-dependent.

On the edge of completeness?

- Firm-value structural default models:
 - Stock prices follow a diffusion processes (no jumps).
 - Default occurs at first time the stock value hits a barrier
- *In this modelling*, default credit derivatives can be <u>completely</u> hedged by trading the stocks:
 - "Complete" pricing and hedging model:
- Unrealistic features for hedging basket default swaps:
 - Because default times are predictable, hedge ratios are close to zero
 except for the counterparty with the smallest "distance to default".

On the edge of completeness? <u>hazard rate</u> based models

• In <u>hazard</u> <u>rate</u> based models:

- default is a sudden, non predictable event,
- that causes a sharp jump in defaultable bond prices.
- Most dynamic default swaps and basket default derivatives have
 payoffs that are *linear* (at default) in the prices of defaultable bonds.
- Thus, good news: default risk can be hedged.
- Credit spread risk can be substantially reduced, but model risk.
- More <u>realistic</u> approach to default.
- Hedge ratios are robust with respect to default risk.

On the edge of completeness Conclusion

- Looking for a better understanding of credit derivatives
 - payments in case of default,
 - volatility of credit spreads.
- Bridge between risk-neutral valuation and the cost of the hedge approach.
- <u>dynamic</u> hedging strategy based on *standard default swaps*.
 - hedge ratios in order to get protection at default time.
 - hedging default risk is model-independent.
 - importance of quantitative models for a better management of the P&L and the <u>residual premiums</u>.