Applying Dynamic Hedging Techniques to Credit Derivatives

Credit Risk Summit 2000
London
October 2000

Jean-Paul LAURENT
Professor, ISFA Actuarial School, University of Lyon,
Scientific Advisor, BNP PARIBAS, Fixed Income Research and Strategies

Correspondence
laurent.jeanpaul@online.fr or jean-paul.laurent@univ-lyon1.fr
Web page: http://laurent.jeanpaul.free.fr/
On the Edge of Completeness: Purpose and main ideas

- **Purpose:**
 - risk-analysis of exotic credit derivatives:
 - dynamic default swaps, credit spread options, basket default swaps.
 - pricing and hedging exotic credit derivatives.

- **Main ideas:**
 - distinguish between credit spread volatility and default risk.
 - dynamic hedge of exotic default swaps with standard default swaps.

On the Edge of completeness: Overview

- Modelling credit derivatives: the state of the art
- Trading credit risk: closing the gap between supply and demand
- A new approach to credit derivatives modelling:
 - closing the gap between pricing and hedging
 - disentangling default risk and credit spread risk
Modelling credit derivatives: the state of the art

- Modelling credit derivatives: Where do we stand?
- Financial industry approaches
 - Plain default swaps and risky bonds
 - Credit risk management approaches

- The Noah’s arch of credit risk models
 - “firm-value” models
 - Risk-intensity based models
 - Looking desperately for a hedging based approach to pricing.
Modelling credit derivatives: Where do we stand?

Plain default swaps

- Static arbitrage of plain default swaps with short selling underlying bond
 - plain default swaps hedged using underlying risky bond
 - “bond strippers”: allow to compute prices of risky zero-coupon bonds
 - repo risk, squeeze risk, liquidity risk, recovery rate assumptions

- Computation of the P&L of a book of default swaps
 - Involves the computation of a P&L of a book of default swaps
 - The P&L is driven by changes in the credit spread curve and by the occurrence of default.
• Assessing the varieties of risks involved in credit derivatives
 – Specific risk or credit spread risk
 ➢ *prior to default*, the P&L of a book of credit derivatives is driven by changes in credit spreads.
 – Default risk
 ➢ *in case of default*, if unhedged,
 ➢ dramatic jumps in the P&L of a book of credit derivatives.
Modelling credit derivatives: Where do we stand?

The Noah’s arch of credit risk models

- **“firm-value” models:**
 - Modelling of firm’s assets
 - First time passage below a critical threshold

- **risk-intensity based models**
 - Default arrivals are no longer predictable
 - Model conditional local probabilities of default \(\lambda(t) \, dt \)
 - \(\tau \): default date, \(\lambda(t) \) risk intensity or hazard rate

\[
\lambda(t) \, dt = P\left[\tau \in [t, t + dt] \mid \tau > t \right]
\]

- Lack of a **hedging based approach** to pricing.
 - Misunderstanding of hedging against default risk and credit spread risk
Trading credit risk:
Closing the gap between supply and demand

- From stone age to the new millennium:
 - Several stages in the « equitization » of credit risk.
 - Financial intermediaries are more sophisticated.
 - Transferring risk from commercial banks to institutional investors:
 - Securitization.
 - Default Swaps
 - Dynamic Default Swaps, Basket Credit Derivatives.
 - Credit Spread Options
 - The previous means tend to be more integrated.
Trading credit risk: Closing the gap between supply and demand

• Securitization of credit risk:

 ![Diagram]

 - Credit risk seller
 - SPV
 - Investor 1
 - Investor 2

 - credits
 - senior debt
 - junior debt

• simplified scheme:
 - No residual risk remains within SPV.
 - All credit trades are simultaneous.
• Financial intermediaries provide structuring and arrangement advice.
 – Credit risk seller can transfer loans to SPV or instead use default swaps
• good news: low capital at risk for investment banks

• Good times for modelling credit derivatives
 – No need of hedging models
 – Credit pricing models are used to ease risk transfer
 – Need to assess the risks of various tranches
There is room for financial intermediation of credit risk

- The transfers of credit risk between commercial banks and investors may not be simultaneous.
- Since at one point in time, demand and offer of credit risk may not match.

 - Meanwhile, credit risk remains within the balance sheet of the financial intermediary.

- It is not further required to find customers with exact opposite interest at every new deal.

 - Residual risks remain within the balance sheet of the financial intermediary.
Credit risk management without hedging default risk

- **Emphasis on:**
 - portfolio effects: correlation between default events
 - posting collateral
 - computation of capital at risk, risk assessment

- **Main issues:**
 - capital at risk can be high
 - what is the competitive advantage of investment banks

Credit risk seller --> Default swap --> Credit derivatives trading book --> Default swap --> Bank

Bank --> Default swap --> Investor 1

Bank --> Default swap --> Investor 2
Credit risk management with hedging default risk

- Trading against other dealers enhances ability to transfer credit risk by lowering capital at risk
New ways to transfer credit risk: dynamic default swaps

- Anatomy of a general dynamic default swap
 - A dynamic default swap is like a standard default swap but with variable nominal (or exposure)
 - However the periodic premium paid for the credit protection remains fixed.
 - The protection payment arises at default of one given single risky counterparty.

- Examples
 - cancellable swaps
 - quanto default swaps
 - credit protection of vulnerable swaps, OTC options (stand-alone basis)
 - credit protection of a portfolio of contracts (full protection, excess of loss insurance, partial collateralization)
A new approach to credit derivatives modelling based on an hedging point of view

- **Rolling over the hedge:**
 - Short term default swaps v.s. long-term default swaps
 - Credit spread transformation risk
- **Dynamic Default Swaps, Basket Default Swaps**
 - Hedging default risk through dynamics holdings in standard default swaps
 - Hedging credit spread risk by choosing appropriate default swap maturities
 - Closing the gap between pricing and hedging
- **Practical hedging issues**
 - Uncertainty at default time
 - Managing net residual premiums
Long-term Default Swaps v.s. Short-term Default Swaps
Rolling over the hedge

- **Purpose:**
 - Introduction to dynamic trading of default swaps
 - Illustrates how default and credit spread risk arise

- **Arbitrage between long and short term default swap**
 - sell one long-term default swap
 - buy a series of short-term default swaps

- **Example:**
 - default swaps on a FRN issued by BBB counterparty
 - 5 years default swap premium : 50bp, recovery rate = 60%

[Diagram]

Credit derivatives
dealer

- Until default, 50 bp
- If default, 60%

Client
Long-term Default Swaps v.s. Short-term Default Swaps

Rolling over the hedge

- Rolling over short-term default swap
 - at inception, one year default swap premium: 33bp
 - cash-flows after one year:

 ![Diagram showing the flow of credit derivatives from dealer to market with a 33bp premium and 60% if default]

- Buy a one year default swap at the end of every yearly period, if no default:
 - Dynamic strategy,
 - future premiums depend on future credit quality
 - future premiums are unknown

 ![Diagram showing the flow of credit derivatives from dealer to market with an unknown premium and 60% if default]
Long-term Default Swaps v.s. Short-term Default Swaps
Rolling over the hedge

• *Risk analysis* of rolling over short term against long term default swaps

 - Exchanged cash-flows:
 - Dealer receives 5 years (fixed) credit spread,
 - Dealer pays 1 year (variable) credit spread.

• **Full one to one protection at default time**
 - the previous strategy has eliminated one source of risk, that is default risk
Long-term Default Swaps v.s. Short-term Default Swaps
Rolling over the hedge

- negative exposure to an increase in short-term default swap premiums
 - if short-term premiums increase from 33bp to 70bp
 - reflecting a lower (short-term) credit quality
 - and no default occurs before the fifth year

Credit derivatives dealer

70 bp

Market + Client

50 bp

- Loss due to negative carry
 - long position in long term credit spreads
 - short position in short term credit spreads
Hedging exotic default swaps: main features

- Exotic credit derivatives can be hedged against default:
 - Constrains the amount of underlying standard default swaps.
 - Variable amount of standard default swaps.
 - Full protection at default time by construction of the hedge.
 - No more discontinuity in the P&L at default time.
 - “Safety-first” criteria: main source of risk can be hedged.
 - Model-free approach.

- Credit spread exposure has to be hedged by other means:
 - Appropriate choice of maturity of underlying default swap
 - Computation of sensitivities with respect to changes in credit spreads are model dependent.
Hedging Default Risk in Dynamic Default Swap

- **Dynamic Default Swap**
 - client pays to dealer a periodic premium $p_T(C)$ until default time τ, or maturity of the contract T.
 - dealer pays $C(\tau)$ to client at default time τ, if $\tau \leq T$.

- **Hedging side:**
 - Dynamic strategy based on standard default swaps:
 - At time t, hold an amount $C(t)$ of standard default swaps
 - $\lambda(t)$ denotes the periodic premium at time t for a short-term default swap
Hedging side:

Credit derivatives dealer $\lambda(t) C(t)$ until default $C(\tau)$ if default

- Amount of standard default swaps equals the (variable) credit exposure on the dynamic default swap.

Net position is a “basis swap”:

Credit derivatives dealer $\lambda(t) C(t)$ until default $p_T(C)$ until default

- The client transfers credit spread risk to the credit derivatives dealer.
Closing the gap between pricing and hedging

- Risky discount factors
 - Discount bond prices
 - Short term credit spreads
- PV of plain and dynamic default swaps
 - Default payment leg, premium payment leg
 - Default intensity and short term default swap premiums
- Cost of rolling over the hedge
- Dynamics of the PV of dynamic default swaps
 - Looking at theta effects
- Hedging credit spread risk
- Credit spread options
Closing the gap between pricing and hedging

Risky discount factors

- \(\tau \), default time, \(P_t(\tau \in [t, t+dt] \mid \tau>t) = \lambda(t)dt \), \(\lambda \) default intensity.

- \(I(t) = 1_{\{\tau>t\}} \) indicator function.
 - \(I(t) \) jumps from 1 to 0 at time \(\tau \).

- \(E_t[I(t) - I(t+dt)] = E_t[1_{\{\tau\in [t, t+dt]\}}] = P_t(\tau \in [t, t+dt]) = \lambda(t)I(t)dt \)

- Thus - \(\lambda(t) \) is the expected relative variation of \(I(t) \) and:
 \[
 E_t \left[1_{\{\tau>T\}} \right] = 1_{\{\tau>t\}} E_t \left[\exp - \int_t^T \lambda(s)ds \right]
 \]

- Think of \(I(t) \) as a stochastic nominal amortizing at rate \(\lambda(t) \)
 - Parallels mortgages where \(\tau \) and \(\lambda \), prepayment date and rate.

- **Risky discount bond** with maturity \(T \): pays \(1_{\{\tau>t\}} \) at time \(T \)
 - Denote by \(\overline{B}(t, T) \) its \(t \)-time price and by \(r() \) risk-free short rate
• Risky discount bond price:

\[\bar{B}(t,T) = E_t \left[1_{\{\tau>T\}} \exp \left(- \int_t^T r(s) ds \right) \right] = 1_{\{\tau>t\}} E_t \left[\exp \left(- \int_t^T (r + \lambda)(s) ds \right) \right] \]

- \(\lambda \) is the short term credit spread

• More generally let \(X_T \) be a payoff paid at \(T \), if \(\tau>T \):

\[PV_{X}(t) = E_t \left[X_T 1_{\{\tau>T\}} \exp \left(- \int_t^T r(s) ds \right) \right] = 1_{\{\tau>t\}} E_t \left[X_T \exp \left(- \int_t^T (r + \lambda)(s) ds \right) \right] \]

• \(\exp \left(- \int_t^T (r + \lambda)(s) ds \right) \) stochastic risky discount factor
Closing the gap between pricing and hedging:

PV of plain default swaps

- **Before default, time** u -PV of a plain default swap:
 - Maturity T, *continuously* paid premium p, recovery rate δ
 - Risk-free short rate r, default intensity λ
 - E_u expectation conditional on information carried by financial prices.

 $$E_u\left[\int_u^T \exp\left(-\int_u^t (r + \lambda)(s)ds\right) \times (1 - \delta)\lambda(t) - p \right] dt$$

 - $r + \lambda$ is the « risky » short rate: payoffs discounted at a higher rate
 - Similar to an index amortizing swap (payments only if no prepayment).

- **PV of default payment leg**

 $$E_u\left[\int_u^T \exp\left(-\int_u^t (r + \lambda)(s)ds\right) \times (1 - \delta)\lambda(t)dt\right]$$

- **PV of premium payment leg**

 $$p \times E_u\left[\int_u^T \exp\left(-\int_u^t (r + \lambda)(s)ds\right)dt\right]$$
Closing the gap between pricing and hedging:
PV of plain default swaps

- Current market premium $p_{u,T}$ is such that PV=0.

Pricing equation:

$$E_u \left[\int_{u}^{T} \left(\exp \left(\int_{u}^{t} (r + \lambda) (s)ds \right) \times \left((1 - \delta) \lambda(t) - p_{u,T} \right) dt \right) \right] = 0$$

- For short maturities $T=u+du$, pricing equation provides:

$$p_{u,T} = (1 - \delta) \lambda(u)$$

- And for digital default swaps ($\delta=0$), we get: $p_{u,T} = \lambda(u)$

- λ, **default intensity** = *short term default swap premium*
• **Before default**, time t - PV of a dynamic default swap
 - Payment $C(\tau)$ at default time if $\tau<T$:

• **PV of default payment leg**

\[
P V (u) = E_u \left[\int_u^T \left(\exp - \int_u^t (r + \lambda) (s) ds \right) C(t) \lambda(t) ds \right]
\]

 - This embeds the plain default swap case where $C(\tau)=1-\delta$

• **PV of premium payment leg**

\[
p \times E_u \left[\int_u^T \left(\exp - \int_u^t (r + \lambda) (s) ds \right) dt \right]
\]

 - Same as in the case of plain default swap
What is the cost of hedging default risk?

PV of default payment leg:

\[E \left[\int_0^T \left(\exp - \int_0^t (r + \lambda(s)) ds \right) \lambda(t) C(t) dt \right] \]

- Discounting term
- Premium paid at time \(t \) on protection portfolio

equals PV of premiums paid on the hedging portfolio.

Pricing and rolling over the hedge approaches are consistent.
Consider a defaultable interest rate swap (with unit nominal)

- We are **default-free**, our counterparty is **defaultable** (default intensity \(\lambda(t) \)).
- We consider a (fixed-rate) **receiver** swap on a **standalone** basis.

Recovery assumption, payments in case of default:

- if default at time \(\tau \), compute the default-free value of the swap:
 \[
 PV_\tau = \delta (PV_\tau)^+ + (PV_\tau)^- = PV_\tau - (1-\delta)(PV_\tau)^+
 \]
- and get:
 - \(0 \leq \delta \leq 1 \) recovery rate, \((PV_\tau)^+ = \text{Max}(PV_\tau, 0)\) , \((PV_\tau)^- = \text{Min}(PV_\tau, 0)\)
 - **In case of default**,
 - we **receive** default-free value \(PV_\tau \)
 - **minus**
 - loss equal to \((1-\delta)(PV_\tau)^+\).
Exemple: defaultable interest rate swap

- Using a hedging instrument rather than a credit reserve
 - Consider a **dynamic default swap** paying \((1-\delta)(PV_\tau)^+\) at default time \(\tau\) (if \(\tau \leq T\)), where \(PV_\tau\) is the present value of a default-free swap with **same fixed rate** than defaultable swap.
 - At default, we receive \((1-\delta)(PV_\tau)^+ + PV_\tau - (1-\delta)(PV_\tau)^+ = PV_\tau\)
 - PV of **default payment leg** is equal to the Present Value of the **loss** \((1-\delta)(PV_\tau)^+\)
 \[
 E\left[\int_0^T \left(\exp\left(\int_0^u (r + \lambda)(v)dv \right) \lambda(t)(1-\delta)(PV_\tau)^+ dt \right] \right.
 \]
 - Hedge against default by holding \((PV_\tau)^+\) ordinary default swaps at time \(t\).
Exemple: defaultable interest rate swap

- **Randomly exercised swaption:**
 - Assume for simplicity no recovery ($\delta=0$).
 - Interpret default time as a random time τ with intensity $\lambda(t)$.
 - At that time, defaulted counterparty “exercises” a swaption, i.e. decides whether to cancel the swap according to its present value.
 - PV of default-losses equals price of that *randomly exercised swaption*

- **American Swaption**
 - PV of *American swaption* equals the supremum over *all possible stopping times* of *randomly exercised swaptions*.
 - *But*, the upper bound can be reached for *special default arrival dates*:
 - $\lambda(t)=0$ above exercise boundary and $\lambda(t)=\infty$ on exercise boundary
 - Usually, PV of American swaption $>>$ PV of default payment leg.
Explaining theta effects with and without hedging

- **Different aspects** of “carrying” credit contracts through time.
 - Assume “historical” and “risk-neutral” intensities are equal.
- Consider a **short** position in a dynamic default swap.
- Present value of the deal provided by:
 \[
 PV(u) = E_u \left[\int_u^T \left(\exp - \int_u^t (r + \lambda(s))ds \right) \times (p_T - \lambda(t)C(t))dt \right]
 \]

 (after computations) **Net expected capital gain:**
 \[
 E_u \left[PV(u + du) - PV(u) \right] = \left(r(u) + \lambda(u) \right) PV(u)du + \left(\lambda(u)C(u) - p_T \right) du
 \]

 Accrued cash-flows (received premiums): \(p_T du \)
 - By summation, Incremental P&L (if no default between \(u \) and \(u+du \)):
 \[
 r(u)PV(u)du + \lambda(u)\left(C(u) + PV(u) \right)du
 \]
Explaining theta effects with and without hedging

Apparent extra return effect: \(\lambda(u)(C(u) + PV(u))du \)
- But, probability of default between \(u \) and \(u + du \): \(\lambda(u)du \).
- Losses in case of default:
 - Commitment to pay: \(C(u) \)
 - Loss of PV of the credit contract: \(PV(u) \)
 - \(PV(u) \) consists in **unrealised** capital gains or losses in the credit derivatives book that “disappear” in case of default.
- Expected loss charge: \(\lambda(u)(C(u) + PV(u))du \)

Hedging aspects:
- If we hold \(C(u) + PV(u) \) short-term digital default swaps, we are protected at default-time (no jump in the P&L).
- Premiums to be paid: \(\lambda(u)(C(u) + PV(u))du \)
- Same average rate of return, but smoother variations of the P&L.
Hedging default risk in dynamic default swaps

- **PV at time \(u \) of a digital default swap**

 \[
 PV(u) = 1_{\{\tau > u\}} E_u \left[\int_u^T \left(\exp - \int_u^t (r + \lambda)(s) ds \right) \times (\lambda(t) - p) dt \right] + 1_{\{\tau \leq u\}} \exp \int_\tau^u r(t) dt
 \]

 - At default time \(\tau \), PV switches from

 \[
 E_u \left[\int_u^T \left(\exp - \int_u^t (r + \lambda)(s) ds \right) \times (\lambda(t) - p) dt \right]
 \]

 - to one (default payment). If digital default swap at the money, \(dPV(\tau) = 1 \)

- **PV at time \(u \) of a dynamic default swap with payment \(C \): \(PV_C(u) \)**

 \[
 1_{\{\tau > u\}} E_u \left[\int_u^T \left(\exp - \int_u^t (r + \lambda)(s) ds \right) \times (\lambda(t)C(t) - p_C) dt \right] + 1_{\{\tau \leq u\}} C(\tau) \exp \int_\tau^u r(t) dt
 \]

 - At default time \(\tau \), PV switches from predefault market value to \(C(\tau) \)

- **Rolling over the hedge**: we hold \(C(u) \) digital default swaps

 - Variation of PV on the hedging portfolio \(C(u) \) \(dPV(u) \)

 - At default time \(\tau \), PV hedging portfolio jumps of \(C(\tau) dPV(\tau) = C(\tau) \)

- **Complete hedge involves holding \(C(u) + PV_C(u) \) default swaps: model free.**
Hedging Default risk and credit spread risk in Dynamic Default Swaps

- **Purpose**: joint hedge of default risk and credit spread risk
- **Hedging default risk** only constrains the amount of underlying standard default swap.
 - Maturity of underlying default swap is arbitrary.
- Choose maturity to be protected against credit spread risk
 - PV of dynamic default swaps and standard default swaps are sensitive to the level of credit spreads
 - Sensitivity of standard default swaps to a shift in credit spreads increases with maturity
 - Choose maturity of underlying default swap in order to equate sensitivities.
Example:

- dependence of simple default swaps on defaultable forward rates.
- Consider a T-maturity default swap with continuously paid premium p. Assume zero-recovery (digital default swap).
- PV (at time 0) of a long position provided by:

\[PV = E \left[\int_0^T \left(\exp - \int_0^t (r + \lambda(s)) ds \right) \times (\lambda(t) - p) dt \right] \]

- where $r(t)$ is the short rate and $\lambda(t)$ the default intensity.
- Assume that $r(.)$ and $\lambda(.)$ are independent.
- $B(0,t)$: price at time 0 of a t-maturity default-free discount bond
- $f(0,t)$: corresponding forward rate

\[B(0, t) = E \left[\exp - \int_0^t r(u) du \right] = \exp - \int_0^t f(0, u) du \]
Hedging credit spread risk

- Let $\bar{B}(0, t)$ be the defaultable discount bond price and $\bar{f}(0, t)$ the corresponding instantaneous forward rate:

$$
\bar{B}(0, t) = E\left[\exp\left(-\int_{0}^{t}(r + \lambda(u))du\right)\right] = \exp\left(-\int_{0}^{t}\bar{f}(0, u)du\right)
$$

- Simple expression for the PV of the T-maturity default swap:

$$
PV(T) = \int_{0}^{T} \bar{B}(0, t)\left(\bar{f}(0, t) - f(0, t) - p\right)dt
$$

- The derivative of default swap present value with respect to a shift of defaultable forward rate $\bar{f}(0, t)$ is provided by:

$$
\frac{\partial PV}{\partial \bar{f}}(t) = PV(t) - PV(T) + \bar{B}(0, t)
$$

⇒ $PV(t)$-$PV(T)$ is usually small compared with $\bar{B}(0, t)$.
Hedging credit spread risk

– Similarly, we can compute the sensitivities of plain default swaps with respect to default-free forward curves \(f(0,t) \).
– And thus to credit spreads.
– Same approach can be conducted with the dynamic default swap to be hedged.

➢ All the computations are model dependent.

– Several maturities of underlying default swaps can be used to match sensitivities.

➢ For example, in the case of defaultable interest rate swap, the nominal amount of default swaps \((PV_\tau)^+\) is usually small.

➢ Single default swap with nominal \((PV_\tau)^+\) has a smaller sensitivity to credit spreads than defaultable interest rate swap, even for long maturities.

➢ Short and long positions in default swaps are required to hedge credit spread risk.
Hedging credit spread risk

- Denote by $I(u) = 1_{\{\tau > u\}}$, $dI(u) = \text{variation of jump part}$.

- Digital default swap:
 - PV prior to default: $PV^b(u) = E_u \left[\int_u^T \exp \left(- \int_u^t (r + \lambda(s)) ds \right) \times (\lambda(u) - p) dt \right]$
 - PV after default: $PV^b(u) = \exp \int_u^T r(t) dt$
 - PV whenever: $PV(u) = I(u) PV^b(u) + (1 - I(u)) PV^a(u)$

\[
dPV(u) = \left(PV^b(u) - PV^a(u) \right) dI(u) + I(u) dPV^b(u) + (1 - I(u)) dPV^a(u)
\]

 Discountinuous part default risk
 Continuous part (credit spread risk)

- Continuous part is hedged by usual delta, gamma analysis,

- Discontinuous part: constrains the amount of hedging default swaps
 - After hedging default risk, no jump in the PV at default time.
Hedging credit spread options

- Option to enter a given default swap with premium p, maturity T' at exercise date T.
 - Call option provides positive payoff if credit spreads increase.
 - Credit spread risk
 - If default prior to T, cancellation of the option
 - Default risk

- The PV is of the form $PV(u) = 1_{\{\tau > u\}} PV^b(u)$
 - Hedge default risk by holding an amount of $PV^b(u)$ default swaps.
 - $PV^b(u)$ is usually small compared with payments involved in default swaps.
 - $PV^b(u)$ depends on risk-free and risky curves (mainly on credit spreads).
 - Credit spread risk is also hedged through default swaps.

- Our previous framework for hedging default risk and credit spread risk still holds.
Real World hedging and risk-management issues

• uncertainty at default time
 – illiquid default swaps
 – recovery risk
 – simultaneous default events

• Managing net premiums
 – Maturity of underlying default swaps
 – Lines of credit
 – Management of the carry
 – Finite maturity and discrete premiums
 – Correlation between hedging cash-flows and financial variables
New ways to transfer credit risk: Basket default swaps

- Consider a basket of M risky bonds
 - multiple counterparties
- First to default swaps
 - protection against the first default
- N out of M default swaps ($N < M$)
 - protection against the first N defaults
- Hedging and valuation of basket default swaps
 - involves the joint (multivariate) modelling of default arrivals of issuers in the basket of bonds.
 - Modelling accurately the dependence between default times is a critical issue.
Hedging Default Risk in Basket Default Swaps

• Example: first to default swap from a basket of two risky bonds.
 – If the first default time occurs before maturity,
 – The seller of the first to default swap pays the non recovered fraction of the defaulted bond.
 – Prior to that, he receives a periodic premium.

• Assume that the two bonds cannot default simultaneously
 – We moreover assume that default on one bond has no effect on the credit spread of the remaining bond.

• How can the seller be protected at default time?
 – The only way to be protected at default time is to hold two default swaps with the same nominal than the nominal of the bonds.
 – The maturity of underlying default swaps does not matter.
Consider a first to default swap associated with a basket of two defaultable loans.

- Hedging portfolios based on standard underlying default swaps
- Uncertain hedge ratios if:
 - simultaneous default events
 - Jumps of credit spreads at default times

Simultaneous default events:

- If counterparties default altogether, holding the complete set of default swaps is a conservative (and thus expensive) hedge.
- In the extreme case where default always occur altogether, we only need a single default swap on the loan with largest nominal.
- In other cases, holding a fraction of underlying default swaps does not hedge default risk (if only one counterparty defaults).
Real world hedging and risk-management issues
Case study: hedge ratios for first to default swaps

- What occurs if there is a *jump in the credit spread* of the second counterparty after default of the first?
 - default of first counterparty means *bad news* for the second.

- If hedging with short-term default swaps, *no capital gain* at default.
 - Since PV of short-term default swaps is not *sensitive* to credit spreads.

- This is not the case if hedging with long term default swaps.
 - If credit spreads *jump*, PV of long-term default swaps *jumps*.

- Then, the amount of hedging default swaps can be *reduced*.
 - This reduction is *model-dependent*.
On the edge of completeness?

- **Firm-value** structural default models:
 - Stock prices follow a diffusion process (no jumps).
 - Default occurs at first time the stock value hits a barrier.

- **In this modelling**, default credit derivatives can be **completely** hedged by trading the stocks:
 - “Complete” pricing and hedging model:

- **Unrealistic features for hedging** *basket default swaps*:
 - Because default times are predictable, *hedge ratios are close to zero* except for the counterparty with the smallest “distance to default”.

On the edge of completeness?

hazard rate based models

- In **hazard rate** based models:
 - default is a sudden, *non predictable* event,
 - that causes a sharp *jump* in defaultable bond prices.
 - Most dynamic default swaps and basket default derivatives have payoffs that are *linear* (at default) in the prices of defaultable bonds.
 - Thus, good news: default risk can be *hedged*.
 - Credit spread risk can be *substantially reduced*, but model risk.
 - More *realistic* approach to default.
 - *Hedge ratios* are *robust* with respect to default risk.
On the edge of completeness

Conclusion

• Looking for a better understanding of credit derivatives
 – payments in case of default,
 – volatility of credit spreads.

• Bridge between risk-neutral valuation and the cost of the hedge approach.

• **dynamic** hedging strategy based on *standard default swaps*.
 – hedge ratios in order to get protection at default time.
 – hedging default risk is *model-independent*.
 – importance of quantitative models for a better management of the P&L and the residual premiums.