

Modélisation comportementale en ALM bancaire : application aux dépôts à vue

Conférence scientifique PRMIA Paris et AFGAP Finance comportementale et risques 29 avril 2009

Jean-Paul LAURENT

http://laurent.jeanpaul.free.fr

Alexandre ADAM, BNP Paribas Asset and Liability Management

Mohamed HOUKARI, BNP Paribas ALM and ISFA, Université de Lyon, Université Lyon 1

Jean-Paul LAURENT, ISFA, Université de Lyon, Université Lyon 1

Presentation related to:

- Hedging Interest Rate Margins on Demand Deposits
 - Working paper available on SSRN (to be updated soon)

Presentation Outlook

- Modeling framework
 - customer rates
 - deposit amounts
 - Interest rate margins
- Optimal strategies
 - The blinkered investor
 - Integrated risk management
- □ Conclusion

Prolegomena

Demand Deposits involve huge amounts

□ Bank of America Annual Report – Dec. 2007

Dalik of America Amiliai Report – Dec. 2007	Average Balance								
(Dollars in millions)		2007		2006					
Assets									
Federal funds sold and securities purchased under agreements to resell Trading account assets Debt securities	\$	155,828 187,287 186,466	\$	175,334 145,321 225,219					
					Loans and leases, net of allowance for loan and lease losses		766,329		643,259
					All other assets		306,163		277,548
Total assets	\$	1,602,073	\$	1,466,681					

Liabilities

Deposits	\$ 717,182	\$ 672,995
Federal funds purchased and securities sold under agreements to repurchase	253,481	286,903
Trading account liabilities	82,721	64,689
Commercial paper and other short-term borrowings	171,333	124,229
Long-term debt	169,855	130,124
All other liabilities	70,839	57,278
Total liabilities	 1,465,411	 1,336,218
Shareholders' equity	136,662	130,463
Total liabilities and shareholders' equity	\$ 1,602,073	\$ 1,466,681

Demand deposits involve both interest rate and liquidity risks

Modeling Deposit Rate – Examples

- We assume the customer rate to be a function of the market rate.
 - □ Affine in general (US) / Sometimes more complex (Japan)

Dynamics for Market Rate L_t : forward Libor rate

Market Model for forward Libor rate(s)

$$\frac{dL_t}{L_t} = \mu_L dt + \sigma_L dW_L(t)$$

$$\mu_L \neq 0 \quad \text{Long-Term Investment Risk Premium}$$

- Coefficient specification assumptions:
 - \Box Our model: μ_L, σ_L constant
 - □ Assumptions can be relaxed:
 - □ *Time dependent coefficients*
 - □ CEV type Libor models

Deposit Amount Dynamics

Diffusion process for Deposit Amount

$$dK_{t} = K_{t} \left[\mu_{K} dt + \sigma_{K} d\overline{W}_{K}(t) \right]$$

- Sensitivity of deposit amount to market rates
 - Money transfers between deposits and other accounts
- □ Interest Rate partial contingence.
 - Business risk, ...
 - Incomplete market framework

$$d\overline{W}_{K}(t) = \rho dW_{L}(t) + \sqrt{1 - \rho^{2}} dW_{K}(t) \quad -1 < \rho < 0$$

Deposit Amount Dynamics – Examples

$$dK_{t} = K_{t} \left(\mu_{K} dt + \sigma_{K} d\overline{W}_{K}(t) \right)$$

EuroZone $- \hat{\mu}_{K} = 10.19\%, \hat{\sigma}_{K} = 6.56\%$

Turkey $- \hat{\mu}_{K} = 51.74\%, \hat{\sigma}_{K} = 37.38\%$

Demand Deposit Interest Rate Margin

- □ For a given quarter T
- □ Income generated by:
 - Investing Demand Deposit Amount on interbank markets
 - while paying a deposit rate to customers

We need to focus on Interest Rate Margins

$$IRM_{g}(K_{T}, L_{T}) = K_{T}(L_{T} - g(L_{T})) \cdot \Delta T$$

According to the IFRS (International accounting standards) :

- The IFRS recommend the accounting of non maturing assets and liabilities at Amortized Cost / Historical Cost
- Recognition of related hedging strategies from the accounting viewpoint

□ Interest Margin Hedge (IMH).

• The fair value approach does not apply to demand deposits

- Risks in interest rate margins $IRM_g(K_T, L_T) = K_T(L_T g(L_T)) \cdot \Delta T$
- Interest rate risk

 \Box Direct interest rate risk on unit margins $L_T - g(L_T)$

 \Box Indirect interest rate risk due to correlation between K_T and L_T

Business risk

Deposit amounts are not fully correlated to interest rates

Hedging tools

- □ Interest rate swaps (FRA's)
- $\Box L_t$ three months forward Libor at date t for quarter T
- \Box dL_t : incremental cash-flow at time T associated with a unit FRA

Sets of Hedging Strategies

... is contained in ...

□ Hedging strategies based on FRAs

□ Amount held in FRA's varies with available information

1st case: (myopic) self-financed strategies taking into account the evolution of market rates only

$$H_{S2} = \left\{ S = \int_{0}^{T} \theta_{t}^{L} dL_{t}; \ \theta^{L} \in \Theta^{L} \right\}$$
 Set of admissible investment strategies adapted to $F^{W_{L}}$

Management of interest rate risk achieved by trading desk far-off ALM
 2nd case: self-financed strategies taking into account the evolution of the deposit amount

$$H_{D} = \left\{ S = \int_{0}^{T} \theta_{t} dL_{t} ; \theta \in \Theta \right\} \qquad \text{Set of admissible investment} \\ \text{strategies adapted to } F^{W_{L}} \lor F^{W_{K}}$$

□ Integrated risk management

Mean-variance framework:

□ Including a return constraint – due to the interest rate risk premium.

$$\min_{S} \mathbf{E} \left[IRM_{g} \left(K_{T}, L_{T} \right) - S \right]^{2} \text{ under constraint } \mathbf{E} \left[IRM_{g} \left(K_{T}, L_{T} \right) - S \right] \geq r$$

Incomplete markets: perfect hedge cannot be achieved with interest rate swaps

Useful mathematical finance concepts

$$\frac{d\overline{\mathbf{P}}}{d\mathbf{P}} = \exp\left(-\frac{1}{2}\int_{0}^{T}\lambda^{2}dt - \int_{0}^{T}\lambda dW_{L}(t)\right)$$

• $\lambda = \mu_L / \sigma_L$ risk premium associated with holding long term assets

Risk-neutral with respect to traded risks (interest rates)

Historical with respect to non hedgeable risks (business risk)

□ In our framework, coincides with the <u>variance minimal measure</u>:

$$\overline{\mathbf{P}} = \operatorname{Arg\,min}_{\mathbf{Q}\in\Pi_{RN}} \mathbf{E}^{\mathbf{P}} \left[\frac{d\mathbf{Q}}{d\mathbf{P}} \right]^{2}$$

□ Here, the Variance Minimal Measure density is a power function of the Libor rate : λ

$$\frac{d\overline{\mathbf{P}}}{d\mathbf{P}} = \left(\frac{L_T}{L_0}\right)^{-\frac{\lambda}{\sigma_L}} \exp\left(\frac{1}{2}\left(\lambda^2 - \lambda\sigma_L\right)T\right)$$

Optimal Hedging Strategy – blinkers' case

Payoff of optimal hedging strategy:

 $\varphi^{S2}(L_T) = \mathbf{E}^{\mathbf{P}} \left[IRM_g(K_T, L_T) | L_T \right] - \mathbf{E}^{\overline{\mathbf{P}}} \left[IRM_g(K_T, L_T) \right]$ \Box Only depends upon terminal Libor!

European option type payoff / Analytical computations

 \Box Optimal hedging strategy in FRAs consists in replicating $\varphi^{S2}(L_T)$

Optimal Hedging Strategy – Integrated Risk Management

The optimal investment in FRA's is determined as follows:

Investment in some *Elementary Portfolio* which verifies

This portfolio aims at some fixed return while minimizing the final quadratic dispersion. $\mathbf{E}^{\mathbf{P}}\begin{bmatrix} T & \lambda \\ \int_{0}^{T} \sigma_{L} L_{t} \end{bmatrix} d\mathbf{E}^{\mathbf{P}}$

$$\mathbf{P}\left[\int_{0}^{T} \frac{\lambda}{\sigma_{L}L_{t}} dL_{t} - (-1)\right]^{2} = \min_{\theta \in \Theta} \mathbf{E}^{\mathbf{P}}\left[\int_{0}^{T} \theta_{t} dL_{t} - (-1)\right]^{2}$$

- Computations are fully explicit
- Case of No Deposit Rate: $g(L_T) = 0$
 - Optimal strategy reduces to earlier results of Duffie & Richardson

Dealing with Massive Bank Run

Introducing a Poisson Jump component in the deposit amount:

$$dK_{t} = K_{t} \left[\mu_{K} dt + \sigma_{K} d\overline{W}_{K}(t) - dN(t) \right]$$

 $(N(t))_{0 \le t \le T}$ is assumed to be independent from W_K and W_L

- Same hedging numéraire and variance minimal measure as before.
 - Computations are still explicit :

$$\theta_{t}^{**} = \frac{\partial \mathbf{E}_{t}^{\overline{\mathbf{P}}} [IRM(K_{T}, L_{T})]}{\partial L_{t}} + \frac{\lambda}{\sigma_{L} L_{t}} \left[\mathbf{E}_{t}^{\overline{\mathbf{P}}} [IRM_{g}(K_{T}, L_{T})] - V_{t}(x^{**}, \theta^{**}) \right]$$

Due to independence, the jump element can be put out the conditional expectations:

 $\mathbf{E}_{t}^{\bar{\mathbf{P}}}\left[IRM_{g}\left(K_{T},L_{T}\right)\right] = e^{-\gamma(T-t)} \times \text{ (Previous conditional expectation term)}$

- Previous technique has a wide range of applications
 - Changing the deposit amount dynamics
 - Changing the customer rate specification

Relevance of Integrated Risk Management?

- Optimal strategy based on market rates only (blue) and the one knowing both rates and deposits (pink):
 - □ At minimum variance point (*risk minimization*)
- Taking into account deposit amounts leads to higher accuracy when correlation between interest rates and deposit amounts is low

Choice of Risk Criterion

The mean-variance optimal dynamic strategy (following deposits and

rates) behaves quite well under other risk criteria

□ Example of Expected Shortfall (99.5%) and VaR (99.95%).

Barrier Deposit Rate	Expected Return	Standard Deviation		ES (99.5%)		VaR (99.95%)	
		Level	Risk Reduction	Level	Risk Reduction	Level	Risk Reduction
Unhedged Margin	3.16	0.39		-2.02		-1.90	
Static Hedge Case 1	3.04	0.28	-0.11	-2.34	-0.32	-2.26	-0.36
Static Hedge Case 2	3.01	0.23	-0.16	-2.26	-0.24	-2.04	-0.14
Jarrow and van Deventer	3.01	0.24	-0.15	-2.35	-0.33	-2.25	-0.35
Optimal Dynamic Hedge	3.01	0.22	-0.17	-2.38	-0.36	-2.29	-0.39

- Mean-variance optimal dynamic strategy are additive with respect to different items of the balance sheet
 - One can deal separately with demand deposits and mortgages (say)
 - Which is not the case with ES or VaR

Conclusions

- Abstract mathematical finance concepts lead to analytical and easy to implement optimal hedging strategies for demand deposits:
 - □ Taking both into account interest rate risk and business risk
 - □ Sheds new light on risk management architecture
 - Consistent with standard accounting principles
 - Robust with respect to choice of risk criteria
 - Can cope with a wide range of specifications
 - Applicable to various balance sheet items
 - That can be dealt with separately (additivity)
- □ But...
 - □ Lack of stability towards deposit rate's specification
 - Growth and volatility of deposit amounts
 - □ As usual, significant model risk