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Abstract

We compare some popular CDO pricing models, related to the bottom-up approach.
Dependence between default times is modelled through Gaussian, stochastic correlation,
Student t, double t, Clayton and Marshall-Olkin copulas. We detail the model properties and
compare the semi-analytic pricing approach with large portfolio approximation techniques.
We study the independence and perfect dependence cases and the uniqueness of base
correlation. The ability of the models to fit the correlation skew observed in CDO market
quotes is also assessed. Eventually, we relate CDO premiums and the distribution of
conditional default probabilities which appears as a key input in the copula specification.
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Introduction

This paper provides a comparison of some popular CDO pricing models, within the “bottom-up” approach
and more precisely based on copulas in order to define the dependence structure between default
times®. We use a factor approach leading to semi-analytic pricing expressions that ease model risk
assessment. We focus on “copula models” since there are predominantly used in the credit derivatives
markets, though the factor approach also applies to various intensity models (see Mortensen [2006] or
Eckner [2007] for examples). Let us stress that we rely on the standard pricing methodology for credit
derivatives, i.e. a risk neutral measure is considered as given and may not be explicitly connected to self
financed replicating strategies.

In the “bottom-up” approach, CDO tranche premiums depend upon the individual credit risk of names in
the underlying portfolio and the dependence structure between default times. There are currently
several “bottom-up” approaches to CDO pricing. One may start from a specification of dependent default
intensities. A typical example is provided by Duffie and Garleanu [2001]. An alternative route is the
structural approach, corresponding to a multivariate hitting time model, as illustrated by Hull et al.
[2005]. The previous approaches involve a calibration to marginal default distributions. On the other
hand, the copula approach directly specifies the dependence structure, though in a somehow ad-hoc way.
While the Gaussian copula model, introduced to the credit field by Li [2000] has become an industry
standard, its theoretical foundations, for instance credit spread dynamics, and more practical issues such
as fitting CDO tranche quotes, have been questioned. For this purpose, other dependence structure such
as Clayton, Student t, double t, or Marshall-Olkin copulas have been proposed. The scope of copula
modelling recently expanded; this is reported and analyzed in Cousin and Laurent [2008b]. The paper
neither accounts for new research aiming at closing the gap between “top-down” and bottom-up
approaches. In the top down approach, the starting point is the modelling of the aggregate loss process,
from which one tries to derive in a consistent way individual name dynamics. We refer here among other
papers to Bielecki, Crepey and Jeanblanc [2008] or Halperin and Tomecek [2008] following earlier
research by Gieseke and Goldberg [2008].

The factor approach is quite standard in credit risk modelling (see for instance Crouhy et al. [2000],
Merino and Nyfeler [2002], Pykhtin and Dev [2002], Gordy [2003] and Frey and McNeil [2003]). In the
case of homogeneous portfolios, it is often coupled with large portfolio approximation techniques. In
such a framework, Gordy and Jones [2003] analyse the risks within CDO tranches. In order to deal with
numerical issues, Gregory and Laurent [2003] and Laurent and Gregory [2005] have described a semi-
analytical approach, based on factor models, for the pricing of basket credit derivatives and CDOs. This
topic is also discussed by, among others, Andersen et al. [2003] and Hull and White [2004]. We will
further rely on this factor approach, which also provides an easy to deal framework for model
comparisons. Other contributions dedicated to comparing various copulas in the credit field are Das and
Deng [2004], Burstchell et al. [2007], the aforementioned papers of Cousin and Laurent [2008a,b] or the
book by Cherubini et al. [2004]. The models studied here are the following:

- The Gaussian copula, more precisely, its one factor sub-case. This model is widely used by the
financial industry. Despite numerous critics and the credit market crisis, it remains the
benchmark tool for pricing and risk managing CDO tranches.

- Astochastic correlation extension of the Gaussian copula.

- The Student t extension of the Gaussian copula with six and twelve degrees of freedom.

- Adouble t one factor model as introduced by Hull and White [2004].

- The Clayton copula model that can also be seen as a frailty model with a Gamma distribution.

- A multivariate exponential model associated with multiple defaults. The associated copula is the
Marshall-Olkin copula.

We refer to Andersen [2007] or Cousin and Laurent [2008a,b] for a discussion of other recent extensions
of the factor copula approach. The critics may find unpleasant to deal with copula models, which are

* Some pros and cons of the “bottom-up” and “top-down” approaches can be found in the book edited by
Lipton and Rennie [2007]. As it appears, the game is not over.



usually associated with poor dynamics of the aggregate loss process. Since our focus here is CDO pricing,
we are only concerned with marginal distributions of the aggregate loss at different time horizons and not
with the law of the aggregate loss process, which is involved in more sophisticated products, such as
CPDOs, forward starting CDOs, Leverage Super Senior tranches. Of course, due the credit crisis and
market environment, these more complex products are scarcely traded nowadays.

The paper aims at providing a comparison methodology for pricing models which are not embedded. We
found that the theory of stochastic orders, familiar to actuaries or people involved in reliability theory, to
be quite helpful in the credit field, especially in order to compare dependence structures between default
times. Some of the tools used here may look a bit abstract, such as the supermodular order, for the
reader unfamiliar with these topics. For the paper to be self-contained, we recall the mathematical
definitions as the paper goes around. The reader may also refer to books by Denuit et al. [2005] or Mller
and Stoyan [2002], among others, for further details and comments.

As for the dependence structure, the paper focuses on parametric models, i.e. the copulas considered
belong to a common family, which usually involves a small number of parameters, unlike the non
parametric implied copula approach introduced by Hull and White [2006].

For simplicity and to ease model comparisons, we will thereafter restrict to cases where the copula of
default times is a symmetric function with respect to its coordinates. For instance, in the Gaussian copula
case, this means that the correlation parameter is constant, whatever the couples of names’. Comparing
CDO pricing models is easier due to the small number of parameters involved. We study the dependence
of CDO tranche premiums with respect to the choice of dependence or “correlation” parameter. This
involves some results in the theory of stochastic orders. For example, we can show that first to default
swaps or base correlation CDO tranche premiums are monotonic with respect to the relevant
dependence parameter (see McGinty and Ahluwalia [2004] for a discussion about base correlations). We
also discuss some extreme cases such as independence and comonotonicity (or “perfect positive
dependence”) between default times. The theory of stochastic orders also provides some comparison
results between CDO tranche premiums depending on the granularity of the reference credit portfolio. As
an example, we can easily compute exact prices of CDO base or senior tranches and those computed
under a large portfolio approximation.

We then compare CDO pricing models based under different copula assumptions. We show that well-
appraised dependence indicators such as Kendall’s 7 or the tail dependence parameter fail to explain the
differences between CDO tranche premiums. Therefore, these indicators should be used with great
caution when considering the dependence structure within credit portfolios. On the other hand, the
distribution of the conditional default probabilities appears as a key input. This explains for instance that,
for a given time horizon, the Clayton copula and the one factor Gaussian copula almost lead to the same
CDO tranche premiums. The conditional default probabilities are also of first importance in large portfolio
approximations that dramatically simplify the computation of CDO tranche premiums. These findings
appear to be the main contribution of this paper and might help designing more suitable models in the
future.

Eventually, we study the ability of the studied models to fit market quotes: Double t and stochastic
correlation models appear to provide the better fits, while for instance the Clayton and the Gaussian
copula provide some strikingly similar CDO tranche premiums. However, due to space and time
constraints, we only provide some examples based on specific trading dates and do not conduct a
systematic time series analysis of the fitting properties of the models at hand.

The paper is organized as follows: we firstly briefly recall the semi-analytical pricing approach of basket
credit derivatives or CDO tranches in a factor framework. The second section reviews the models under
study. The third section is devoted to applications of the theory of stochastic orders to the pricing of CDO
tranches. Though the third section is more theoretical in nature, it has quite important practical

> Practitioners then talk of “flat correlation”. The symmetry assumption does not preclude the case of
heterogeneous credit spreads for different names.



implications: we are able to show the existence of a unique implied dependence correlation parameter in
most cases. For instance, we give a formal proof of the uniqueness of implied base correlations, a result
of importance for practitioners. Some comparison results between large portfolio approximations and
semi-analytic approaches are provided and granularity issues are discussed. The fourth section contains
empirical investigations. Our comparison methodology relies on the uniqueness of implied dependence
parameters for base correlation tranches. Firstly, we study how the different models at hand differ as far
as the pricing of basket default swaps and CDO tranches is concerned. We then discuss the ability of the
different models to reproduce market quotes on standardized CDO tranches based on the iTraxx index.
Eventually, we provide an analysis of the differences between the studied models based on the
distribution of conditional default probabilities.

I) Semi-analytical pricing of basket default swaps and CDOs

In this section, we recall how the factor or conditional independence approach can be associated with
tractable computations for basket default swaps and CDO tranches. These are detailed in Laurent and
Gregory [2005].

Throughout the paper, we will consider n obligors and denote the random vector of default times as
(z’l,...,rn). We will denote by F and S respectively the joint distribution and survival functions such that
for all (t,,....,t,)eR", F(t,...t;)=0Q(z <t,...,7, <t,) and S(t,...,t,)=Q(7; >t,...,7, >t,) where
Q represents some pricing probability measure. F,,...,F, represent the marginal distribution functions
and S,,...,S, the corresponding survival functions. C denotes the copula of default times which is such
that F(t,,....t,) =C(F.(t)....,F,(t,))°. We denote by E,, i=1...,n the nominal exposures’ associated
with n credits, with 8, i=1,...,n being the corresponding recovery rates and by M, = E, (1—5i) the loss

given default for name i. We will thereafter assume that recovery rates are deterministic® and
concentrate upon the dependence of default times.

We will consider a latent factor V such that conditionally on V, the default times are independent. The
factor approach makes it simple to deal with a large number of names and leads to very tractable pricing

results. We will denote by pt'IV = Q(ri St|\/) and qt”V :Q(ri >t[\/) the conditional default and survival

probabilities. Conditionally on V , the joint survival function is:

Sttt =T -

I<i<n

® Let F be a joint distribution function defined on R" and F,,...,F, be the corresponding marginal
distribution functions. Then, there exists a distribution function C over [0,1]n such that for all
X=(X,....X,)eR", F(x)=C(F(x),....F,(x,)). If F,...,F, are all continuous, then C is uniquely

defined. Conversely, if C is an n-copula and F,...,F, are univariate distribution functions,

x = C(F(x).....F,(x,)) defines a joint distribution function.

’ We further assume that the nominals are positive, thus leaving aside the case of long-short CDOs. Let us
however emphasize that important results such as Monotonicity of base tranches with respect to some
dependence parameter may not be fulfilled for a long-short CDO. For instance, uniqueness of base
correlation is not guaranteed. In the case of index tranches, the nominal exposures are usually equal i.e.
E =—.
n

8 Up to the 2008 credit crisis, participants to the CDO market mostly relied on this assumption, with a
commonly assumed value of &, = 40% for CDX.NA.IG and iTraxx indices.



Basket Default Swaps and especially CDO tranches are now standardized products. As for the pricing of

n
the CDO tranche, we need to consider the aggregate loss process defined as L(t) = ZMiNi(t), where

i=1
N;(t) are the default indicators processes associated with the different names and M, the
corresponding losses given default. It can be shown that we only need the marginal distributions of L(t)
up to maturity in order to price the default and the premium leg of a CDO tranche. The computation of

the default payment leg involves E[(L(t)— K)+] where K are the attachment points of the tranches.

Semi-analytical techniques allow for quick computation of the aggregate loss distribution. This can be
done by considering its characteristic function. Thanks to the conditional independence assumption, and
since recovery rates are deterministic, the characteristic function of the aggregate loss can be written as:

DL (U) = E[ei”L(t)] = E{H (th +plVe"™ )} . The computation of the expectation involves a numerical
1<j<n

integration over the distribution of the factor V, which can be easily achieved numerically provided that
the dimension of V is small’. Eventually, the distribution of the aggregate loss can be computed from the
characteristic function or by recursion techniques. For more details about these approaches, we refer to
Laurent and Gregory [2005], Andersen et al. [2003], Hull and White [2004]. Jackson et al. [2007] discuss
the efficiency of different methods for the computation of loss distributions. Lately, El Karoui, Jiao and
Kurtz [2008] and Bastide, Benhamou and Ciuca [2007] suggested and studied quick to compute and
accurate approximations of CDO tranche prices in a factor framework based on Stein’s method and zero
bias transformation. Whenever, one cannot use these pricing techniques, Monte Carlo simulation is
required. For this purpose, we also provide ways to draw randomly default times under the considered
models. Chen and Glasserman [2008] consider efficient importance sampling schemes applicable when
the factor assumption does not hold.

For modelling purpose, we emphasize that the only inputs to a factor copula model are the conditional
(distribution of) default probabilities pt”v , Which include all pricing requirements. Since the premises of

the choice of copula are unclear, some contemptors talk about ad-hoc models without sound economic
foundation. Nevertheless, the distribution of conditional default probability is closely related to the one
of large and well diversified credit portfolios. Therefore, rather than looking for a suitable choice of
copula, in most cases, the relevant quantity to be considered is the distribution of conditional default
probability. Dependence between default events, marginal distributions of aggregate losses and
eventually CDO tranche quotes stems for a proper selection of the previous constituent.

Il) The models under study

There are now a number of books dedicated to copulas such as Joe [1997], Nelsen [1999] or Cherubini et
al. [2004]. As for the insurance case, we can also refer to the paper by Frees and Valdez [1998]. We detail
below some “factor copulas” that are useful in the pricing of basket credit derivatives and CDOs. We will
thereafter restrict ourselves to one parameter copulas to ease comparisons. The symmetry assumption is
made about the copula of default times and not about the joint distribution of default times. This
assumption can be related but is weaker than the exchangeability assumption. For instance, we may have
constant correlations in a Gaussian copula but different marginal default probabilities and recovery rates.
An analysis of heterogeneity effects within the Gaussian copula can be found in Gregory and Laurent
[2004]. Regarding stochastic orders and related probability concepts such as comonotonicity,
exchangeability, tail dependence, Kendall's 7, we refer to the papers of Miller [1997], Denuit et al.
[2001], Dhaene and Goovaerts [1997], Hu and Wu [1999] and the above-mentioned books. To ease the
reading of this paper, mathematical definitions and properties are briefly recalled in the core text,
footnotes and in the Appendix.

% In the examples below, the dimension of V will be equal to one or two. Gossl [2007] considers some
factor reduction techniques in a Gaussian copula framework.



1.1 One factor Gaussian copula

The default times are modelled from a Gaussian vector (Vl,...,Vn). As in Li [2000], the default times are
given by: 7; = Ffl(d)(Vi )) for i=1...,n where F* denotes the generalized inverse of F, and @ is the

Gaussian cdf. In the one factor case, V, = pV ++/1- p°V, where V,V, are independent  Gaussian
random variables and 0 < p <1'° Then:

li\v _ (D(—pv +CD71(Fi (t))J
J1-p?

p =0 corresponds to independent default times while p =1 is associated with the comonotonic case™.

When p =1, we simply have p" a0

There is no upper or lower tail dependence when o <1 while the coefficient of tail dependence is equal

to 1 when p =1". The relation between Kendall’s 7 > and linear correlation parameter p’ is given by:

2 L . . . . .
Py =—arcsin p=. An important result is that the one factor Gaussian copula is increasing in the
V4

supermodular order with respect to the correlation parameter p (definition and additional comments
regarding the supermodular order are postponed in the Appendix). This result was proved by Bduerle and
Mauller [1998] and further generalized by Miiller and Scarsini [2000], Miiller [2001]. Since default times
are increasing functions of the V, 's , the default times do also increase, with respect to the supermodular
order, as the correlation parameter increases. Loosely speaking, default times are more dependent when
the correlation parameter increases, which is rather intuitive, though the formal proofs are quite
involved. The notion of dependence with respect to the supermodular order makes sense especially for
non Gaussian vectors, such as default times, as will be detailed below.

rather write the latent variables as V, = \/;V +41-pV,.
' comonotonicity can be considered as “perfect dependence” between the components of a random

Y Asa consequence, the correlation between V; and V; is equal to p° . Let us remark that some papers

vector. More formally, let X =(X,,...,X,) be a random vector with marginal distribution functions
F.,...,F,. Xis said to be comonotonic if it has the same distribution as (Fl’1 U),..., F (S )) where U is
a [O,l] uniform random variable and Fi‘l is the generalized inverse of F,. Moreover, a random vector is
comonotonic if and only if the associated copula is the upper Fréchet copula, such that for all
u=(u,...,u,)€[0,1]", C*(u,...,u,)=min(uy,...,u, ). The Fréchet copula acts as an upper bound, since

for any copula C, we have C(u)<C*(u) forall u[0,1]".

2 1et Xand Y be two random variables, with distribution functions F,,F,, and let C denote the copula

associated with (X ,Y) . The coefficient of upper tail dependence is such that:
C(u,u)+1-2u

—1 l—u

whenever the limit exists. We say that there is upper tail dependence if the coefficient is positive. From

the definition, it can be seen that the coefficient of upper tail dependence is always less or equal to 1. It is

lim, , Q(X > R )]y > Fy*(u)) =lim,

’

equal to 1 for the upper Fréchet copula C*. We can also consider the coefficient of lower tail
dependence defined as:

lim, , Q(x <FM)Y < FY‘l(u)) = lim,

—0

C(u,u)
0

This coefficient is also less or equal to 1 and is equal to one for the upper Fréchet copula C* .
B3 Given a bivariate copula C , Kendall’s 7 is given by Px = 4”[0 . C(u,v)dC(u,v)-1.



11.2 Stochastic Correlation

There has been much interest in simple extensions of the Gaussian copula model (see Andersen and
Sidenius [2005], Schloegl [2005]) in order to match “correlation smiles” in the CDO market. Let us present
the simplest version of such a model. The latent variables are given by:

V, = BV L= oV, )+ (1B ) BV L= 5V,
for i=1,...,n, where B, are Bernoulli random variables, V,\Ti are standard Gaussian random variables,
all these being jointly independent and p, 8 are some correlation parameters, 0< f < p <1. We denote
by p= Q(Bi =1). The above model is a convex sum of one factor Gaussian copulas, involving a mixing

distribution over factor exposure. In our examples, there are here two states for each name, one
corresponding to a high correlation and the other to a low correlation. We could equivalently write the
latent variables as:

V,=(Bp+(1-B) AV +\/1—(Bip+(1— B)A)V,,
This makes clear that we deal with a stochastic correlation Gaussian model. We have a factor exposure
p with probability p and £ with probability 1-p. It can be easily checked that the marginal

distributions of the V,’s are Gaussian. As above, we define the default dates as 7; = Fi_l(d)(Vi )) for
i=1..,n.

The default times are independent conditionally on V and we can write the conditional default

probabilities:
| —pV + @7 (F, (t))} [—ﬂv T (F (t))]
p" = po +(L- p)@ .
{ J1-p? J1- 2

We denote by Cf the bivariate Gaussian copula with covariance term y . We can check that the bivariate

copula of default times can be written as:
pZsz (u,v)+2p@A-p)Cs, (u,v)+(1- p)ZCZ’Z (u,v),
for u,v in [0,1] . As a consequence, the previous model might be seen as a mixture of Gaussian copulas,
involving all combinations of correlations. The tail dependence coefficient is equal to zero if f< p <1, to
p°> if B<p=1 and to 1if B=p=1. It is also possible to provide an analytical though lengthy

expression for Kendall’s 7 as:

p*arcsin(p” )+2p* (1 p)* arcsin(pB) + (- p)* arcsin(5*)

2 2 2 2
s +4p*@1- p)arcsin(LZpﬂ}erz(l— p)° arcsin[’o ;’B ]+4p(1— p)® arcsin(’ﬁ;zpﬂj

Since the supermodular order is closed under mixtures, it can be proved that increasing(p,ﬂ, p) leads to

an increase in dependence in the supermodular sense. The proof is postponed in the Appendix. The
reader can find further examples of the stochastic correlation approach in Burtschell et al. [2007].

11.3 Student t copula

The Student t copula is a simple extension of the Gaussian copula. It has been considered for credit and
risk issues by a number of authors, including Andersen et al. [2003], Demarta and McNeil [2005],
Embrechts et al. [2003], Frey and McNeil [2003], Greenberg et al. [2004], Mashal and Zeevi [2003],
Mashal et al. [2003], Schloegl and O’Kane [2005].



In the Student t approach, the underlying vector (Vl,...,Vn) follows a Student t distribution with v
degrees of freedom. In the symmetric case which we are going to consider, we have V, =\/2Xi where

X, =pV +4/1-p°V,, V,V; are independent Gaussian random variables, Zis independent from

. e . 1% . v
(Xl,..., Xn) and follows an inverse Gamma distribution with parameters equal to — (or equivalently —

follows a y distribution). Let us remark that the covariance between V, and V,, i#] s equal to

szz for v > 2. We further denote by t, the distribution function of the standard univariate Student

t, that is the univariate cdf of the V,’s. We then have 7, = F™ (tv \ )) . It can be seen that conditionally

n (V,Z) default times are independent and:

o 2P (RO)|
t \/1_

Thus we deal with a two factor model. As for the Gaussian copula, we have Kendall’'s 7 expressed as:

2 .
Pr =—arcsin p?. The Student t copula has upper and lower tail dependence with equal coefficients,
V4

1_ 2
being equal to 2tv+1[—\/\/+1>< 1 pZ]' Let us remark that even for p=0, we still have tail
+p

dependence. Thus, p=0 does not correspond to the independence case. In fact, there is always tail
dependence whatever the parameters p and v . Thus, we cannot match the product copula™ by using

the Student t copula. However, when p=1, all the V,’s are equal and this corresponds to the

comonotonic case. Since the supermodular order is closed under mixtures and using the supermodular
order of Gaussian copulas, we readily obtain that the Student t copula is positively ordered with respect
to the parameter p in the supermodular sense.

1.4 Double t copula

This model is also a simple extension of the one factor Gaussian copula. It has been considered for the
pricing of CDOs by Hull and White [2004]. As for the Gaussian copula, it belongs to the class of additive
factor copulas. We refer to Cousin and Laurent [2008b] and the references therein for further examples
and discussion.

The default times are modelled from a latent random vector (Vl,...,Vn). The latent variables are such

thatVi:pEV_zj Vil-p (
v

Student t distributions with v and

= j V where V,\7i are independent random variables following
v degrees of freedom and o >0. Since the Student distribution is
not stable under convolution, the V,’s do not follow Student distributions; the copula associated with
(V,-..,V, ) is not a Student copula. Thus, this model differs from the previous one. As for the one factor
Gaussian copula model, p =0 is associated with independent default times and p =1 with comonotonic
default times.

The default times are then given by: 7, =F*(H,(V,)) for i=1...,n where H, is the distribution

function of V, *°. Then:

' Random variables Xii..., X, are independent if and only if the associated copula is the product copula
C* such that: V(u,,...,u,)e[0,1]", C*(Uy,....u,) =u, x...xu

> H, must be computed numerically and depends upon o .

n-



1/2

-2
_ \12 Hiil(Fi (t))_/?(vj \Y
Vg ( v j v
1-p°
It is possible to derive some tail dependence parameters in the double t model. Using Malevergne and

Sornette [2004], we can express the coefficient of tail dependence (the coefficients of upper and lower
tail dependence are equal) as:

1

’

e,

when v=v.If v<v, then the tail of the factor V is bigger than the tail of the idiosyncratic risk \7I .Asa
consequence, the coefficient of tail dependence is equal to one. In the tails, the idiosyncratic risk can be
neglected, and extreme movements are driven solely by the factor. On the other hand, if v >, then the
tail of the factor is smaller than the tail of the idiosyncratic risk and there is no tail dependence between
the default times™. As the dependence parameter increases, it can be proved that the double t copula
increases with respect to the supermodular order, in the homogeneous case, i.e. when default
probabilities are name independent (see Cousin and Laurent [2008a]).

1.5 Clayton copula

Schoénbucher and Schubert [2001], Schonbucher [2002], Gregory and Laurent [2003], Rogge and
Schoénbucher [2003], Madan et al. [2004], Laurent and Gregory [2005], Schloegl and O’Kane [2005], Friend
and Rogge [2005] have been considering this model in a credit risk context.

Let us proceed to a formal description of the model. We consider a positive random variable V , which is
called a frailty, following a standard Gamma distribution with shape parameter 1/6 where €>0. Its

probability density is given by f(x)= e X" for x>0. We denote by y the Laplace

r(1/0)

transform of f . We get y/(s) = I f(x)e™dx = (1+ S)fw . We then define some latent variables V, ’s as:
0

Vi = W(_'”\/Aj,

where U,,...U_ are independent uniform random variables also independent from V . Eventually, the
default times are such that:

,=F'(V), i=L..,n
The previous equations imply a one factor representation where V is the factor. The conditional default
probabilities can be expressed as:

p! =exp(V (1-F (1))
Low levels of the latent variable are associated with shorter survival default times. For this reason, V is

called a “frailty”.

Let us remark that the V,’s have uniform marginal distributions. Since the default times are increasing

functions of these V,’s, the copula of default times is the joint distribution of the V,’s. We readily check

that Q(vl<u1,...,vn<un)=y/(l/f1(u1)+...v,fl(un)):(u;ﬁ+...+un—e_n+1)*”‘9, for any

16 L et us remark that, unlike what is sometimes stated, we can have no tail dependence between default
times even if the factor has fat tails. Moreover, since the aggregate loss is bounded by the portfolio
nominal, it always has thin tails.



(ul,...,un)e[O,l]n . The distribution function of the V,’s is known as the Clayton copula. The Clayton

copula is Archimedean and the generator of the copulais p(t) =t -1, i.e.

Cy(Uyyesty) =07 (0(U) +---+ 9o(U,)) -
From Embrechts et al. [2003], we obtain Kendall's 7 for a Clayton copula as: py :% where
+

fe [—1,00)\{0} . The Clayton copula exhibits lower tail dependence for >0, 4, =2’ and no upper

tail dependence i.e. A; =0". When 6=0, we obtain the product copula, i.e. default times are

independent. When @ =+ , the Clayton copula turns out to be the upper Fréchet bound corresponding
to the case where default times are comonotonic.

As the parameter & increases, the Clayton copula increases with respect to the supermodular order (Wei
and Hu [2002]).

1.6 Multivariate exponential models and the Marshall-Olkin copula

The reliability theory denotes these as “shock models”. There are also known as multivariate exponential
models in Marshall and Olkin [1967]. They were introduced to the credit domain by Duffie and Singleton
[1998] and also discussed by Li [2000], Wong [2000]. More recently, Elouerkhaoui [2003a,b], Giesecke
[2003], Lindskog and McNeil [2003] considered the use of such models.

We present here the simplest form of the model corresponding to a single fatal shock'®. We consider
some latent variables V, = min(V,\Z), i=1...,n where V\7I i=1,...,n are independent exponentially

distributed random variables with parameters a,1-a, @ e]O,l[. The corresponding survival copula19
belongs to the Marshall-Olkin family (see Nelsen [1999], pages 46-49) and can be expressed as:

C(Uy,-nty ) =min(uy,.ug ) Tui
i=1
The default times are then defined as:
7, =5 (exp(—min (V,\Z)))
Since t > Si’l (exp(—t)) are increasing functions, the copula of default times is the same as the copula of

min(V,\Z). We can also check that the survival function of 7; is indeed S,. From the definition of

default times, we readily see that default times are conditionally independent upon V and the conditional
survival probabilities are given by:

q;N =L s S; .
There is upper and lower tail dependence with the same coefficient equal to « . It can be shown (see

Embrechts et al. [2003]) that Kendall's 7 is given by: p, :ZL. a=0 corresponds to the
—a

independence and & =1, implies that 7, =S, (V) i.e. default dates are comonotonic.

Let us consider the <case of equal marginal distributions of default times. Then,

Q(ri :rj)ZQ(V <min(\7i,\7j ))>O. Thus the model allows for simultaneous defaults with positive

probability.

7 General results about the tail dependence within Archimedean copulas can be found in Charpentier
and Segers [2007].
'8 The reader can find some extensions to the case of non fatal shocks in Cousin and Laurent [2008a].

' The survival copula of default times, C is such that S(t,...t) = é(Sl(tl),..., S(t,))-
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It can be proved that increasing « leads to an increase in the dependence between default dates with
respect to the supermodular order. The proof is postponed in the Appendix.

Ill) Ordering of CDO tranche premiums

l1l.1 Monotonic CDO premiums with respect to dependence parameters

Increasing the correlation parameter p within Gaussian double t and Student t copulas, increasing the
parameters p, 8 or p in the stochastic correlation model, increasing the parameter @ in the Clayton

copula or the parameter a (that represents the relative magnitude of the common shock) in the
exponential model leads to an increase in dependence between default times. As a consequence, it can
be proven that CDO tranche premiums of equity or senior type, i.e. either with an attachment point equal
to zero or a detachment point equal to 100% are monotonic with respect to the dependence parameter.
We will thereafter concentrate on equity tranches (i.e. first loss tranches) that are usually associated with
the base correlation approach.

For simplicity, let us consider the Gaussian copula case, though the results extend readily to the other
models studied. We can formally prove that equity tranche premiums are decreasing with respect to the
correlation parameter. This has an obvious practical importance, since it guarantees the uniqueness of
base correlations whatever the maturity of the CDO or the marginal distributions of default times.

To emphasize the dependence of the aggregate loss distributions upon the correlation parameter, let us
denote by L, (t) the aggregate loss for time t, associated with some correlation parameter p . Then, for

all time horizons t, and attachment points K, we can prove that:

0<p<p'= E[(Lp(t)— K)*}s E[(Lp.(t)— K)*}ZO.
Let us also remark that in all the studied models, E[L(t)] :ZMiFi(t). Thus, the expected loss on the
i=1

reference portfolio is the sum of the expected losses on the names and is invariant with respect to the
correlation structure. From call-put parity, we have:

p<p'= E[min(K, Lp(t))]z E[min(K, Lp,(t))].
E[min (K, L(t))] is known as the expected loss for a base tranche with detachment point K or as the

“base expected loss”. The mapping (t,K)— E[min(K, L(t))] is usually known as the “loss surface” (see
Krekel and Partenheimer [2006]). Thus, we can state that the base expected loss decreases with the
correlation parameter p ?! Since the present value of the default leg of an equity tranche involves a

discounted average of such expectations (see Laurent and Gregory [2005]), we conclude that the value of
the default leg of an equity tranche decreases when the correlation parameter increases.

To complete the analysis, we also need to consider the behaviour of the premium leg of a CDO tranche
with respect to the dependence parameter. We recall that the premium paid is proportional to the

21et X and Y be two random variables with finite mean. We say that X precedes Y in stop-loss order
if E[(X - K)ﬂ < E[(Y - K)+] for all K . It can be shown that if two random vectors X =(X,...,X,)

n

) are ordered for the supermodular order, then Z:MiXi is smaller than Z:MiYi for

i=1 i=1

and Y =(Y,,....Y,

the stop-loss order. Since the one factor Gaussian copula is increasing in the supermodular order with
respect to the correlation parameter, we obtain the stated inequalities.
L Let us remark that though for simplicity, we have assumed deterministic recovery rates, the previous

result also holds for a random vector of non negative losses given default(Ml,..., Mn), independent of

the latent variables driving the default times.
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outstanding nominal of the tranche, that is (K—Lp(t))+ in the case of an equity tranche with

detachment point K . Using the same line of reasoning as above, we have:
p<p' = E[(K -L,(1) ]g E[(K ~L,(t)) }

We conclude that the value of the premium leg increases with the correlation parameter. Since
meanwhile, the value of the default leg decreases, the value of a buy protection on an equity tranche
decreases when the correlation parameter increases. Using the same lines of reasoning, the previous
result also holds for the stochastic correlationzz, Student t, Clayton and Marshall-Olkin copulas with
respect to the corresponding dependence parameters. Cousin and Laurent [2008a] show that this also
applies to the double t model.

Note that since 0< p< p'= E[(Lp (t)- K)ﬂ < E[(Lp.(t) - K)ﬂ , the value of the default leg of a senior

tranche with attachment point K always increases with the correlation parameter. The premium paid on
a senior tranche is proportional to the outstanding nominal of the tranche, which is trickier than for an
equity tranche. To illustrate this, let us consider a [30%-100%)] tranche on the portfolio of 100 names. At
inception, the protection buyer can expect a maximum payout of 70%. Thus, the corresponding premium
is based upon that outstanding nominal. Now, let us assume that the first default is painless. For instance,
the Fannie Mae subordinated debt auction was associated with a recovery rate of 99.9%. For simplicity,
we consider a recovery rate of 100%. After that first default, the maximum loss is equal to 99% and the
maximum payout of the super-senior tranche is now equal to 69%. A reasonable contract feature is thus
that the premium payment to be proportional to that maximum payout. The previous effect corresponds

n
to a moving detachment point, so-called “amortization from the top”. Instead of being ZEi , the
i=1

n

detachment point is equal to Z E (l— 0, Ni(t)) 2 The computation of the premium leg of a super senior
i=1

tranche is detailed in the Appendix.

As a consequence, the value of the premium leg of a senior tranche decreases with the correlation
parameter. Therefore, the value of a buy protection senior tranche always increases when the correlation
parameter increases.

The usefulness of the supermodular order is made clear from the above discussion: it provides some
monotonicity results on CDO tranche premiums with respect to the copula dependence parameter.

111.2 Comonotonic case

We study possible bounds on CDO tranche premiums. Tchen [1980] proved that the random vector of
default times (rl,...,z'n ) is always smaller, with respect to the supermodular order, that the comonotonic

n

vector of default times (Fl‘1 U),..., F* (U )) , where U follows a (standard) uniform distribution. As a

consequence, the case of perfect dependence or “comonotonicity” actually provides a model free lower

*2 Thanks to the previous ordering results on the stochastic correlation model, it can be checked that
default times within that framework are more dependent, with respect to the supermodular order, than
default times computed under a one factor Gaussian copula with a correlation parameter £ and less

dependent that default times computed with a correlation parameter p . As a consequence, base
correlations associated with the stochastic correlation model are uniquely defined and lie between £
and p . Another extension of the one factor Gaussian copula model is the inter-intra sector model of

Gregory and Laurent [2004]. This involves a Gaussian copula with different correlations between names.
As for the stochastic correlation case, the square of base correlation is uniquely defined and lies between
the smallest and the largest pairwise correlations.
23 . . o . . . . .

That moving detachment point is a non negative, piecewise constant and non increasing process.
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bound on equity tranche premiums. We also recall that this model free bound is reached within the
Gaussian copula and a correlation parameter equal to 100%.

Though the comonotonic case is well defined on mathematical grounds, it is rather counterintuitive,
especially when the default probabilities differ. For instance, one can perfectly predict all default dates
after the first default and the individual credit names deltas are rather hectic (see Morgan and Mortensen
[2007]).

The CDO tranche premiums computations are fairly easy in this comonotonic case. For notational
simplicity, we assume that the names are ordered, with name 1 associated with the highest default
probability and name n associated with the lowest default probability, i.e. F(t)>...> F (t). The loss at

time t can only take n+1values: O,M;,M, + M,,...,M, +---+ M, . The probability of no losses occurring
is 1- F,(t), while the probability of a loss equal to M, +---+ M, is F_(t)—F(t) and eventually the
probability of a loss equal to M, +---+M, is F (). Let us remark that the base expected loss

E[min(K,L(t))] is piecewise linear in K .

In the comonotonic case, the expected loss for a base tranche is actually increasing and concave in the
detachment point, as one could expect from an arbitrage-free model. The corresponding lower bound on
the base expected loss is not similar to the usual one as computed in Walker [2007]. These no arbitrage
bounds are related to the prices of traded tranches which is not the case here. They do not depend upon
the recovery rate assumptions, while “model-free” has to be understood here with respect to the
dependence structure between default dates. Let us also notice that our bound depends upon the single
name default probabilities, which is not the case when dealing directly with base expected losses related
to standard detachment points.

The previous results shed some light on the computational issues with the senior tranches on the CDX
and iTraxx indices during March 2008 Trading firms experienced difficulties in deriving base correlations
assuming a Gaussian copula and a fixed recovery rate of 40%. Traded premiums of some base tranches in
the CDO market were below those computed with a correlation parameter equal to 100%. Such an issue
cannot be solved by a choice of a more suitable dependence structure between default dates but only by
changing the recovery rate assumptions. To further illustrate this issue, let us consider a double t copula
with a correlation parameter equal to 100%. It is also associated with comonotonic default dates and thus
with the same prices as in the one factor Gaussian copula and a correlation parameter of 100%. This
reasoning also applies to recent parametric models such as Albrecher et al. [2007] where comonotonic
default dates are obtained for a correlation parameter of 100%. Another example is provided by the
implied copula as discussed in Hull and White [2006]. Any implied copula is associated with smaller
dependence than in the comonotonic case. As a consequence, senior tranche premium are always smaller
than in the one factor Gaussian copula with a correlation parameter of 100%. Clearly, if in the market,
[60-100%] tranches are traded at a positive premium, one needs to leave away the assumption of a fixed
recovery rate of 40%.

I11.3 Independence case

The dual case of independence case leads to upper bounds on equity tranche premiums in the studied
models. For all models at hand, except for Student t (see below), this is a consequence of corollary (3.5) in

** Another example to illustrate the practical relevance of comonotonicity is the pricing of senior tranches
of CDOs of subprimes. Ashcraft and Schuermann [2008], Crouhy and Turnbull [2008] argue that since the
assets were already well-diversified, idiosyncratic risks were wiped-off, leaving only exposure to factor
risk, meaning that a correlation of 100% should have been taken into account. Though the economic
ideas are quite valid, one should notice that since CDOs of subprimes are CDO squared that involve
mezzanine tranches, the premiums are not monotonic with respect to correlation. Note also that
according to Basel Il, capital requirements are additive, which is also associated with comonotonicity
between credit portfolio losses.
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Bauerle and Miuller [1998]. The Student t copula must be treated slightly differently (see Appendix).
Moreover, the independence bound is reached respectively for p =0 (Gaussian and double t), =0
(Clayton) and for « =0 (Marshall-Olkin). As discussed below, that has several consequences regarding
the existence of a base correlation or more generally of implied parameters given some market quotes of
base tranches.

One issue is whether the independence case is associated with a model free upper bound on equity
tranche premiums. The answer is negative. For instance, let us consider a Gaussian copula with constant

negative correlation equal to I This leads to admissible correlation matrix; as a consequence of

Maller and Scarsini [2000], the corresponding copula is smaller than the product copula with respect to
the supermodular order. Thus the equity tranche premium will be greater than when computed under
the independence assumption.

One may have noticed that the previous counterexample, though built over a Gaussian copula is not
associated with a factor model, due to the negative pairwise correlation parameters. On the other hand,
all previous factor models allow some comparison with the independence case using the supermodular
order. It is well known that the factor structure and the exchangeability property lead to “positive
dependence”. For instance, one can easily state that the covariances between default indicators

Cov(l{r < ,1{ y ) = var( pt“v ) > 0. We can provide a rather general result which states that equity tranche
i= TJS

premiums computed in factor models are lower than those computed under the assumption of
independent default times. The precise results and proofs are postponed in the Appendix.

From the previous remarks, we can state some important properties of base correlations. Whenever it
exists, the base correlation is unique. This results from the monotonicity of equity tranche premiums with
respect to the Gaussian correlation parameter stated in subsection Ill.1. However, given improper
recovery rate assumptions or in the case of negative association between default times, it may be that no
base correlation can be found. A detailed counterexample is provided in the Appendix. Since base
correlation may not exist, even for arbitrage-free CDO tranche premiums, it differs from the implied
volatility in the Black-Scholes model.

111.4 Large portfolio approximations

Large portfolio approximations are well known in the credit portfolio field (see Vasicek [2002],
Schénbucher [2002] or Schloegl and O’Kane [2005]). The Basel Il agreement talks about “infinitely
granular” portfolios. In this subsection, we show that true equity tranche premiums are smaller that
those computed under a large portfolio approximation.

We now recall a useful result from Dhaene et al. [2002]. Let Z = (Zl,...,Zn) be a random vectorand V a
random variable. Then:

E[Z,V]+E[Z,V]<, Z, +
where < is the convex order”. Using conditional Jensen mequallty, this readily extends to the case

where V is a random vector (see Appendix), which is useful to deal with the Student t case, associated
with a two factor model.

Let us apply this result to the credit case. Here, Z, =M1

il < and L(t)=Z, +...+Z, are respectively the

individual loss on name i and the aggregate loss at time t. As above M, denotes the deterministic loss

> Let X and Y be two random variables. We say that X is smaller than Y with respect to the convex
order and we denote X <, Y if E[ f(X)]<E[f(Y)], for all convex functions such that the expectations

—CX

are well defined.
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given default on name i. We have: E[Zi |\/] =M, piN where pf‘v = Q(ri £t|V) denotes the conditional

default probability of name i . Then, the approximation of the loss is provided by E[L(t)[\/] = Z M, ptw
i=1

which is a deterministic function of the factor V *°. Let us remark that we do not assume that the
marginal default probabilities F(t),i=1,...,n nor the losses given default M,,i=1,...,n are equal, thus

this differs from the large homogeneous portfolio approximation (see Appendix for further discussion).
For instance in the one factor Gaussian copula with “flat correlation” and deterministic recovery rates,

n -V + D (F(t
the large portfolio approximation is given by E[L(t)N]:ZMiCD[ o \/ (2'())]27. As a
i-L 1-p

n .
consequence the computation of the expected loss on an equity tranche E{min(K,z M, pt'N ﬂ can be

i=1
done by a simple quadrature without any inversion of the characteristic function or recursion techniques.
n . n .
Moreover, since » M, pY <, L(t), we have E[ min(K,L(t))]< E{min(K,ZMi Y H Thus, the true
i=1 i=1

value of the default leg of an equity tranche is smaller than the one computed under the large portfolio
n - +

approximation. Using the same reasoning, we also have EKK —Z M, pt'Nj }S E[(K - L(t))ﬂ.
i=1

Therefore, the true value of the premium leg on an equity tranche is larger than the one computed under
the large portfolio approximation. We conclude that true equity tranche premiums are smaller that those
computed under a large portfolio approximation. Clearly, this is a model dependent upper bound.

One can further look at the dependence of the CDO premiums computed under the large portfolio
approximation with respect to the dependence parameter. For simplicity, let us focus on the one factor
Gaussian copula. We recall that the large portfolio approximation is provided by:

[—pv + O (F (1))
L-p°
0<p<p = E[(LHp(t)— K)*}s E[(LH[,(t)— K)}

In other words, the monotonicity results stated for finitely granular portfolios also hold for the infinitely
granular limit. The proof is postponed in the Appendix.

P, () =3 M,®

i=1

] . It can be shown that:

1.5 The case of basket default swaps

Let us consider the case of a homogeneous first to default swap, i.e. all names have the same nominal
and recovery rate’®. It can be treated as a homogeneous CDO equity tranche with detachment point

*® After the March 2008 crisis, some emphasis was put on using stochastic recovery rates. In the simplest
case where M, are deterministic functions of the factor V, denoted by M,(V), which corresponds to

n .
neglecting idiosyncratic risk in recovery rates, the large portfolio approximation is given by z M; (V) pt'N
i=1
(see Amraoui and Hitier [2008]).
%’ Since here V is an arbitrary random vector, one will rather consider the factor in the one dimensional
case (stochastic correlation, double t, Clayton and Marshall-Olkin copulas). The Student t copula is
associated with a two factor model and the large portfolio approximation can then be written as:

5 M_(D[—pv +Z”Ztvl(ﬁ(t))}

J1-p?

% We refer to Laurent and Gregory [2005] for an analysis of basket default swaps in the non
homogeneous case.

15



equal to the common loss given default. Thus, the previous results stated for CDO tranches apply. For
instance, increasing the correlation parameter in the one factor Gaussian copula model always leads to a
decrease in the first to default swap premium.

IV) Comparing Basket Default Swaps and CDO premiums

In order to conduct model comparisons, we proceeded the following way. Since the studied copulas
depend upon a one dimensional parameter, we have chosen that parameter so that either first to default
(for basket default swaps) or equity tranches premiums (for CDO tranches) are equal. Such a
correspondence between parameters is meaningful since equity tranche premiums are monotonic with
respect to the relevant dependence parameter (see previous section). We then compute the premiums of
basket default swaps and various CDO tranches and study the departures between the different models
and also between model and market quotes.

IV.1 First to default swaps with respect to the number of names

We firstly computed first to default swap premiums under different models as a function of the number
of names in the basket, from 1 to 50. We assumed flat and equal CDS premiums of 80 bps, recovery rates
of 40% and 5 year maturity. The default free rates are provided in the Appendix. The dependence
parameters were set to get equal premiums for 25 names. They are reported in Table 1.

Gaussian | Student (6) | Student (12) | Clayton MO
dependence | p> =30% | p® =11.9% | p* =21.6% | #=0.173 | a = 49%
Table 1: dependence parameters for the pricing of first to default swaps.

Table 2 reports the first to default premiums. Let us remark that Gaussian, Student t and Clayton copulas
lead to quite similar premiums, while the Marshall-Olkin deviate quite significantly. The second line in the
table corresponds to a plain CDS on a single name and thus all models provide the same input premium of
80 bps. We can also notice that the premiums always increase with the number of names”.

Student | Student

Names | Gaussian (6) (12) Clayton | MO
1 80 80 80 80 80

332 339 335 336 244

10 567 578 572 574 448

15 756 766 760 762 652

20 917 924 920 921 856

25 1060 1060 1060 1060 | 1060
30 1189 1179 1185 1183 | 1264
35 1307 1287 1298 1294 | 1468
40 1417 1385 1403 1397 | 1672
45 1521 1475 1500 1492 | 1875
50 1618 1559 1591 1580 | 2079
Table 2: First to default premiums with respect to the number of names (bps pa).

Table 3 provides Kendall’s z for the different models. As can be seen, even once the models have been
calibrated on a first to default swap premium with 25 names, the non linear correlations are quite

different.

Gaussian | Student (6) | Student (12) | Clayton | MO
Pk 19% 8% 14% 8% |32%

*° This feature is model independent: the survival function of first to default time in a homogeneous
basket is given by: S; (1) =Q(z, >t,...,7, >t) > Q(z, > t,...,7, >t,7,,, 2t) =S, (1) .
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Table 3: Kendall’'s ¢ for the studied models.

IV.2 k-th to default swaps

We then considered 10 names with credit spreads evenly distributed between 60 bps and 150 bps, a
constant recovery rate of 40% and maturity still equal to 5 years. Table 4 reports the dependence
parameters. They are set so that the first to default premiums are equal for all models.

Gaussian Clayton Student (6) | Student (12) MO
p°>=30% | =0.1938 | p* =16.5% | p* =23.6% |  =36%

Table 4: dependence parameters for the pricing of k-th to default swaps.

The columns of Table 5 provides first, second... until last to default premiums. As in the previous example,
the differences between Gaussian, Student t and Clayton copulas are minor while the Marshall-Olkin
copula leads to strikingly different results for higher order basket default swaps.

. Student | Student
Rank | Gaussian | Clayton (6) (12) MO
1 723 723 723 723 | 723
2 275 274 278 276 | 173
3 122 123 122 122 71
4 55 56 55 55 56
5 24 25 24 25 55
6 11 11 10 10 55
7 4.7 4.3 3.5 4.0 55
8 1.5 1.5 1.1 1.3 55
9 0.39 0.39 0.25 0.35 55
10 0.06 0.06 0.04 0.06 | 55

Table 5: First to last to default swap premiums (bps pa) for different models.

Once again, Kendall’s 7 is poorly related to the premium structure (see Table 6).

Gaussian | Clayton | Student (6) | Student (12) | MO
Pk 19% 9% 11% 15% 22%
Table 6: Kendall’s 7 for the studied models.

IV.3 CDO tranche premiums under different models

As a practical example, we considered 100 names, all with a recovery rate of 6 =40% and equal unit
nominal. The credit spreads are all equal to 100 bps. They are assumed to be constant until the maturity
of the CDO. The attachment points of the tranches are A=3% and B =10% . The CDO maturity is equal
to five years. The default free rates are provided in the Appendix.

We considered CDO margins for equity, mezzanine and senior tranches®® for the different models. We
firstly considered the Gaussian model and computed the margins with respect to the correlation

parameter p?. These results show a strong negative dependence of the equity tranche with respect to

the correlation parameter, a positive dependence of the senior tranche and a bumped curve for the
mezzanine, which is not as sensitive to the correlation parameter.

p° | equity | mezzanine | Senior

0% | 5341 560 0.03

* Corresponding to [0—3%)], [3—10%)] and [10-100%)] tranches.
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10% | 3779 632 4.6
30% | 2298 612 20
50% | 1491 539 36
70% | 937 443 52
100% | 167 167 91

Table 7: CDO margins (bp pa) Gaussian copula with respect to the correlation parameter.

In order to compare the different pricing models, we set the dependence parameters to get the same
equity tranche premiums. This gives the following correspondence table:

o’ 0% | 10% | 30% | 50% | 70% | 100%
0 0 |0.05]0.18 | 0.36 | 0.66 00

pg 14% | 39% | 63% | 100%
o 22% | 45% | 67% | 100%

D? t{4)-t(4) | 0% | 12% | 34% | 55% | 73% | 100%
P t(5)-t(4) | 0% | 13% | 36% | 56% | 74% | 100%
D% t(4)-t(5) | 0% | 12% | 34% | 54% | 73% | 100%
t(4) | 0% | 10% | 32% | 53% | 75% | 100%
0% t(4)-t(3) | 0% | 11% | 33% | 54% | 73% | 100%

o 0 | 27% | 53% | 68% | 80% | 100%
Table 8: correspondence between parameters for the pricing of CDO tranches.

For instance, when the Gaussian copula parameter is equal to 30%, we must set the Clayton copula
parameter to 0.18 in order to get the same equity tranche premium®".

Once the equity tranches were matched, we computed the premiums of the mezzanine and senior
tranche with the different models. It can be seen that Clayton and Student t provide results that are close
to the Gaussian case. For instance, for a Gaussian correlation of 30%, the senior tranche premium
computed under the Gaussian assumption is equal to 20bps, while we obtained 18 bps under the Clayton
assumption and 19 bps with a Student t with 12 degrees of freedom.

P 0% | 10% | 30% | 50% | 70% | 100%
Gaussian 560 | 633 | 612 | 539 | 443 167
Clayton 560 | 637 | 628 | 560 | 464 | 167
Student (6) 637 | 550 | 447 | 167
Student (12) 621 | 543 | 445 | 167
t(4)-t(4) 560 | 527 | 435 | 369 | 313 | 167

t(5)-t(4) |560 | 545 | 454 | 385 | 323 | 167
t(4)-t(5) |560 | 538 | 451 | 385 | 326 | 167
t(3)-t(4) |560 | 495 | 397 | 339 | 316 | 167
t(4)-t(3) |560 | 508 | 406 | 342 | 291 | 167

MO 560 | 284 | 144 | 125 | 134 | 167
Table 9: mezzanine tranche premiums (bps pa) computed under the various models for different levels of
Gaussian copula correlation.

! We could not match the independence case with the Student t copula. Even for a zero correlation
parameter, there is still tail dependence. As a consequence, no correlation parameter in the Student t
copula allows a fit to the equity tranche premium computed under Gaussian copula and correlation equal
to 0 or 10%.
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P 0% | 10% | 30% | 50% | 70% | 100%
Gaussian 0.03 | 4.6 20 36 52 91
Clayton 0.03 | 4.0 18 33 50 91

Student (6) 17 34 51 91
Student (12) 19 35 52 91
t(4)-t(4) 0.03 | 11 30 45 60 91
t(5)-t(4) 0.03 | 10 29 45 59 91
t(4)-t(5) 0.03 | 10 29 44 59 91

(

(

t(3)-t(4) 0.03 | 12 32 47 71 91
t(4)-t(3) 0.03 | 12 32 47 61 91

MO 0.03 | 25 49 62 73 91
Table 10: senior tranche premimus (bps pa) computed under the various models for different levels of
Gaussian copula correlation.

As for the basket default swap premiums, the premiums computed under the Marshall-Olkin copula are
fairly different, except of course for the extreme cases of independence and comonotonicity. The double
t model lies between these two extremes, i.e. Gaussian and Marshall-Olkin copulas.

Let us now consider a non-parametric measure of dependence such as Kendall's z. We used the
analytical formulas for the Gaussian, Clayton, Student and Marshall-Olkin copulas. Table 11 shows that
the level of dependence associated with the Marshall-Olkin copula is bigger than in the Gaussian, Clayton
or Student t copulas. Though Gaussian and Clayton copulas lead to similar CDO premiums, Kendall's =
are quite different.

p° 0% | 10% | 30% | 50% | 70% | 100%

Gaussian 0% | 6% | 19% | 33% | 49% | 100%
Clayton 0% | 3% | 8% | 15% | 25% | 100%

Student (6) 9% | 25% | 44% | 100%
Student (12) 14% | 30% | 47% | 100%
MO 0% | 16% | 36% | 52% | 67% | 100%

Table 11: Kendall’'s = (%) for the studied models and for different levels of Gaussian copula correlation.

Let us remark that Kendall’s 7 increases with the correlation parameter. Since the copulas are positively
ordered with respect to the dependence parameter, 6, <6, implies that Precy < Prc, where p .

denotes Kendall’s r associated with copula C . Moreover, Py o =1.

Table 12 provides the tail dependence coefficients associated with the different models. The different
columns in the table correspond to the different Gaussian correlation coefficients involved in the previous
tables, i.e. 0%, 10%, 30%, 50%, 70% and 100%. Since the copulas are positively ordered with respect to
the dependence parameter (as a consequence of the supermodular order), 8, <68, implies Ca1 <C02

which in turn implies that the tail dependence coefficients are positively ordered with respect to the
relevant dependence parameter. We can check the increase of the tail dependence coefficients from 0 to
100% on each row.

p’ 0% | 10% | 30% | 50% | 70% | 100%

Gaussian | 0% | 0% | 0% | 0% | 0% | 100%
Clayton | 0% | 0% | 2% | 15% | 35% | 100%
Student (6) 5% | 12% | 25% | 100%
Student (12) 1% | 4% | 13% | 100%
t4)-t4) |0% | 0% | 1% | 10% | 48% | 100%
t(5)-t(4) |0% | 0% | 0% | 0% | 0% | 100%
t(4)-t(5) | 0% | 100% | 100% | 100% | 100% | 100%
t(3)-t(4) | 0% | 100% | 100% | 100% | 100% | 100%
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t(4)-t(3) 0% | 0% 0% 0% 0% | 100%

MO 0% | 27% | 53% | 68% | 80% | 100%
Table 12: coefficient of lower tail dependence (%) for the studied models and for different levels of
Gaussian copula correlation.

It can be noticed that for a 30% Gaussian correlation, the level of tail dependence is rather small for
Gaussian, Clayton and Student t copulas. This is also the case for the t(4)-t(4) model which however leads
to quite different senior tranche premiums. The tail dependence is much bigger for the Marshall-Olkin
copula. The previous table shows no obvious link between tail dependence and the price of the senior
tranche. The reason for this is rather simple. It can be seen that the probability of a default payment
occurring on the senior tranche over a 5 year time horizon, Q(L(5) 210%) =30% . Thus, we are still far

way from the tail of the loss distribution.

We also considered the bivariate default probabilities corresponding to the CDO maturity,
Q(ri < 5,11. < 5) for i # j. From the symmetry of the distributions, these do not depend of the chosen

couple of names. The univariate default probability for a five years horizon is Q(7; <5)=8.1%. In the

independence case, the bivariate default probability is (8.1%)2:0.66%. The bivariate default

probabilities are very close for the Gaussian, Clayton and Student t copulas. We have stronger bivariate
default probabilities for the double t models and even larger for the Marshall-Olkin copula. Let us remark
that since the marginal default probabilities are given, the variance of the loss distribution and the linear
correlation between default indicators only involve the bivariate default probability. The larger the
bivariate default probabilities, the larger will be the variance of the loss distribution and the linear
correlation between default indicators.

pe 0% | 10% | 30% | 50% | 70% | 100%
Gaussian | 0.66% | 0.91% | 1.54% | 2.41% | 3.59% | 8.1%
Clayton | 0.66% | 0.88% | 1.45% | 2.24% | 3.31% | 8.1%
Student (6) 1.41% | 2.31% | 3.52% | 8.1%
Student (12) 1.49% | 2.36% | 3.56% | 8.1%
t(4)-t(4) | 0.66% | 1.22% | 2.38% | 3.49% | 4.67% | 8.1%
t(5)-t(4) | 0.66% | 1.16% | 2.27% | 3.38% | 4.57% | 8.1%
t(4)-t(5) | 0.66% | 1.18% | 2.28% | 3.37% | 4.54% | 8.1%
t(3)-t(4) | 0.66% | 1.34% | 2.57% | 3.69% | 5.02% | 8.1%
t(4)-t(3) | 0.66% | 1.31% | 2.55% | 3.70% | 4.87% | 8.1%

MO 0.66% | 2.63% | 4.53% | 5.65% | 6.53% | 8.1%

Table 13: bivariate default probabilities (5 year time horizon) for the studied models and for different
levels of Gaussian copula correlation.

To further study some possible discrepancies between Gaussian, Clayton and Student t copulas, we kept
the previous correspondence table between parameters and recomputed the tranche premiums for
different input credit spreads. We want here to check whether the Gaussian copula can provide a good fit
to Clayton and Student t copula premiums uniformly over credit spread curves. In tables 14, 15, 16
below, credit spreads have been shifted from 100 bps to 120 bps.

p’ 0% | 10% | 30% | 50% | 70% | 100%
Gaussian 6476 | 4530 | 2695 | 1731 | 1085 | 200
Clayton 6476 | 4565 | 2748 | 1781 | 1132 | 200
Student (6) 2765 | 1765 | 1104 | 200
Student (12) 2730 | 1748 | 1093 | 200

Table 14: equity tranche premiums (bps pa) after a shift of credit spreads.
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p° 0% | 10% | 30% | 50% | 70% | 100%

Gaussian 853 | 857 | 765 | 652 | 527 200
Clayton 853 | 867 | 794 | 687 | 564 | 200
Student (6) 807 | 672 | 537 | 200
Student (12) 782 | 661 | 531 | 200
Table 15: mezzanine tranche premiums (bps pa) after a shift of credit spreads.

p° 0% | 10% | 30% | 50% | 70% | 100%

Gaussian 0.2 8 28 46 64 109
Clayton 02| 7 25 42 60 109
Student (6) 23 44 63 109
Student (12) 26 45 64 109
Table 16: senior tranche premiums (bps pa) after a shift of credit spreads.

We can see that the same set of parameters still enables to provide quite similar premiums for the
different models, especially for the senior tranche. These overall results are not surprising keeping in
mind the results in Greenberg et al. [2004]. Demarta and McNeil [2005] also use some proximity between
the t-EV copula and Gumbel or Galambos copulas for suitable choices of parameters. Breymann et al.
[2003] Sh03\2N some similarity between Student t and Clayton copulas as far as extreme returns are
concerned™.

IV.4 Market and model CDO tranche premiums

While the previous results relied on constant credit spreads, we now consider another example related to
the Dow Jones iTraxx Europe index. The CDO maturity is equal to five years. The attachment detachment
points correspond to the standard iTraxx CDO tranches, i.e. 3%, 6%, 9%, 12% and 22%. The index is based
on 125 names. The 5 year credit spreads of the names lie in between 9 bps and 120 bps with an average
of 29 bps and a median of 26 bps. The credit spreads and the default free rates are detailed in the
Appendix. To ease comparisons, we assumed constant credit spreads with respect to maturity.

We discuss the ability of each copula to produce a smile on pricing tranches on this index as is observed in
the market. We calibrated the different models on the market quote for the [0-3%] equity tranche. The
parameters used for a three state stochastic correlation model were y* =6.6% with probability 0.66,

S° =20% with probability 0.1 and p*> =80% with probability 0.24. Better fits are presumably possible

as we did not perform an optimization to match the market prices. Let us remark that we could not fit a
Student t model with 6 degrees of freedom on the equity tranche market quote. We provide results both
for tranches as quoted in the market and for “equity type” tranches.

Tranches | Market | Gaussian | Clayton |Student (12) | t(4)-t(4) | Stoch.| MO
[0-3%] 916 916 916 916 916 916 |916
[3-6%] 101 163 163 164 82 122 | 14
[6-9%] 33 48 47 a7 34 53 11
[9-12%)] 16 17 16 15 22 29 11
[12-22%] 9 3 2 2 13 8 11

Table 17: iTraxx CDO tranche premiums (bps pa) using market and model quotes.

Tranches | Market | Gaussian | Clayton |Student (12) | t(4)-t(4) | Stoch. | MO
[0-3%] 916 916 916 916 916 916 |916
[0-6%] 466 503 504 504 456 479 |418

32 This also shows that the dynamics of the credit spreads implied by the copula is not relevant for the
pricing of CDOs. From Schonbucher and Schubert [2001], we know that Gaussian and Clayton copulas
differ quite significantly from that point of view.
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[0-9%] 311 339 339 340 305 327 |272
[0-12%] 233 253 253 254 230 248 |203
[0-22%] 128 135 135 135 128 135 |113
Table 18: iTraxx “equity tranche” CDO premiums (bps pa) using market and model quotes.

Most practitioners deal with implied Gaussian correlation, that is the flat correlation in the one factor
Gaussian copula model associated with a given premium. Table 19 and Graph 1 show that correlation
parameters are smaller for mezzanine tranches leading to a so called “correlation smile”. Friend and
Rogge [2005], Greenberg et al. [2004], Finger [2005] also report such an effect meaning that the Gaussian
copula fails to price exactly the observed prices of iTraxx tranches. It can be seen that Clayton or Student t
copulas are still close to Gaussian and thus do not create any correlation smile. This is consistent with
previous empirical studies (see also Schonbucher [2002], Schloegl and O’Kane [2005]). The Marshall-Olkin
model underestimates the prices of the mezzanine tranches and overestimates the super senior. The
double t model provides a better overall fit but overestimates the senior tranches. The stochastic
correlation model fits reasonably to the market prices, in particular the equity and junior super senior. It
overestimated the mezzanine tranche premiums and would therefore underestimate the super senior
[22-100%] region. This could be associated to the lack of extreme or a fat tail risk on the loss distribution.

Tranches | Market | Gaussian | Clayton | Student (12) | t(4)-t(4) | Stoch. | MO
[0-3%] 22% 22% 22% 22% 22% 22% | 22%
[3-6%] 10% 22% 22% 22% 8% 13% | 0%
[6-9%] 17% 22% 22% 22% 18% 24% | 10%
[9-12%] 22% 22% 23% 21% 25% 29% | 19%
[12-22%] 31% 22% 21% 21% 36% 30% | 35%

Table 19: implied compound correlation for iTraxx tranches.
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Graph 1: implied compound correlation for iTraxx CDO tranches based on market and model quotes.
Tranches are on the x - axis, compound correlations on the Y - axis.

Table 20 and Graph 2 show the “equity-type” implied correlations or “base correlations”. We believe the
best criteria to assess the ability of a model to fit the market is the difference in compound correlation.
The relative pricing error on each tranche should be reasonably close to this although there can be
problems for tranches that are rather insensitive to correlation. Base correlation may not be appropriate
because small mispricings lower on the capital structure cause dramatic deviations on high base
correlation tranches. This can be seen in Graph 2 where reasonable fits to compound can be seen to look
extremely poor in terms of their implied base correlations. For example in the stochastic correlation
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model, the [0-22%] mispricing on base correlation is 27% whereas the [12-22%] tranche is priced within
1bp.

Tranches | Market | Gaussian | Clayton | Student (12) | t(4)-t(4) | Stoch. | MO
[0-3%] 22% 22% 22% 22% 22% 22% | 22%
[0-6%] 31% 22% 22% 22% 33% 28% | 41%
[0-9%] 37% 22% 22% 22% 40% 30% | 52%

[0-12%] 43% 22% 23% 23% 45% 30% | 60%
[0-22%] 54% 22% 25% 26% 53% 27% | 72%

Table 20: implied base correlation for iTraxx tranches.
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Graph 2: implied base correlation for iTraxx CDO tranches computed from market and model quotes.
Tranches are on the x - axis, base correlations on the y - axis.

IV.5 Conditional default probability distributions drive CDO tranche premiums

The pricing of basket default swaps or CDOs only involve loss distributions over different time horizons.
The characteristic function of the aggregate loss only involves the conditional default probabilities pt”" .
When these are identically distributed, the characteristic function can be written as:
-
P (1) =I H (1_ p+ pe” ’)G(dp) )
I<j<n
where G is the distribution function of the conditional default probabilities®. In other words, two models
associated with the same distributions of conditional default probabilities will lead to the same joint
distribution of default indicators and eventually to the same CDO premiums. As an example, let us
consider Gaussian, stochastic correlation, Clayton and Marshall-Olkin copulas. We have

= q)[—pV +(D1(Fi(t))], p = pq)(—pv +q)1(|:i(t))]+(1— p)q{_'g\/ +e (R (t))], V Gaussian
V1-p? J1-p? -5

for the Gaussian and stochastic correlation copulas, p;" = exp(V (1— F ()"’ )), V standard Gamma for

the Clayton copula and p:N =1-1. 50 S (t)"“, V exponential for the Marshall-Olkin copula.

33 G(p)ZQ(ptW < p) for 0< p<1.
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Graph 3: distribution functions of conditional default probabilities for different models.

Let us go back to the previous CDO example with flat credit curves of 100bps. For a Gaussian correlation
of 30%, the correspondence table gives #=0.18 and a =53%. Graph 3 provides the distribution
functions of the 5 year conditional default probabilities. It can be seen that the distribution functions are
almost identical in the Gaussian and Clayton copula cases. For the Marshall-Olkin copula, the conditional
default probability only takes values 1 and 1-S,(t)"“ which leads to a step distribution function. The

independence case is associated with a Dirac mass at the marginal default probability while the
conditional default probability is a Bernoulli variable in the comonotonic case. It is quite clear that the
differences between Marshall-Olkin copula on one hand, Gaussian and Clayton copulas on the other hand
are quite substantial. We also provide the distribution of conditional default probabilities for a stochastic
correlation model. Here, % =10% with probability 0.8 and p® =90% with probability 0.2. We can see
that the stochastic correlation model lies in between Marshall-Olkin and Gaussian. An interesting area of
research consists in building the distribution of pt”v from the market prices which could give some insight

on choice of model. Such construction can be found in Hull and White [2006]. The practical relevance of
conditional default probabilities is also emphasized in Burtschell et al. [2007] or Cousin and Laurent
[2008b]. A general investigation of the use of conditional default probabilities in the pricing of CDOs and
connexions with the theory of stochastic orders is done in Cousin and Laurent [2008a].

Conclusion

We discussed the choice of dependence structure in basket default swap and CDO modelling. We
compared some popular copula models against the one factor Gaussian copula that is currently the
industry standard. We considered an assessment methodology based on the matching of basket default
swap premiums and CDO tranches. The main results are the following:

- For pricing purposes, and once correctly calibrated, Student t and Clayton copula models provide
rather similar results, close to the Gaussian copula.

- The Marshall-Olkin copula associated with large probabilities of simultaneous defaults leads to
strikingly different results and a dramatic fattening of the tail of the loss distributions.

- The double t model lies in between and provides a better fit to market quotes. We found that
related models such as the random factor loadings model of Andersen and Sidenius [2005] led to
similar correlation smiles.

- The stochastic correlation copula can also achieve a reasonable skew, close to that observed in
the market.

- Non parametric measures of dependence, such as Kendall’s z or the tail dependence coefficient
are of little help for explaining model quotes.
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- The distribution of the conditional default probability is the key input when pricing CDO tranche
premiums and when comparing different models.

We also refer to Cousin and Laurent [2008a,b] which are a follow-up of this review paper. We relied
mainly on the supermodular order to study dependence effects between default dates in factor models.
As we intend to show in upcoming research, the stochastic orders theory has a larger application field in
credit modelling, even for models as simple as the one factor Gaussian copula.

The recent turmoil in capital markets, following the subprime crisis in the US, raises the issue of updating
credit correlation models in the aftermath of the crisis. We already mentioned that, while rather complex
products are still in trading books and need some risk-management, the structured credit market tends to
move forward to simpler products, synthetic CDOs, either on standard indexes or bespoke portfolios
being the most prominent example. This relaxes the incentives to shift to more sophisticated dynamic
models, some of them being still in their infancy, others could not be easily calibrated in the extremely
high correlation environment recently experimented. Some major market participants seemingly needed
to step back to outmoded static copula models. Despite huge losses recently encountered in the
derivatives markets, academic researchers should think in concrete rather than ideological terms and
take into account some facts such: prominence of the one factor Gaussian copula and base correlation
approaches, huge investments in systems according to the previous framework and the fact that
correlation models do drive the cognitive processes as far as risk management is concerned. Therefore,
one may question the usefulness of investigating alternative dependence structures that was partly the
purpose of this paper. The main issue is that the one factor Gaussian copula provides a very poor fit to
loss distributions. This can be seen through the steepness of the base correlation curve. This is actually a
practical issue, since interpolation schemes of base correlation provide weird results in this context, such
as negative thin tranchelets prices, shaky credit spread sensitivities and so on. Using a model that leads to
a better fit to market tranche quotes with the same set of parameters, will result in a flattening of the
implied parameter curve, which in turn will solve most of the issues discussed above.
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Appendix
1) Data for the Basket default swaps and CDO examples.

Basket default swaps and homogeneous CDO examples

1D 1w M 2M 3M eM 9M 1Y 2Y 3Y aY 5Y
2.02 1205|206 207|208 | 214|223 |237|280|3.17 |3.47 | 3.71
Table a: default free yield curve (continuous rates)

iTraxx example

1014 |18 |20 |21 |23 |25|28|31|35|37|45| 72
10| 15|18 | 20|21 |23 |26 |28 |32 |35|37|46]| 73
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10| 15|18 |20 |21 |23 |26 |28 |33 |35|38 |47 | 106
10 | 15|18 |20 |22 |24 |26 |29 |33 |35|38 |48 | 120
10 | 15|18 |20 |22 |24 |26 |30 |33 |36 |40 |51
10|16 |18 | 21 |22 |24 |27 |30 |34 |36 |43 |52
10|17 |18 |21 |22 | 45|27 |30 |34 |36 | 44|53
13 1719|2123 |25|27 (31|34 |37 |44 |56
1317|1921 |23 |25|27 |31 |34 |37 |44 |58
Table b: 5 year credit spreads iTraxx Europe

The default free rates were obtained from the swap market in Euros on the 08/02/2005.

1D | IW | IM | 2M | 3M | 6M | 9M 1Y 2Y 3y 4y 5Y
2.07 | 2.09 | 2.10 | 2.12 | 2.14 | 2.18 | 2.24 | 2.34 | 2.59 | 2.78 | 2.93 | 3.06
Table c: default free yield curve (continuous rates)

2) Supermodular order.

Let f:R" — R.We consider the difference operators A; f (x)= f (x+¢e )— f(x), where g is the i-th

unit vector and ¢ > 0. fis said to be supermodular, if AfA‘jsf (X) >0 holdsforall xeR",1<i< j<n and
£,0 >0.If fissmooth, supermodularity states that all non diagonal terms of the Hessian matrix are non

negative. The concept of supermodularity was introduced in social sciences and game theory to analyse
how one agent’s decision affects the incentives of others. A random vector X = (Xl,..., Xn) is said to be

smaller than the random vector Y=(Y1,...,Yn), with respect to the supermodular order, if

E[f (X )] < E[f (Y )] for all supermodular functions such that the expectation exists. This means that

the coordinates of Y are more dependent in a mathematical sense than the coordinates of X .

3) Supermodular ordering and stochastic correlation model.

Let p< p' and consider the following model:
Vi:min(Ci,Di)(pV+ 1—p2\7i)+(1—min(Ci,Di))(,6’V+ 1—ﬂ2\Z)
where Cl,...,Cn,Dl,...,Dn,V,\71,...,\7n are all independent, C,,...,C

parameter ﬁ and D,...,D, are Bernoulli variables with parameter p'. min(C;,D,) is a Bernoulli
p

, are Bernoulli variables with

variable with parameter p. As a consequence, (Vl,...,Vn) follow a stochastic correlation model with
parameters (p, 3, p) . We now compare with:
W, =D, (p'V + 1—p'2\Z)+(1— Di)(ﬂ'v + 1—,3'2\2),

where p<p'<l < p'<1. (Wl,...,Wn) follows a stochastic correlation model with parameters
(p.B'p"). (Wl,...,Wn)|Cl,...,Cn, D,,...,D, is Gaussian with correlation parameter p'D, +3'(1-D;),
while (Vl,...,Vn )|C1, ...C..D,,...,D, is Gaussian with correlation parameter
pmin(C,,D, )+ B(1-min(C;,D;)). Since pmin(C,,D,)+B(1-min(C;,D;))< p'D, +B'(1-D;), we
have: (Vl,...,Vn)|C1,...,Cn, D,,...,D, <, (Wl,...,Wn)|C1,...,Cn, D,,...,D,. From the invariance of
supermodular order under mixing: (Vl,...,Vn)Ssm (Wl,...,Wn) . Thus increasing the probability of being in

the high correlation state p, or increasing any of the two correlation parameters p, [ leads to an
increase in dependence with respect to the supermodular order.

4) Supermodular ordering for general stochastic correlation models.
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The two state correlation model can be easily generalized. Let us consider the following modelling of
latent variables V; :

V,=pV +1-5°V, ,i=1..,n,
where p,,...,p, are independent stochastic correlations with distribution function F. We still have
independent default times conditionally on V and:

iv b - V+(D1(Fi(t))]
p = [o] £ dF (p)
! ( 1-p?

We can compare stochastic correlation models in a fairly general framework. Let us consider another

stochastic correlation model associated with distribution function G. We denote by ﬁl,...,ﬁn the
corresponding stochastic correlation parameters:

W, =BV +41-B%V, ,i=1...,n
Let us assume that G(u) < F(u),Vu e[O,l]. This means that p, Sﬁl,...,ﬁn Sﬁn with respect to first

order stochastic dominance. As a consequence, there exists non-negative random variables v,,...,v,

4

independent from V,V,,...,V. such that: ,31 =/31+V1,...,,5'n = p, +V, >, where the previous equalities

hold in distribution. (W,,...,.W,)|A1,.... By: V0.V, and (Vy,....V, )| Areees ByoVyse..0V, are Gaussian with
correlation parameter respectively equal to 5’1 =P +V1,...,Bn =p,+V, and p,..., 2, . This ensures that:

(Vivee V)| Brr e By ViV S (W W) B B ViV,
and eventually (V,,...,V, ) <, (W,,...,W, ) . Ordering of stochastic correlation models is related to the first

—sm

order stochastic dominance of the mixing correlation parameter.

5) Supermodular ordering and Marshall-Olkin copula.

Since the supermodular ordering is invariant under increasing transforms, we will consider the latent
variables V, . When a =0, these are independent and when a =1, there are comonotonic. We want to

address the dependence of the vector of default times (Vl,...,Vn) with respect to «a . Intuitively,

increasing a gives more relative importance to the common shock V and should be associated with an
increased dependence.

We set f>a. We denote by (Vl',...,V'

n) the latent variables associated with parameter S. In a

distributional sense, we can equivalently write:
(V. V,)= (min(V,\f,\Z'),..., min(V,\f,\7n')) ,

Where V,\?,\Z',...,\T

n

a,f-al-p,...1-B. Llet us  remark  that (min(t,\?,\zl),...,min(t,\?,vn')) and

are independent exponential random variables with parameters equal to:

(min(t,\Z),...,min(t,\Z])) have the same marginal distributions for all t, since min(\?,\z‘) are
independent exponential random variables with parameter 1—« and min(t,\?,\Z') = min(t, min(\?,\zl)).

Morevover min(t,\?,\Z') is increasing in V. Thus, this corresponds to model 3.2 in Bauerle and Miiller
[1998]. We can then conclude that:
(min(V,\Z),...,min(V,\Z)) <. (min(V,\?,\Z'),...,min(V,\?,\Z)),

*We simply set v, =G (F(5,))- 4, i=1...,n.
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which means that increasing the dependence parameter « does indeed lead to an increase in the
dependence between default times with respect to the supermodular order.

6) Premium leg computation for a super senior tranche.

Let us first deal with the special case of a homogeneous portfolio: E, =---=E, =

, O ==0,=0.

n

1
n

on
Then, the detachment point of the super-senior tranche equals l_ﬁ L(t) . However, in the general

case, that detachment point is not collinear to the aggregate loss and thus the pricing methodology is
slightly more involved than for other tranches. Let us thus deal with the heterogeneous case. The

outstanding nominal of the super senior tranche is equal to [z E, (1— SN, (t)) — max (K, L(t))] , where
i=1
K is the attachment point of the tranche. Provided that 0< 8, <1, E, >0, Vie {1,..., n}, it can readily

be seen that:
ZEi (1_5iNi(t))2 L(t) :in (1_6})Ni(t) .
i=1 i=1
Given that, simple algebra allows to write the outstanding nominal as

(Z E (1-5N;(t)- K] —(L(t)- K)"*. Given the conditional independence of the default indicators
i=1

given the common factor V, the characteristic function of Zn: E; (1- 5 N;(t)) can be easily derived along
the same lines as the characteristic function of L(t). One c:'\ then proceed through a Fourier inversion
technique to compute the distribution of Zn:Ei (1—6}Ni(t)) as in Gregory and Laurent [2003] or some
other inversion techniques as used for instal::ce in finance by Carr and Madan [1999] and discussed in an
insurance context by Dufresne, Garrido and Morales [2005] to directly compute

EKZ E, (1—5iNi(t))— Kj } The well-known recursion techniques also apply quite well with small
i=1

adaptation in this context.

7) Premiums computed under the Student t copula and under the independence
assumption.

As noticed before, in the Student t copula, the case p =0 is not associated with the independence case.

From the stated results on stochastic orders, we just know that it acts as a lower bound on first to default
swaps or equity tranche premiums. Comparing with the independence case is thus a bit more involved.

Given that we have 7 =Fi’1(tv (\7,\/2)) We remark that 7, <t =VZ <t;*(F(t)) =z, where F

denotes the marginal distribution of z,. For notational simplicity we have omitted the dependence of z,
with respect to t. Let us remark that for practical purpose, in most cases z; <0, corresponds to default
probabilities smaller than 0.5, which will further assumed for simplicity. We have

_ -7 -
\/fxvi <7, < —=+V, £0. To conclude, we rely on Theorem 3.4 in Bauerle and Miiller [1998]. To make

NG

the connexion with their notations, we state Z,=U,=V,, V=+Z, gi(Zi,W)zlzism,l(Fl(t)) and

*> One can notice that this simple decomposition of the outstanding nominal does not rely on the
constancy of recovery rates.
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of (Ui VW)=1, . g, corresponds to the default indicator in the independence case while §; is the

7‘+U, <0

default indicator in the Student t copula case and p =0. A direct application of Theorem 3.4 in Biuerle

and Miiller [1998] implies that the default indicators are greater, with respect to the supermodular order,
in the Student t case than their independent counterparts.

8) Independence case and factor models.

Let us first introduce a rather general notion of factor models.

Definition: Let us consider a set of default times (z’l,...,rn) . These default times admit the monotone
unidimensional representation if there exists a random variable V such that:
(i) The default times 7,,...,7, are conditionally independent given V .

(ii) Q(ri >t|\/) is non decreasing in V forall i €{l,...,n} andall t.

The concept of monotone unidimensional representation has been widely used in various fields and is
studied among others by Junker and Ellis [1997]. Let us remark that by considering -V instead of V , we
can replace “non decreasing” by “non increasing” in (ii). It can readily be seen that the one factor
Gaussian copula, the stochastic correlation model, the double t copula, the Clayton copula and the
Marshall-Olkin copula studied in this paper all fall within that factor model framework. Since the Student t
copula is associated with a two factor model, it does fall in the previous class.

Esary, Proschan and Walkup [1967] have introduced the following notion of positive dependence:

Definition: A random vector (rl,...,z'n) is positively associated, if Cov( f(r..7),9(700e 07, )) >0, for

every pair of coordinatewise nondecreasing function f and g such that the above covariance exists.

It can be easily checked that when 7;,...,7, are jointly independent, there are positively associated (see

Esary, Proschan and Walkup [1967] for details). It can also be easily checked that if default times admit
the monotone unidimensional representation, there are positively associated. A straightforward proof can
be found in Rosenbaum [1984] or in Holland and Rosenbaum [1986]. They actually prove a stronger
property named conditional independence which does not need to be detailed here.

Definition: A random vector (rl,...,rn) is weakly positively associated, if for every pair of disjoint subsets
ALA, of {1...n},

Cov(f (z)ieA,g(z),i eAZ)ZO
for every pair of coordinatewise nondecreasing functions f,g such that the covariances are well-
defined.

Definition: A random vector (rl,...,z'n) is weakly associated in sequence if forall te R, 1<i<n-1 and

non-decreasing function f , we have: Cov(l{m}, f (r(m))) 20, where 7;,,, = (rm,...,rn) .

Obviously, if (rl,...,r ) is associated, it is weakly associated and then it is weakly associated in sequence.

n
As for the notion of weak association, we refer for example to Burton, Dabrowski and Dehling [1986],
Christofides and Vaggelatou, [2004] and the book of Miller and Stoyan [2002]. The notion of weak
association in sequence is used by Riischendorf [2004].

Corollary 2.3 of Rischendorf [2004] states that if (rl,...,rn) is weakly associated in sequence, then it has

positive supermodular dependence. Positive supermodular dependence simply means that (rl,...,z'n) is
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greater, with respect to the supermodular order than the random vector with same marginal distributions
but with independent components. As a consequence, the independence case is associated with an upper
bound on base tranches premiums in factor models that admit the monotone unidimensional
representation.

In the case of an exchangeable sequence of default indicators, positive supermodular dependence (of the
default indicators) is an almost direct consequence of Cousin and Laurent [2008a]. Using different
techniques, Burton and Dabrowski [1992] also provide some results on the positive dependence of
exchangeable sequences of default indicators. Regarding the latter point, additional results can also be
found in Miiller and Scarsini [2005]. Eventually, similar results on positive dependence can be proven in
the case of the Student t copula, which is associated with a two factor model, using the literature on
stochastic orders and factor models.

9) An arbitrage-free pricing of CDO tranches where no base correlation can be
defined.

Let us consider the following counterexample involving three names with equal credit curves. We
consider a Gaussian copula model such that the correlation between the first two names is equal to
—100% . One could think of two competitors, only one could survive. Thus, V, =V ,V, =V . If we assume

that marginal default probabilities F (t),F,(t) are less than 0.5, we can indeed check that only one of the
first two names can default: 7, <t <V <@ (F(t))<0 and 7, <t < -V <O (F,(t)) <0. This implies
that {z, <t}n{r, <t}=C. The third name is uncorrelated with the first two names: V,=V,. The
nominals are equal to 1 for the first two names and 0.5 for the third name. We assume zero recoveries.
Let us consider a [1.5—3] senior tranche. Since names 1 and 2 cannot default altogether, the maximal
loss on the credit portfolio is equal to 1.5. Thus, the premium associated with the previous tranche is
equal to zero. On the other hand, the lowest admissible flat correlation is —50% . For smaller values, the
covariance matrix would not be semi-definite positive. Thanks to the previous ordering results on

Gaussian vectors, such a correlation structure leads to the lowest senior tranche premium consistent with
a flat correlation matrix. Let us remark that there is a positive probability that names 1 and 2 default
altogether leading to a loss of at least 0.5 on the [1.5—3] tranche. As a consequence, the senior tranche
premium is positive for any base correlation. Since the arbitrage free premium of the senior tranche is
equal to zero, it is not possible to find a base correlation (even allowing for negative base correlations)
that matches this premium. Of course, this case is rather unlikely, but it shows that base correlation
cannot be assimilated to implied volatility which is always defined.

10) Large portfolio approximations.

Let us denote by L=2Z +---+Z, . By linearity of conditional expectations, we have to show that

E[L[\/]< L where V is some random vector. Thanks to conditional Jensen inequality, given any

—CX
convex function f, f(E[LN])S E[f(L)|\/],where the previous inequality holds almost surely. Taking
expectations on both sides and wusing the Ilaw of iterated expectations, we get
E[f(E[L[\/])JS E[f(L)], which means that E[L|\/]< L. The intuition behind this result is

—CX
straightforward. By projecting the loss L, we reduce risk. In the case, where the default times are
independent given V , we wipe off idiosyncratic risk from the portfolio and only keep factor risk, which
leads to a reduction in the riskiness of the portfolio.

11) Large homogeneous portfolio approximation.
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If we assume that the Z, =M1

i {TIS[}’S are independent conditionally upon V and identically distributed,

we have: %Zzi Q—) E[Zi [\/] as N — . A proof of this result can be found in Chabaane et al. [2004].
i1 —a.s.

Convergence in mean can also easily be proved. If M; =1-6, where & stands for the common recovery
rate and F(t) =Q(z'i St) is the common marginal default probability, then the limit writes
(1—5)Q(z-i £t|\/). The right-hand term is known as the large homogeneous portfolio approximation,
where the portfolio notional is equal to one. Thus, for the one factor Gaussian copula case, the large
—pV + 0 (F(1))

coincides with the other approximation in the homogeneous case. Comparisons between these two
approximations can be achieved but this is out of the scope of the paper.

homogeneous portfolio approximation is provided by (1—6)@[ J which obviously

12) Monotonicity results for large portfolios.

Using Cousin and Laurent [2008a], we have:
—pV + D7 (F(t . —p*V + O (F(t
P (FO) < p =0 2 RO iy
Vi-p° Vi-p*

Then, as a consequence of Ky Fan — Lorentz theorem, we have: 0< p < p*=(P,,..., B, ) <gex (Dl* f);)

0<p<p*=> r)izd{

where <, holds for the directional convex order (see Miiller and Stoyan [2002] or Riischendorf [2004]

—dex

for details). Now for positive losses given default, M;>0,i=1...,n, we have
LHp(t):ZMi B < LH[,,V('[):ZMi P, since.  for any convex  function g:R>R,
i=1 i=1

f (XX, )=0g(Mx +---+M,X,) is directionally convex.
While the previous proof is straightforward, it only holds for the one factor case. It thus readily extends to
the stochastic correlation, double t, Clayton and Marshall-Olkin cases, but not for the Student t case
which is associated with a two factor model. For this purpose, one can use the following approach:

For M eN, define V," = pV +/1- p°V", where V,V.",m=1,...,M;i =1,...,n are independent standard

n M
Gaussian variables. Then, we define default times by 7" = Fi‘l(CD(V.m)) and L';" ()= Z M; [ﬁZl{rmq}j
i=1 m=1 U7

. Let us remark that thanks to the previous stochastic ordering results, 0< p< p" = Lf (t) <y Lx* (t) for

any M eN. As a consequence of de Finetti’s theorem, L“’f' (t) > LH, (t) as M — . Since the
Q-a.s.

aggregate loss is bounded by the portfolio nominal, using dominated convergence theorem, we conclude
that 0< p<p = LH, (1) <y LHp* (t) where <, refers to the stop-loss order.
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