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Basket default swaps and CDQO tranches

m ¢=1,... .71 names.
m 71,...,Tn default times.
= NV; nominal of credit i,

= 0; recovery rate (between 0 and 1)
= N;(1 —6;) loss given default (of name i)

« if N;(1 — §;)does not depend on i: homogeneous case

= otherwise, heterogeneous case.




i Basket default swaps and CDO tranches

» Credit default swap (CDS) on name i:
= Default leg:
= paymentof N;(1—6;) at T if 7; T
s Where T is the maturity of the CDS
s Premium leg:
= constant periodic premium paid until min(7;, T')
s CDS premiums depend on maturity T
s Liquid markets: CDS premiums, inputs of pricing models



Basket default swaps and CDQO tranches

= First to default swap:

= Default leg: payment of N;(1 — ¢;) at:
1

T =min(7{,... ,7Tn)

= Where i is the name in default

« If 7L< maturity of First to default swap
s Premium leg:

= constant periodic premium until min(?‘lj T)

s Remark: payment in case of simultaneous defaults ?



Basket default swaps and CDQO tranches

= General Basket default swaps

s 70, ..., 7" ordered default times

» k-th to default swap default leg:
= Payment of N;(1 — ;) at Tk
= where 7 1s the name 1n default,

= If 7F < 7 maturity of k-th to default swap

s Premium leg:

s constant periodic premium until 111i]1(frk, T)



i Basket default swaps and CDO tranches

= Payments are based on the accumulated losses on the

pool of credits

s Accumulated loss at ¢:

L{t)= Y  Nj(1—6&)N;(t)

1<i<n

= where N;(t) = 1<, Ni(1—0;)loss given default.

= L.(t) pure jump process



i Basket default swaps and CDO tranches

= Tranches with thresholds 0 < A< B < Y N;

s Mezzanine: losses are between A and B

» Cumulated payments at time ¢ on mezzanine tranche
M(t) = (L(t) — A)) 1 p)(L(t)) + (B — A)ljp o (L(t))

n Payments on default leg:

AM(t) = M(t) — M(t™) attime ¢ < T
n Payments on premium leg:

= periodic premium,

= proportional to outstanding nominal: B — A — M (t)



i Factors and conditional independence

Payoffs depend on default times and recovery rates
Pricing rule : some « risk-neutral » probability QO

From now on, recovery rates are independent
variables

s More on recovery rates and default dates:

s Double impact, credit risk assessment and collateral value
Default dates may be dependent
Marginal distribution function: Fj(t) = Q(7; < t)

Marginal survival function: S;(¢) = Q(7; > t)



i Factors and conditional independence

= Joint survival function:
S(ty,... ,tn) =Q(T1 >t1,... ,Tn > tn)
s Needs to be specified given marginals.
= Si(t) = Q(7; > t) given from CDS quotes.
= (Survival) Copula of default times:
C(Si(t1),. .., Sn(tn)) = S(t1,... ,tn)

s C characterizes the dependence between default times.



Factors and conditional independence

W

= Factor approaches to joint distributions:
s V: low dimensional factor, not observed « latent factor ».
s Conditionally on V, default times are independent.

s Conditional default probabilities:

V V
—Qri<t|V), ¢V =Q(r;>t|V).

s Conditional joint distribution.:

1|V
Quri<ti.... tn<ta| V)= [] i
1<i<n
Joint survival function (implies integration wrt V):

It

. . . v
Qri>t,... ,Tp>1ty)=E Hff;|
i=1




i Factors and conditional independence

= One factor Gaussian copula:
« V.V, 0=1,... ,n independent Gaussian,

Vi=p;V +4/1— ;J?L’}

s Default times: 7; = F J_,-_l(q}(l”?e-f))

= Conditional default probabilities: p," = @ (
= Joint survival function:

. v — O Fi(t,
S(ty, ... t,) = / (]:!: P (’(? \/ﬁ(t )})) @(v)dv

= Can be extended to Student 7 copulas (two factors).

—p;V + ‘i)l(ﬂ(f)))

w’l—p?




Factors and conditional independence

= Gaussian copula
s No tail dependence (if ‘ p‘ <1)
s Upper tail dependence
lim Q (7; > F Hu) |75 > ﬂ_l{uj) = lim Cluu)+1-2u

w—1 ti—+1 l—u

9
m Kendall’s tau px = —arcsing

™
P = 4// Cpolu,v)dCylu,v) — 1

[0,1]*

6 |
s Spearman rho »s = %arczﬂmmﬁ)

pg =12 // wvdCylu,v) — 3 = 12[/ Cylu, v)dudv — 3

[0.1]* [0,1)*



Factors and conditional independence

s Concordance ordering
p<p = Cplur,... ,un) < Cylu,...  up)
= p =0 independence case

| C(ul, :‘Hn):ulx...xuﬂ

s Product copula

= p = 1 comonotonic case

s Cluy,...,up)=min(uy,...,up)

s Upper Frechet bound



i Factors and conditional independence

» Clayton copula (Schonbucher & Schubert)
= Conditional default probabilities

piw = exp (V (l — P}(t)_ﬂ))

s V: Gamma distribution with parameter 0
s Frailty model: multiplicative effect on default intensity

= Joint survival function:

0 _n+ 1)_1’“5I

‘T



Factors and conditional independence

= Clayton copula:

s Archimedean copula

s lower tail dependence: \j = 9—1/0

= no upper tail dependence

0
0+ 2
s Spearman rho has to be computed numerically

s Kendall tau Pk =

= () Increasing with 6
s 0 =0 independence case

s 0 = +00 comonotonic case



i Factors and conditional independence

= Shock models (Duffie & Singleton, Wong)

= Modelling of defaut dates: 7; = min(7;, 7)
= Q(1i =714) > Q (7 < min(74, 7)) > 0 simultaneous defaults.

s Conditionally on T, T; are independent.

QUi <t,..., <ty |7)= [ Quri<t|7)

1<e<n

= Conditional default probabilities:

ilT

Py = L1 Q(7; < t) T l'rit



Factors and conditional independence

= Shock models

= T,7; exponential distributions with parameters A, A;
= Survival copula C a; =N ( A+ X\)

s Marshall Olkin copula

A o l—a;
Cuj,uj) = min(ui &?'ujju.iuj &‘;)

s Tail dependence min (a?;, afj)
&‘e‘:&j

s Kendall tau: rj’ = _ _ —
Q; + o — ooy

3o

= Spearman tho rg = 5=



Factors and conditional independence

= Marshall-Olkin copula (shock models)
= Symmetric case: ¢ =
= o = ( independence case
= « = 1 comonotonic case

= Marshall-Olkin copula increasing with &



i Factors and conditional independence

= AJD: Duffie, Pan & Singleton ;Duffie & Garleanu.
= N+ 1 independent affine jump diffusion processes.

X]_.J, . .. jX??,:XC
= Conditional default probabilities:
1%

Qri>t|V)=q' =Vt

x .f
V = exp (—/ Xf.{sjds) . ooilt) = FE [(}:{p (—/ X,{S:Idﬂ):| :
0 0

= Survival function:
QTL>t,... . Tn>t) = V”ng?

s Explicitely known.



Factors and conditional independence

= Why factor models ?

s Standard approach in finance and statistics

s Tackle with large dimensions

= We need tractable dependence between defaults:

s Parsimonious modelling

= One factor Gaussian copula: n parameters

s Semi-explicit computations for portfolio credit derivatives

= Premiums
= Qreeks

= Exchangability leads to one factor models
s De Finetti



Model dependence for credit derivatives premiums

= min(ry, ..., )

s First to default time 7
= First to default swap:

s Credit protection at first to default time

= Survival function of first to default time

It
B - . I'Er
i=1
= Semi-analytical expressions of:

s First to default, second to default, ... last to default swap
premiums



Model dependence for credit derivatives premiums

s Example: first to default swap

T n

: d
= Default leg /[] ZM}‘:B(E)E H(l—pﬁ'v) Ej;t at
i=1

One factor Gaussian p)" = @ (
Clayton p" = exp (V(1-F(®™)

s Marshall Olkin Pi"r = 11Q(7; < t) + L«

—pV + @1(1:;(1)))

w’l—p?

= « basket defaults swaps, CDO’s and Factor Copulas » available on

www.defaultrisk.com

» « I will survive », RISK magazine, june 2003



= First to default swap premium
vs number of names
s From n=1 to n=50 names
s Unit nominal
Credit spreads = 80 bp
Recovery rates = 40 %

Maturity = 5 years

Basket premiums in bp

= Comparison between
Gaussian, Clayton and
Marshall-Olkin copulas:

s Gaussian correlation
parameter= 30%

Model dependence for credit derivatives premiums

names | Gaussian | Clayton | MO
il il Ml
) 332 J36 244
(] nf ni 144
L i 162 (52
2] 017 021 Hnb
20 1 (3] 1 (i) | (Ml
Al 1188 1183 |26
55 1307 254 | L6
1] 1417 13457 7
L 1] 14452 |87
ol 1 1s 15l 2079
kendall 19% R 33%




s From first to last to default
swap premiums
m 10 names, unit nominal

s Spreads of names uniformly
distributed between 60 and 150 bp

m Recovery rate = 40%
s Maturity = 5 years
n  Gaussian correlation: 30%

= Same FTD premiums imply
consistent prices for protection
at all ranks

s Model with simultaneous
defaults provides very different
results
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Model dependence for credit derivatives premiums
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Model dependence for credit derivatives premiums

a CDO tranche premiums
n Use of loss distributions over different time horizons
n Computation of loss distributions from FFT

n Explicit margin computations for tranches



Model dependence for credit derivatives premiums

Accumulated loss at 2 L(t) = »  Nij(1— &) Ni(t)
1<i<n

= Where N;(t) = 1, <¢, N;j(1—0;) loss given default.

Characteristic function: ¢ y)(u) = E [e’i’”L(*)]

. . iV iV
By conditioning: ¢x® =£ | [] (1—10“:” +1 991_;5.;(“%))

Distribution of L(?) 1s obtained by FFT.




Model dependence for credit derivatives premiums

3. Loss distributi
= One hundred names, same

—

[ ]
=t —N=1=g=g ol
b b2 B DR = 00 RO S

nominal.

= Recovery rates: 40%

Probability {25)

= Credit spreads uniformly
distributed between 60 and
250 bp.

o
= wmb

33 a5 38 '
Loss (%) 42 45 49 ,anﬁg i

= Gaussian copula, correlation:
50%

)\

1.
0.
h
zo
= 0.
g 0.
H 0
£ 0.
0.
0.

oo G B 00 B O3

s 10> Monte Carlo simulations

Lozs distribution over tima for the table B example with 50% correlation
for the semi-explicit approach (top) and Monte Carlo simulation (bottom)



Model dependence for credit derivatives premiums

s Mezzanine: pays whenever losses are between A and B

» Cumulated payments at time ¢ on mezzanine tranche
M(t) = (L(t) — A)) 1ja,p)(L(t)) + (B — A)Ljp o (L(t))

= Explicit margin computations of different tranches

T
/ Bt ]rf;u:jfj:]
Al

» B(t) discount factor, T maturity of CDO

s Upfront premium: L

"
s Integration by parts B(T)E[M(T) + / E|M(t)dB(t)
()

b
s where E[M(t)]=(B—- A)Q(L(t) > B) + / (x — A)dFp ()
J A



Model dependence for credit derivatives premiums

B. Pricing of five-year maturity CDO tranches

Equity (0-3%)  Mezzanine (3-14%)  Senior (14-100%)

SE MC SE MC SE MC
0% 221894 BIZEBS d816.2 8143 0.0 0.0
20% 4.321.1 43253 g084 BOBS 4B 4Ty 13.7
40% 26888 26967 7343 7314 33.4 33.2
B0% 17808 17385 g41.0 6378 54.1 237
B0 10775 10678 B28E B209 TT.0 6.6
100% 410.3 4066 J7l2 3Gl 110.4 109.6

Premiums in basis points par annum as a function of corralation for S-year
maturity CDO tranches on a portfolio with credit spreads uniformly

distributed betwaen 60 and 25060, The racovery rates ane 0%

s One factor Gaussian copula

s CDO tranches margins with respect to correlation parameter



Model dependence for credit derivatives premiums

= CDO margins (bp)

s Attachement points: 3%, 10%

Gaussian copula

100 names
Unit nominal

Credit spreads uniformaly
distributed between 60 and
150 bp

5 years maturity

)
10
1y
iy

10

Bty
(Tl
il

[ezzanie |

it
i
il
i
il




= CDO margins (bp)

s Gaussian correlation = 10%

s Parameters of Clayton and
Marshall Olkin copulas are set
for matching of equity tranches.

= For the pricing of CDO
tranches, the Clayton and
Gaussian copula models are
close.

= Very different results with
Marshall-Olkin copula

ety

(rasslan
Il

(layton
)il

Model dependence for credit derivatives premiums
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Model dependence for credit derivatives premiums

s Credit spreads uniformly distributed between 80bp and
120bp

s 100 names

Equity tranche

i 0% 10¢% SO0 A0S T

f 0 .054 0. 196 (0,404 TR

A 0 0.0052 | 00096 | 00119 | 00137
premium (bp)| [ G059 304 2158 L 36T 262




Model dependence for credit derivatives premiums

Mezzamne tranche

(3aussian

Clayton

MO

(3anss1an
Clayton ] g 2] a7 Tt
W[ [ In a2 GE | T4




Model dependence and sensitivity analysis

A. Comparison of the semi-explicit formulas

= Example: S1X names with Monte Carlo simulations
f 1 First to default Second to default Third to default
SE MC SE MC SE MC
p Ort Ol10 0% 10751 1,075.9 248 2147 Ay
20% 927.0 9259 2472 2475 614 618
Ch . d . t f 0% BF9D 8579 I568 2576 776 7RO
rv 40% 796.6 7952 2633  264.2 g27 930
u anges m Credit curves o 60% 6796 €780 9688 2689 1195 1188
. L. 80% 5731 57L7 2662  266.1 141.0 1409
lndIVIdual names 1005% 5000 5000 2500 2500 1500 1500

Pramiums in basis points per annum as a function of cormalation for a five-
yoar maturity basket with cradit spreads of 26, 50, 100, 150, 250 and
S00bp and equal racovery rates of 40%

=  Amount of individual CDS

1. Deltas calculated using semi-explicit
to hedge the basket formulas and Monte Carlo approaches

. —a— 13t (BE) —=— 15t (MC)
—a—2nd (SE} —e—2nd (MC)
1 drd (SE) —s—3rd {MC)

S

100 200 400 400 500
Cradit spread (bp)

= Much quicker: about 25
Comparison of deltas calculated using the analytical formulas and 105

Monte Carlo Slmulatlons . Monte Carlo simulations for the example given in table A. The Monte

Carlo daltas are calculated by applying a 10bp parallel shift to each curve

= Semi-analytical more
accurate than 10° Monte

Carlo simulations.

Motional equivalent delta (3&)
oo B8 888838

(=]



Model dependence and sensitivity analysis

s Changes 1n credit curves of individual names
s Dependence upon the choice of copula for defaults

2. Deltas using Gaussian and Clayton copula

F 90 —a— 121 (Gaussian)

m BO{ —=—1st (Clayton)

£ 701 _g 2nd (Gaussian) T

= 601 ——2nd (Clayton)

% 50 - ard (Gaussian)

% 401 —a— 3rd (Clayton)
ﬂﬂ-

T 20-

S 10-

g -

2 1 1 1 1 1

@ 100 200 300 400 S00

Cradit spread (bp)

Comparizon of deltas calculated using Gaussian (30% correlation)
and Clayton copulas (b = 0.27)



Model dependence and sensitivity analysis

. 4. CDO he del
- Hedglng of CDO tranches

. . ETD-
with respect to credit curves %ED"'——___E :
. . . = il :Mﬂ;z::;nina
of individual names £ 40, Sanior
% 301 . e
= Amount of individual CDS &% jummssmsmse="""
=3
E T T T 1
to hedge the CDO tranche W e
Cradit spread (bp)
= Semi-analytic : some 2 ?“M
5 60
3 50 & Equity
seconds : R azzanng
E .
g 30- IR LY Y
= Monte Carlo more than one 2 20 AN P
g 10-
hour and still shaky 2 . . | .
50 100 150 200 250
Cradit spread (op)

CDO tranche deltas using the analytical method (top) and Monte
Carlo (bottomn) for a correlation of 505



Conclusion

m Factor models of default times:

s Deal easily with a large range of names and dependence

Structures

s Simple computation of basket credit derivatives and CDQO'’s

= Prices and risk parameters
= Gaussian and Clayton copulas provide very similar
patterns
s Rank correlation and tail dependence not meaningful

s Student t needs to be investigated

= Shock models quite different



