Financial Regulation & Systemic Risk

Paris, ESCP Europe Campus

An overview of the valuation of collateralized derivatives contracts

Jean-Paul Laurent, Université Paris 1 Panthéon - Sorbonne

Joint work with

Philippe Amzelek (BNP Paribas) & Joe Bonnaud (BNP Paribas)

6 June 2013

- Overview of the presentation
 - Financial context
 - Variation margins paid on a collateral account
 - Settlement prices and collateralization schemes
 - Pricing equation : perfect collateralization
 - OIS discounting
 - Futures pricing
 - Costless collateral
 - Posting bonds
 - Overcollateralization, haircuts, run on repos
 - Pricing equation for unilateral collateral agreement
 - CVA and funding cost adjustments
 - Trade contribution

- Due to new regulations and counterparty risk management, a large amount of derivatives contracts is collateralized
- OTC transactions
 - Swaps ISDA (CSA: Credit Support Annex)
 - 2012 Margin Survey report 137,869 active collateral agreements
- Central clearing
 - LCH Clearnet, ICE, Eurex,
 - Futures exchanges (CME, ...)
 - SEF (Swap Exchange Facilities)
- Need of a unifying pricing framework
 - Variation margins, initial margins,
 - Bilateral, unilateral agreements
 - Collateral type: Cash, bonds, currencies

• We remain in the standard mathematical finance approach

eurex clearing

CLCH.CLEARNET

CME Group

- Most ISDA trades are associated with collateral agreements (right figure)
- Swapclear (LCH.Clearnet) prominent CCP for IRS outstanding notional US \$ 380 trillion (figure below)

1. Part du volume des dérivés OTC échangés ayant fait l'objet d'un échange de collatéral

- Variation margins paid on a collateral account
 - V(s) amount on collateral account in a bilateral agreement
 - Collateral accounts recorded by ISDA evaluated at US \$ 3.6 trillion end of year 2011
 - A(s) price of posted security
 - Approximately 80% cash, 20% government bonds
 - V(s)/A(s) number of posted securities
- dVM(s) Variation margin: net inflow on collateral account

$$VM(s) = V(s+ds) - \frac{V(s)}{A(s)}A(s+ds)$$

• Equivalently written as: $dVM(s) = dV(s) - V(s) \frac{dA(s)}{A(s)}$

dA(s)/A(s) realized return on collateral

• The dynamics of collateral account *V*(*s*) can equivalently be written as:

•
$$dV(s) = V(s) \times \frac{dA(s)}{A(s)} + dVM(s)$$

•
$$V(s) \times \frac{dA(s)}{A(s)}$$
 self-financed part

- dVM(s) inflow in collateral account
- Case of cash-collateral $A \equiv C$
 - dC(s) = c(s)C(s)ds
 - c(s) : EONIA, fed fund rate, ...

• dV(s) = c(s)V(s)ds + dVM(s)

- Collateralization schemes
 - h(t) settlement price (credit risk exposure)
 - V(t) = h(t) Bilateral collateral agreement
 - Interdealer contracts
 - Unilateral collateral agreement $V(t) = \min(h(t), 0)$
 - Unilateral: sovereign entities

Unilateral			Bilateral			Total Active
ISDA	Non-ISDA	Total	ISDA	Non-ISDA	Total	
collateral	agreements	number	collateral	agreements	number	
agreements		Unilateral	agreements		Bilateral	
14,212	8,001	22,213	103,398	12,258	115,656	137,869
10.3%	5.9%	16.1%	74.9%	9.0%	83.9%	100%

- $V(s) = \alpha_A \times h(s), \alpha_A > 1$ overcollateralization
 - $1/\alpha_A$ haircut ratio

- The basic pricing equation (bilateral, no haircut)
 - Does not account for possible price impact of initial margin
 - Bilateral case, no haircut V(t) = h(t)
 - *Enter a collateralized derivatives contract at t*
 - Buy collateralized security: outflow h(t)
 - Receive collateral to secure credit exposure : inflow V(t)
 - Since V(t) = h(t) net cash-flow at trade inception t = 0
 - Exit trade at t + dt after paying variation margin dVM(t)
 - $dVM(t) = dV(t) V(t)\frac{dA(t)}{A(t)} = dh(t) h(t)\frac{dA(t)}{A(t)}$
 - Since V(t + dt) = h(t + dt) no extra cash-flow at t + dt
 - Q^{β} usual risk-neutral pricing measure, assumed to be given

• $E_t^{Q^\beta}[dVM(t)] = 0 \Rightarrow E_t^{Q^\beta}\left[\frac{dh(t)}{h(t)}\right] = E_t^{Q^\beta}\left[\frac{dA(t)}{A(t)}\right]$

$$E_t^{Q^\beta} \left[\frac{dh(t)}{h(t)} \right] = E_t^{Q^\beta} \left[\frac{dA(t)}{A(t)} \right]$$

• $E_t^{Q^{\beta}} \left[\frac{dA(t)}{A(t)} \right] = r_A(t) dt$ $r_A(t)$:expected rate of return on collateral

$$\Rightarrow E_t^{Q^p} \left[\frac{ah(t)}{h(t)} \right] = r_A(t)dt \ h(t) \text{ settlement price}$$

• Plus terminal condition: h(T) payment at maturity date T

•
$$h(t) = E_t^{Q^{\beta}} \left[h(T) \exp\left(-\int_t^T r_A(s) ds\right) \right]$$

- Discount with expected rate of return on collateral
- $t \rightarrow T$: liquidity assumptions
 - Assumes collateral is available from *t* to *T*
 - No haircut on collateral being introduced after *t*
 - No gap risks: possible exit at settlement and collateral price

- Cash-collateral
 - dC(t) = c(t)C(t)dt, c(t) EONIA, effective fed fund rate
 - $r_A(t) = c(t)$
 - $h(t) = E_t^{Q^{\beta}} \left[h(T) \exp\left(-\int_t^T c(s) ds\right) \right]$ "OIS discounting"
- c(t) = 0, futures market (Duffie, 1989)
 - $dVM(t) = dh(t) \frac{c(t)h(t)dt}{dt} = dh(t)$
 - variation margin dVM(t) = change in settlement price dh(t)
 - $h(t) = E_t^{Q^{\beta}}[h(T)], h(t) Q^{\beta}$ -martingale,
- c(t) = r(t), (r(t) default-free short term rate)
 - "costless collateral", Johannes & Sundaresan (2007)
 - Then, collateralized prices = uncollateralized prices

• Usually c(t) > r(t) !

Stylized collateralized OIS (Overnight Index Swap)

• Payment of
$$h(T) = \exp(r_f T) - \exp\left(\int_0^T c(s)ds\right)$$

- c(s) EONIA, r_f fixed rate
- Cash-collateral with collateral rate c(s)
- Settlement price $h(0) = E^{Q^{\beta}} \left[h(T) \exp\left(-\int_{0}^{T} c(s) ds\right) \right]$
- Newly traded contract: $r_f(T)$ is such that h(0) = 0
 - Thus, $\exp\left(-r_f(T)T\right) = E^{Q^{\beta}}\left[\exp\left(-\int_0^T c(s)ds\right)\right]$
 - Observable market input $r_f(T)$ directly provides collateralized discount factor $E^{Q^{\beta}}\left[\exp\left(-\int_0^T c(s)ds\right)\right]$

Market observables on collat. markets drive PV computations

- This extends to collateralized Libor contracts
- PV of collateralized Libor = forward (collat.) Libor × collateralized discount factor

- Swapclear (LCH.Clearnet)
 - OIS and Euribor swaps
 - Cash-collateral remunerated at Eonia
 - Different swap rates

EUR				
IRS OIS				
	Ani Mny / EONIA			
3 month	0.06650	EUR		
6 month	0.05720	IRS OI	s	
1 year	0.05240		Ani Bnd / 1MEURIBOR	Ani Bnd / 3MEURIBOR
2 year	0.10770	2 year	0.18288	0.28688
3 year	0.23605	3 year	0.29955	0.40705
5 year	0.58408	5 year	0.64708	0.75308
10 year	1.40660	10 year	1.45860	1.55260
30 year	2.18460	30 year	2.21610	2.27860

- Bonds posted as collateral: bond price A(t)
 - Short-term repo contract $t \rightarrow t + dt$,
 - <u>no haircut</u>
 - At t, buy the bond, deliver it, receive cash-collateral
 - <u>no haircut</u> \Rightarrow no net payment at t: -A(t) + A(t) = 0
 - At t + dt receive bond, sell it, reimburse cash + interest
 - Net payment at t + dt: $A(t + dt) (1 + \operatorname{repo}_A(t)dt)A(t)$
 - $repo_A(t)$: repo rate, does not account for day count conventions

•
$$E_t^{Q^{\beta}}[A(t+dt) - (1 + \operatorname{repo}_A(t)dt)A(t)] = 0$$

Bonds posted as collateral: bond price A(t)

•
$$E_t^{Q^{\beta}}\left[\frac{dA(t)}{A(t)}\right] = \operatorname{repo}_A(t)dt$$

- Expected rate of return on posted bond = repo rate $repo_A(t)$
- Repo rate: market observable

•
$$h(t) = E_t^{Q^{\beta}} \left[h(T) \exp\left(-\int_t^T \operatorname{repo}_A(s) \, ds\right) \right]$$

- Parallels OIS discounting
- Under perfect collateralization, no CVA/DVA counterparty risk is involved
- Unobserved default free short rate r(t) is not involved
 - Deriving pricing equation only involves cash-flows at t + dt
 - No lending/borrowing between t and t + dt

• Overcollateralization, haircuts, run on repos

$$V(s) = \alpha_A \times h(s)$$

- V(s) collateral account, h(s) settlement price
 - $\alpha_A > 1$ overcollateralization, $\alpha_A < 1$ partial collateralization
 - $1/\alpha_A$ haircut ratio
- Enter a collateralized derivatives contract at t
 - Buy collateralized security: outflow h(t)
 - Receive collateral to secure credit exposure : inflow $\alpha_A h(t)$
 - Net inflow at $t = (\alpha_A 1)h(t)$ is not anymore equal to zero
- Taking into account cash-flows at t + dt
 - Variation margin & unwinding collateralized contracts

• Leads to
$$E_t^{Q^{\beta}}\left[\frac{dh(t)}{h(t)}\right] = \alpha_A \times r_A(t) + (1 - \alpha_A)r(t))$$

• Overcollateralization, haircuts, run on repos

•
$$E_t^{Q^\beta} \left[\frac{dh(t)}{h(t)} \right] = \alpha_A(t) \times r_A(t) + \left(1 - \alpha_A(t) \right) r(t)$$

• Perfect collateralization $\alpha_A = 1, E_t^{Q^{\beta}} \left[\frac{dh(t)}{h(t)} \right] = r_A(t)$

• No collateralization
$$\alpha_A = 0$$
, $E_t^{Q^{\beta}} \left[\frac{dh(t)}{h(t)} \right] = r(t)$

- Time dependent $\alpha_A(t)$ allows to account for increase of collateral requirement during periods of market stress
- Departure from discounting at repo rate.
- Previous equation accounts for settlement price between two default-free counterparties
 - Does not account for counterparty risks and funding costs
 - Only accounts for adjustments due to collateral cash-flows
 - Involves unobserved default free short rate r(t)

Unilateral collateral agreement

- $\alpha_A = 1$, if $h(t) \le 0$, $\alpha_A = 0$, if h(t) > 0
- $V(t) = \min(0, h(t))$
- Applicable discount rate: $r(t)1_{\{h(t)>0\}} + r_A(t)1_{\{h(t)\leq 0\}}$
- Settlement price h(t) solves for
- $E_t^{Q^{\beta}}[dh(t)] = (r(t)\max(0,h(t)) + r_A(t)\min(0,h(t)))dt$
- BSDE with generator $g(h) = rh^+ + r_A h^-$
- h(t) conditional g expectation of h(T) (Peng, 2004)
- g degree-one homogeneous \Rightarrow h(t) degree one homogeneous with respect to h(T)

Previous equation can be extended: funding rate and CVA

- $\alpha_A = 1$, if $h(t) \le 0$ applicable discount rate is $r_A(t)$ expected rate of return on collateral
 - c(t) usually EONIA in case of cash collateral
 - repo_A(t) repo rate in case of posted bonds
 - No extra funding term (deal is funded through the collateral account)
 - No DVA term, counterparty is fully protected against own default
- $\alpha_A = 0$, if h(t) > 0 applicable discount rate is $r_b + \lambda(1 \delta)$
 - λ default intensity of counterparty, δ recovery rate
 - Recovery of Market Value, $\lambda(1 \delta)$ CVA cost
 - r_b : default-free short term borrowing rate
 - No collateral is being posted, deal is funded on the market

$$E_t^{Q^{\beta}}[dh(t)] = \left((r_b + \lambda(1 - \delta))(s) \mathbf{1}_{\{h(s) > 0\}} + r_A(s) \mathbf{1}_{\{h(s) \le 0\}} \right) h(t) dt$$

Previous equation can be extended: funding rate and CVA

•
$$E_t^{Q^{\beta}}[dh(t)] = \left((r_b + \lambda(1 - \delta))(s) \mathbb{1}_{\{h(s) > 0\}} + r_A(s) \mathbb{1}_{\{h(s) \le 0\}} \right) h(t) dt$$

- r_b is free of DVA. r_b is not a market observable
- $\lambda(1 \delta)$ related to short term CDS of counterparty
- Recovery of Market Value: proxy for "risky close-out convention"
- Trade contributions
 - $\exp\left(-\int_{t}^{T}\left((r_{b} + \lambda(1 \delta))(s)\mathbf{1}_{\{h(s)>0\}} + r_{A}(s)\mathbf{1}_{\{h(s)\leq0\}}\right)ds\right)$ pricing kernel or Gâteaux derivative of price functional
 - Trade contribution of deal $h_j(T)$ with $h(T) = h_1(T) + \dots + h_n(T)$
 - $E_t^{Q^{\beta}} \left[h_j(T) \exp\left(\int_t^T \left((r_b + \lambda(1 \delta))(s) \mathbf{1}_{\{h(s) > 0\}} + r_A(s) \mathbf{1}_{\{h(s) \le 0\}} \right) ds \right) \right]$
 - Complies with marginal pricing and Euler's allocation rules
 - Linear trade contributions, CSA/portfolio dependent change of measure

