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Abstract

We present the problem of extracting implied parameters of the spot rate process under the risk-neutral
probability, given a finite set of observed pure discount bond, cap and swaption prices. The calibration
process is done analytically, assuming that the spot rate process follows a generalized Ornstein-Uhlenbeck
process and takes into account the usual date treatments in the financial markets. We give necessary and
sufficient conditions for the calibration process to perform well. We show that the constraints determine
the prices of a wide range of interest rate options. This allows some kind of interpolation between interest
rate derivative prices with no arbitrage opportunity and to make practical use of a misspecified yield curve
model.

Résumé

Nous examinons le probleme de ’extraction de parameétres non observés du processus du taux court
sous la probabilité risque-neutre, étant donné un ensemble fini de prix observés de zéro-coupons, de caps
et d’options de swaps. La calibration est faite de maniére explicite, en supposant que le taux court suit
un processus d’Ornstein-Uhlenbeck généralisé et prend en compte les conventions usuelles en matiére de
dates de valeur. Nous donnons des conditions nécessaires et suffisantes pour que ’ensemble des paramétres
compatibles avec les contraintes soit non vide. Nous montrons que les contraintes déterminent les prix d’une
large gamme d’options de taux d’intérét. La procédure présentée permet de faire des interpolations entre
des prix de produits dérivés des taux d’intérét de maniere cohérente et d’utiliser en pratique un modele de
courbe des taux mal spécifié.

keywords : Linear Gauss-Markov model, calibration, interpolation, volatility matrix, index amortizing
swaps, change of numeraire, Monte Carlo simulations.

1 INTRODUCTION.

A yield curve model can be seen as a system whose outputs are prices and hedging strategies of interest rate
derivatives. The outputs depend on some unobserved functional parameters in the drift and the diffusion
coefficient of the spot rate process, under the risk-neutral probability. On another hand, a set of prices of
frequently traded assets is observed and this induces some constraints on the functional parameters. The process
that leads to express the set of the functional parameters given the set of constraints is called calibration. Once

*The author thanks B. Dumas, B. Dupire, P. Poncet, O. Scaillet for helpful comments and discussions and is grateful to colleagues
from Compagnie Bancaire, CFQ, S. Barbe, O. Clémentin, T. de Roquemaurel, for discussions and computational assistance.
1CREST, Laboratoire de Finance et d’Assurance.



this is done, then the yield curve model can be effectively used, and the observed prices become the true inputs
of the system.

One important example is given with the calibration to the initial yield curve in the Heath-Jarrow-Morton
(1992) framework of ”evolutionnary models”. Unlike previous equilibrium or ”partial equilibrium” models with
Markovian state variables (Cox, Ingersoll and Ross (1985), Brennan and Schwartz (1979)), fitting the initial
yield curve is straightforward and the initial yield curve indeed becomes an input of the model. But this
framework does not take as exogeneous the prices of interest rate options, such as caps and swaptions that are
now frequently traded assets with deep markets and low transaction costs.

When using time homogeneous volatilities for bond prices, one cannot perfectly reproduce a large number of
cap and swaption prices. One way, illustrated by Brace and Musiela (1994), is to increase the number of factors
until the errors become small enough, compared to the bid-ask spreads on the observed option prices. This can
lead to time intensive computations when the number of factors is large.

Another approach illustrated by Jamshidian (1991), Hull and White (1990),(1993), Black and Karasinski (1991),
Cherbonnier and Laurent (1993) consists in using non time homogeneous volatilities to widen the space of
attainable option prices. The first papers consider as an input some ”initial volatility curve” which is not
observed and can only be approximated using prices of short-term options. Moreover, most of these papers
give some procedures to build up binomial trees or other kinds of discrete approximations (Ho and Lee (1986),
Black, Derman and Toy (1990), Black and Karasinski (1991), Hull and White (1990), Heath, Jarrow and Morton
(1990), Jamshidian (1991)) which generate prices consistent with the observed prices but do not address the
question whether these procedures will give some parameters or not. Cherbonnier and Laurent (1993) give
necessary and sufficient conditions for identification of the parameters of a generalized Vasicek model provided
that a continuum of pure discount bonds and cap prices is observed.

There is a consistency problem when using a continuous set of prices to identify the implied parameters. Since
the number of really observed prices is always finite, some kind of interpolation is required to complete the set
of prices. For instance, one may interpolate with spline functions the Black-Scholes term structure of implied
cap or swaption volatilities. In some cases, the set of functional parameters consistent with the continuous set
of generated prices will be empty, while the set of functional parameters consistent with the true set of observed
prices is not empty, due to the particular specification for interpolating observed prices.

In this paper, we rather consider that a finite set of observed pure discount bond, cap and swaption prices is
given, we remain in the framework of the one factor linear Gauss Markov model? and we allow for the three
parameters of the spot rate process to be time-dependent. Since the implied parameters are functional, there is
in general underidentification, but nevertheless, it may be sometimes impossible to fit the model to consistent
option prices. This means that the set of attainable cap and swaption prices is strictly smaller than the set of
consistent cap and swaption prices.

Since our framework is the one factor linear Gauss-Markov (LGM thereafter) model, the calibration process is
explicit and simple, but this model does not allow the calibration of the strike structure of implied volatilities.
We rather focus on the calibration of the term structure of implied volatilities>.

We show that the observed prices completely determine the prices of wide range of path dependent options,
provided that the set of payment and fixing dates remain the same as the one used for calibration.

2This model in its one and multifactor version is already well documented ; see for instance, Vasicek (1977), Langetieg (1980),
El Karoui, Mynéni and Viswanathan (1992) and Jamhshidian (1993).

3We can notice that in yield curve modelling, the term structure of implied volatilities is represented by a matrix since the
implied volatility depends both on the maturity of the option and of the underlying bond.



2 CASH-FLOWS.

At each current period n, three dates will be used : f,, the fixing date, d,,_1, the beginning of the application
period, and d,,, the payment date. We denote P(t,T'), the price at time ¢ of a discount bond paying 1 at time
T.

We will then work with the following increasing sequences of dates :

fl dO f2 dl I fn dn—l fn+1 dn .. dNa fl > 07 dN < Tf (]-)

In most cases f; will be the current date and will be set to 0. Let us consider the Pibor rate negociated at
current date f,, ; the payment will occur at some date, d,,_1 (it may be two business days after f,,) and the
borrower will redeem at date d,,. We then get :

J(dnfla dn)

P(fnadnfl) - <1 + 360

Pibor(fn)) P(fn,dn), (2)

where J measures the number of days between two dates. We can notice that the Pibor rate is indeed a forward
rate, because of the time interval between the fixing date and the payment date.

2.1 CAPLET PAYOFF.

The payoff at time d,, of the current caplet will then be :

+ J(dn—la dn)

POC*(n,c) = [Pibor(fyn) — (] 360 . (3)

We can notice that the payoff of the caplet is known until the fixing date f,,. In a frictionless market, this is
equivalent to receiving the following payment at time d,, 1 :

J(dn—1,dn -
POC(n,c) = [1—(1+c ( 365 ))P(fn,dn_l,dn)) : (4)
h . P(fnadn) . . . .
where P(fn,dp—1,dn) = m is the forward price at time d,,_; seen from date f,, of the discount

bond maturing at d,. It is well known (see for instance Briys, Crouhy and Schobel (1991)) that without date
treatments a caplet is put on a discount bond. With usual date treatments, it is a put on the forward price of
a discount bond.

2.2 SWAPTION PAYOFF.

Let us denote by r the strike of the swaption and de.., the ”exercise date”. The exercise date is assumed to be
a trading day and to be one of the dates d,,, let’s say d;. This is not important for pricing but for calibration
reasons. When the exercise date is one of the dates d,,, then it is quite easy to calibrate the LGM model with
parsimonious notations. Moreover, this case will be the most common. When pricing swaptions where the
exercise date is not one of the d,,, the pricing formulas remain valid but cannot be linked to payment dates of
standard Libor caps.

d; = dege. (5)

The maturity of the underlying swap is assumed to be 4N, where N is the maturity in years. The swaption
is in practice exercised (the exercise is known) at the first trading day before deyze = d;, that is, fi;q1. d; is a
central date since it allows computations of further d,,, n > i. In three months Libor swaptions, the floating leg



has quarterly payments, at times d,,, while the fixed leg is paid yearly, at times d4,,. The payoff of the swaption
is the positive part of the net present value of the underlying swap at time f;11, that is :

N +
payoff(fi11) = l’“ {Z P(fi+1,di+4n)} + P(fisr, diyan) — P(fi+1,di)] ~ (6)

n=1

For computing explicit pricing formulas, we will choose as a numeraire the discount bond maturing at time d;.
In units of the numeraire, the payoff becomes :

N

+
payoff(d;) = [7“ {Z P(fi+17diadi+4n)} + P(fit1,dis diyan) — 1] : (7)

n=1

This payoff corresponds to a payment at time d;, which is the usual practice in the market. We can notice that,
with usual date treatments, this is a call on the forward price of a coupon bond.

3 REPARAMETRIZATION OF A MARKOVIAN VOLATILITY
STRUCTURE.

We assume that the process of the discount bond price is given by :
dP(t,T) =r(t)P(t,T)dt + o(t,T)P(t,T)dW;, Vte][0,Ty], (8)

where o(t,T) is a deterministic volatility function of discount bond prices and [0, 7] is the time interval over
which prices are studied. We know from El Karoui et al. (1991), Hull and White (1990), Caverhill (1994),
Ritchken and Sankarasubramaniam (1995), that the spot rate r(t) is markovian if and only the volatility
function can be written as :

T v
o(t,T) = (r(t)/ exp </ /\(u)du) dv, Vt,Tsuchthat:0<t<T <Ty. 9)
¢ ¢

o(t) and A(t) are directly linked to the functional parameters of the spot rate process. Knowledge of o(¢,T)
allows the pricing of options on general coupon bonds (i.e caps, floors, swaptions, amortizing swaptions...). For
the volatility of the discount bond to be correctly defined, we can notice that A must be integrable over any
subinterval of [0, TY].

In the calibration of the LGM model through cap and swaption prices, the following functions are introduced :

Gap(t) = /a t exp ( /b ’ A(u)du) dv, (10)

H(t) = /0 2/2((‘?) ds. (11)

Definition 1 :

It can be easily seen that :

Gan(t) = Go0) = Goo(a) (12)

0,0(b)

The functions G and H allow a reparametrization of the volatility function o(¢,T) under the markovian as-
sumption :




Property 1 :

(i) Let G be a real increasing and twice differentiable function defined over [0,T%], then we can define the
mean-reversion parameter by :
G"(t
At) = — ( )
G'(t)
(11) Let H be a real positive, increasing and differentiable function defined over [0,T}], then we can define an
instantaneous volatility of the spot rate by :

(13)

o(t) =G (t)\/H'(t). (14)
(#ii) The volatility structure of the discount bond prices given by :
o(t,T) = H'(t) [G(T) - G(#)], (15)

implies the Markov property for the spot rate process.

The previous property simply states that given suitable functions G and H, it is possible to derive a markov-
ian structure for the volatility function o(¢,T) (i.e mean-reversion and instantaneous volatility parameters). We
can notice that the functions AG + B and H where A, B are two real numbers, A positive, lead to the same
volatility structure o(¢,T).

4 DISCRETE SEQUENCES OF VOLATILITIES.

It is convenient to introduce some volatility functions for the pricing and the calibration of options. Let us
assume that functions G and H are known. Then, we can define the basis volatility functions R(i,j, k) and
S(i, k) by :

Definition 2 : Let us define the real functions R and S on Ir C N3 and Ig C N? by :

R(i’jv k) = [G(dk) - G(dJ)FH(fz)’ V(Z,j,k) € Ig, (16)
S(i,k) = R(.i—1k), V(ik) € Is. (17)

We can say that R and S are generated by the increasing sequences of real numbers G ={G(d;),i € Ig C N}
and H = {H(fj),j elyg C N}

We can notice that : R(i,7,7) =0, R(i,j,k) = R(i,k,5), S(,i—1)=0.

Definition 3 : Let us denote by Cg g the space of increasing functions G, H defined on [0,T¢], such that
G is twice differentiable, H is positive and differentiable, the first derivatives of G and H being uniformly
bounded by positive numbers ag and ag and such that G and H are compatible with the increasing sequences
G={G;,i€lg CN} and H={H;, j € Iy C N}.

Property 2 :
(i) Ca, is a convex closed subset of 0[20 7,1 % C[lo 7] under the uniform convergence topology.

(i) Cq g is non empty if and only if :

G, —G;

—, Vi,j € [, 1
di*dj,VZ’JE Gy (8)

ag <



Hi—H .
ag < 2" yiie Iy 19
B JE (19)

The previous property simply states that given increasing sequences of real numbers G' and H, any functions
G, H in Cg g might be taken to build the volatility function o(t,T).

In practice, the price functions will only use R(i, j, k) with k > j > ¢ — 1. The volatility function S(i, k) is used
in the price formulas of three month caps, floors and swaptions (plain vanilla or with a given predetermined
amortizing rule). We show further that {S(4,7)} is the matrix of volatilities of options of all maturities f; on
discount bonds of all maturities d;. In practice, a lot of price functions will only use S(¢, j) with k > 1.

Property 3 : Let the functions R and S, defined on I and Ig, be generated by two increasing sequences G
and H ; then we get :

RG.j. k) = (86,0~ 56.)F) (20)
(S0:.)% - S(ui -~ 1))

(S0 i)% — S(ui 1)%)2’

o=
o=

S(i,7) = 5S(4,1) (21)

Vi, j, k, p such that S is defined.

Property 3 states that the sets of positive real numbers S = {S(i,4),7 € N} and S, = {S(i, ), j € N} generate
the functions S and R (i.e give the complete knowledge of function S(¢,j)) :

S1,i—1) S(1,i) . . S(1,5)

SG,i) . . S(i,j)

The knowledge of the first line and of the diagonal of the matrix {S(4,7)} completely specifies the volatility
matrix. We show further that {S(¢,4)} is the vector of volatilities of caplets of all maturities and that {S(1, %)}
is the vector of volatilities of options of short maturity f; on discount bonds of all maturities dy.

We now have to look at the derivation of functions H and G from the volatility function S.

Property 4 : Let R and S two volatility functions generated by the series of positive real numbers S and Su.
Then, there exist some generators G and H and they are defined by :

G(d;) = AS(uj)? + B, (23)
H(f) = 6D (21)
42 (S(u, )% = S(u,i = 1))

where A and B are arbitrary real numbers.

Property 4 states that given the two vectors of volatilities (for caplets and swaptions with fixed exercise date),
it is possible to derive the set of generators G and H. Now, for G and H to generate some volatility structure
o(t,T), the sequences must be increasing.



Property 5 : Let R and S two volatility functions generated by the series of positive real numbers S =
{S(i,4), i € N} and Sy, = {S(, j), j € N}. Then, there exist some increasing sequences G and H generating
R and S if and only if the following properties are fulfilled :

1) S(u,j) is an increasing function of j, for all j > p and a decreasing function of j, for all j < pu.
M K Iz

S(i,i L . _ . .
(i) The sequence (,9) 5 18 increasing or equivalently the following property is fulfilled :

(St )% = S(ui = 1)%)
S(i,i)% +S(i+1,i)+12 > S(i,i +1)2, Vi € N.

We can notice that condition (i) is necessary and sufficient for the existence of increasing sequences G. The first
part of condition (ii) is in itself necessary and sufficient for the sequence H to be increasing. The second part
of condition (ii) implies that the sequence H is increasing only if condition (i) is satisfied. We can notice that
(i) and (ii) can be examined using only the sequences S and S,,. With property 5, we can tell if a sequence of
observed volatilities S and S, is compatible with a markovian volatility structure o(t,T).

Usually, we do not know the complete sequences S and S,. In that case, there might be several functions R
and S compatible with the observed volatilities. The following property gives some results when the caplet
volatilities are observed, but when the volatility vector of options on discount bonds with a fixed exercise date
is partially observed.

Property 6 Let R and S be two wvolatility functions generated by the series of positive real numbers S =
{S(i,1), i € N} and S, = {S(u,n;), j € N, j < J} where nj is an increasing sequence of date indices, with
ng = . Then, there exist some increasing sequences G and H generating R and S if and only if the following
properties are fulfilled :

1) S(u,m;) is an increasing function of j, for all 7 < J.
oy T
Nyt

S sz

i=n;+1

(it) The sequence kj = - 15 increasing in j and ko is greater than one.

S(umj1)s = S(u,my)®

Proof : condition (i) is clearly necessary for the existence of an increasing sequence G. It can be easily shown

_ _ H(fn. . )2
that if S is generated by increasing sequences G and H, then : k; < % < kjy1. Thus, k; must be
w)?
increasing.

Now, let us assume that conditions (i) and (ii) are satisfied. Let us define recursively the sequence S; by :

S,LL - S(/‘Lal‘l‘)v
57 =S

if i € [nj +1,m;41]. It can be seen recursively that : S,,; = S(u,n;). Series {S;, i > pu} and {S(i,i)} satisfy
the conditions (i) and (ii) of Property 5. Then there exist some increasing generating sequences G and H.

To prove the previous property, we have exhibited some special simple generator with maybe some practical
unlikely properties ; for instance, since H(f;) is piecewise constant, the volatility of the spot rate will stay at
zero over some finite intervals. It can then be interesting to look at the set of generators in a more general way.



We assume that conditions (i) and (ii) of Property 6 are satisfied. Let us note by I}, [; = %

l; is a decreasing

sequence. Let us give another arbitrary decreasing sequence v; such that : 1 >vg > 1lp > vy >l > ... > v; >

l; > vjq1.... Now, we are going to build decreasing sequences :
1 1
Szz B Si2—1
w; =
CS(3i,0)r
such that :

Vj > Wi > Vjt1, Vi € [’nj + 1,nj+1],

and that S; generated by w; (S, = S(u, 1)) is compatible with the observed S(u,n;). Let us take an arbitrary

decreasing sequence {¢;}. We are going to look at sequences {w;} defined by :

w; =1l +aje; — by, Vi€ [’I”Lj + 1,7Lj+1],

where {a;} and {b;} are two real sequences, {a;} positive. The compatibility condition may be written as :

N4
NS 1 1
Z wiS(Z’Z)z = S(ﬂvnj+1)2 - S(ﬂvnj)Qv
1:n1+1
Nt
. R .
It can be written as : Z (aje; —b;)S(4,1)2 =0 Vj<J.
’L:’nJ+1
N4
w; can now be written as : w; =1; +a; | & — Z pigi |, Vi € [nj + 1,n,41], where p; are some weights
’L:’nJ+1
defined by :
S(i,i)2 .
pi = %, Vi€ [nj+1,m54],
S s(ii)*
’i:n_7'+1

Eventually, a; must be bounded so that w; remain in the interval Jv;, v;41[. Any positive a; such that :

vj =1 lj —vjp

a; <

a; <

Nj41 ’ J Nj41

Enj+1 — E Pbi&i E Pi€i — Enjiy

Z:TLJ+1 i:nj +1

can generate some admissible w; and thus some admissible generators H and G.

5 PRICING FORMULAS WITH DATE TREATMENTS.

The pricing of caps, swaptions, options on discount bonds in the case of the generalized Vasicek model is already
well known (see for instance El Karoui et al. (1991), Jamshidian (1989, 1993). In the following, we extend
the classical results to take into account the ”date treatments”, i.e the fact that the payment of the strike and
the delivery of the underlying asset (in case of delivery, payment of the value of the underlying asset in case
of cash settlement) are delayed by some days (d,,_1 — f,, in our notations). Though theoretically quite simple
and minor, this correction is practically important especially since it may change substantially some implied

volatilities and lead to biases in the implied determination of the volatility structure o (¢, T').



5.1 PRICING FORMULAS FOR THREE MONTH LIBOR CAPLETS.

dp_1,d
Let us introduce the following notations : K,, =1 + r%. The price of the caplet is then given by :
Cn(r,P(0,d,—1), P(0,dy),S(n,n)) = P(0,d, 1)p(=V) — K,P(0,d,)p(—V — S(n,n)%),

W

(n,m

2

v ) o )

n

<log[KnP(0, dn—1,dp)| —

Proof : see the Appendix.

Now we look at the implicit volatility derivation. No static arbitrage opportunities imply that the price of
the caplet C' must be bounded :

max[0, P(0,d,,—1) — K, P(0,d,)] < C < P(0,dp_1).
Moreover, the following properties can be stated :

oo Jim (Cnlr, P(0,dn1), P(0,dy), S(n, 1)) = max[0, P(0,dy1) — K P(0, )]

lim  Cp(r, P(0,dn_1), P(0,dy), S(n,n)) = P(0,dp_1),

S(n,n)—oo
oC

— > 0.
0S(n,n)=

Property 7 : Given an admissible caplet price, there exists a unique implied caplet volatility S(n,n) in [0, co.

5.2 FORWARD CAPS.

The price of a forward cap is simply given by a sum of prices of caplets :

Cnl,nz(rvp(ovdnlfl)v--'7P(07dnz)73(n17n1)7"'1S(n2an2)) = Z Cn(rvp(oadnfl)vp(oadn)aS(nvn))'

n=n;

The previous properties on caplets can be immediately extended and we can deduce :

Property 8 : Given an admissible forward cap price, Cp, n,, there exists a unique implied volatility H(ny,n2)
in [0, 00[, i.e such that :

Crvms = 3 Cn(r, P(0,dn_1), P(0,dy), H(n1,n2)).

Moreover, we get :  inf S(n,n) < H(ni,ng) < sup S(n,n).

n€[ni,no) ne€ny,na)

H(n1,ng) is some kind of average volatility for the caplets.



5.3 PRICES OF THREE MONTH LIBOR SWAPTIONS.

The price of the call swap is given by :

CSin = P(0,diran)é (v; + 86+ 1,0+ 4N)%)
N
13" PO, digan) (Vi + SG+ 1,0+ 4n) ) = P(0,di)o(Vy),
n=1

N

1

1 = TZP(o,di,diHn)exp—{S(i+1,z’+4n)%V§+§S(z’+1,i+4n)}
n=1

+P(0,ds, dipan) exp — {S(i 1+ AN)VE + 186 + 1,0 + 4N)} .

Proof : see appendix. We can notice that in the standard option products that we have studied, we have only
considered function S(%,7). This is due to the fact that the first cash flow is three months after the exercise
date. When looking at options on forward swaps, the volatility coming up in the price formula is R(i, j, k) where

J =

1
3 -

Property 9 The price of the call swap is an increasing function of the volatilities S(i + 1,7 + 4n)

dCSin

- : - >0, Vnell,N]
0S(i+1,i+4n)z

Proof : The equation giving Vy can be rewritten as

*

N

v, 1 ’

exp — 2N =) P(O,di7di+4n)9XP*§{Vﬁ+5(i+1ai+4”)%}
n=1

2
+P(O,di,di+4N) expf% {Vﬁ + S(l + 1,z+4N)éVﬁ} .

9C'Si N

This implies that oV

= 0 and proves the property.

No static arbitrage opportunities implies the following bounds on swaption prices :

n=1

N + N
[7“ {Z P(O, di+4n)} —+ P(O, di+4N) — P(O, dz)‘| < CSi,N <r {Z P(O, di+4n)} —+ P(O, di+4N)-

It can be shown that :

lim CSin = MCS; N,
S(i+1,i+4N)—o0

with M C'S; n being given by :

N—-1
MCSiy = (L+7)PO,dipan) +7 Y PO, dian) (Vi + S( + 1,0 + 4n)F ) = P(0,d)(Viv),
N-1 =t 1
1 = 7Y P0,didijan)exp — {S(i +1,i44n)2Vy + 3SG+ 10+ 4n)} :
n=1

(27)

(28)

(29)

(30)

MCSrt,n is the price of the sum of two simple payoffs : 1 + 7 discount bonds maturing at d;4n and a call on

an annuity paying r each year from d;y4 to d;j4(n_1) with strike 1.

lim CSi,N = mCS’ijN,
S(i4+1,i4+4N)—0

10

(31)



with mC'S; n being given by :

1
if P dz,dz T, th :
a) 1 (0, +4N) < Trr en

mCS;y = r Nf PO, dian) (Vi + S(i + 1, +4n) )
(P(0.4) = (14 1) P(O.ax (Vi)
1—(1+7r)P(0,d;,diyan) = Z_ P(0,d;, diqan) exp — {S’(z + 1,7+ 4n)%VN + %S(z + 1,7+ 4n)} .
= (32)
b) if P(0,d;, diran) > 1—;, then :

N-—1

mCSin = 1Y P(0,diyan) — (P(0,d;) — (1+7)P(0,diyan)). (33)
n=1

mC'S; v is the price of a call on the previously defined annuity with a strike equal to P(0,d;)—(1+7)P(0, d;t+an).

6 CALIBRATION IN PRACTICE.

We have given some general conditions on option prices and implied volatilities, that must be fulfilled for the
model to be calibrated. Let us now discuss how these conditions can be checked given observed prices of options.

We can notice that in the LGM model model, swaption (or bond option) prices depend only on the volatility
structure o(t,T) and thus on the mean reversion parameter A(t) and the diffusion coefficient o(¢). The calibra-
tion process goes then firstly through an identification of these two parameters using option prices. The third
parameter may be identified with the knowledge of the initial yield curve. This is unlike the Cox, Ingersoll
and Ross model where even with constant parameters, the three parameters of the spot rate process under the
risk-neutral probability appear in option prices.

We calibrate some matrix term structure of volatilities, i.e we look at swaptions with different exercise dates and
different underlying maturities. This later dimension is specific to yield curve modelling. We do not calibrate
the strike structure of volatilities. Indeed, the LGM model is not well suited for such a calibration since the
implied volatility of a caplet with a given strike determines the implied volatility of parent caplets for all strikes.
This occurs whatever the number of factors may be. In some cases, the primary concern will be fitting the
term structure of volatilities and in other cases fitting the smile curve will be more important. Of course, on a
theoretical level, we would rather consider yield curve models with a wider set of attainable prices that would
be able to handle both cases. But practically, this is at the expense of increasing the model complexity (at least
a third functional parameter is required in the volatility function), and this does not guarantee that the more
complex model will really be able to handle the observed implied volatilities.

The usual inputs will be cap prices of a given strike, for different maturities and some swaption prices with
a given exercise date, different underlying maturities and may be different exercise rates. From a theoretical
point of vue, the exercise rates of the caps and the swaptions may be chosen arbitrarily ; In practice, they will
depend on the kind of interest rate derivative that has to be priced.

We can take advantage of the explicit pricing formulas for caps and swaptions to derive the parameters of the
discount bond volatility function. We will work ”forward”, starting with short-term caps and short swaptions on
short swaps and then increase the maturity of the caps and of the underlying swap in the swaptions. Induction
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here has not the same meaning as in Jamshidian (1991) since the evolution equation (or Fokker-Plank equation)
isnot used. Using non time homogeneous volatility functions allows an exact ajustment to the set of observed cap
and swaption prices with a single factor model. This approach is different from Brace and Musiela (1994) where
the volatilities are time homegeneous (thus depending on real parameters (\;,0;)), in a Gaussian multifactor
framework.

6.1 CALIBRATION WITH A COMPLETE SET OF OPTION PRICES.

Let us first consider that we observe swaption prices with exercise date d; and with all yearly underlying
swap maturities, and that we also observe caplet prices corresponding to all current periods n. By property
7, the three month caplet prices will provide a set of well defined S(4,7), 7 > 0. To get the S(i,7 + 4n), we
must proceed recursively : it is easily seen that S(i,i + 4) is correctly defined. Let us assume that we know
S(i,14+4k), k <n—1. S(i,i+4n) should then be known by solving equation (27). Unfortunately, this equation
might not have any solution. Even if there is S(i,i+4n) solving (27), we may have S(i,i4+4n) < S(¢,i+4(n—1)).
In that case, the calibrating procedure fails. This means that the observed swaption price with underlying swap
maturity of n years conditional is too small when compared to swaption with shorter underlying swaps ; in this
case, the term structure of swaptions volatilities is too decreasing or too increasing to be explained by any one
factor LGM model. This is due to restrictions on interest rate distributions in one factor models, that prevent
large twists in the yield curve.

Once the S(i,i +4n) and S(j, j) have been computed, we have to check compatibility conditions of property 6
and find some generating sequences G and H.

In practice, not all relevant caplet prices and swaption prices are observed ; only prices of forward caps can
easily be observed and some underlying swap maturities are not quoted on screens. The “missing prices”
can be obtained by some interpolation method. The problem with this technique is the same as mentionned
when generating a continuous set of prices. If there is a solution to the calibrating problem, it will have good
properties (i.e it will consistent with the truly observed prices). If there is no solution, then this may due to
the interpolation technique.

If compatible cap and swaption implied volatilities are extracted, then, by property 3, all the required functions
for pricing complex options, mentionned in sections 7 and 8, would be known from the observation of standard
options.

6.2 PIECEWISE CONSTANT MEAN REVERSION PARAMETER AND IN-
COMPLETE SET OF PRICES

The complete knowledge of function S(k,!) from an incomplete set of observed caps and swaptions prices
requires further assumptions. It can be achieved by assuming for instance that the parameter function A(t) is
piecewise constant on intervals [day, dy(n+1)| (the first interval being [0, d;;4[). We will denote A, the value of
A(t) on interval [diian, ditam+1)| and g, the value of A(t) on the first interval [0, d;,4[. We assume here that
we have all underlying swap maturities ; for instance, we have a set of underlying swap maturities equal to one
year, two years, three years and so on up to ten years.

12



6.2.1 Calibration on the first interval [0, d; 4.

Let us choose G(t) = Go,0(t). We can notice that :

S(i+1i+ 4\ _ Gldia) — Gd) ”
S(i+1,i+1 G(diy1) — G(d;)
By integrating G/, we get :
1- —Xod;
o) = ———, (35)
0
1 — exp —od;
G(diy1) = eXp)\—)‘O‘H’ (36)
0
1-— —Aod;
G(diys) = exp)\—)\o_,_;;’ (37)
0
S(i+1,i+4) 2 _exp —Aod; — exp —Aoditq (38)
S(l + 1,7, + 1) N exp 7A0di — exp 7/\0di+1 '

Solving this equation gives A\g and thus G(d;), G(di+1), G(di+2), G(dit+3), G(dita). Then H(fi1r), k=1...41s
computed through :

S+ k,i+k
H(f’b-f-k): (Z+ A ) 2 k:1727374' (39)
(G(ditr) — G(diyr-1))
Every term on the right hand side of the equation is already known. Since we know

G(d;),G(dit1), G(dit2), G(di3), G(diya) and H(fiy1), H(fi+2), H(fi+3), H(fi+4), we can compute the S(k,1)
for all k,l € [i+1,i+4].

We can notice that, since g is known, G(d;) is also known, VI € [0,¢ + 4].

If we assume that we have caplet prices from time dp, then volatility functions S(k,k) are known for all
kE € [1,7 + 4]. This allows the computation of H(fi), Yk € [1,7 + 4]. In this case, we know the basic volatility
functions S(k,1), V(k,1) € [1,i+4]2. This means that we are able to price swaptions with shorter exercise dates
than the ones whose prices are observed.

Another interesting consequence of the previous property is that it is possible to completely derive the volatility
function with only one swaption price (whatever the exercise date) and the whole set of caplet prices, assuming
that the mean reverting parameter is constant. We have just seen this property for dates shorter than the
exercise date of the swaption. For longer dates, G(d;) is known assuming A(t) = Ag is constant through previous
G expression. Then H(f;) is computed through its previous expression. This case is in fact very similar to
Cherbonnier and Laurent (1993) where A(t) is assumed to be constant except that no spline interpolation is
required to get the important volatility functions present in the pricing formulas.

6.2.2 Calibration of further periods

Let us assume that the calibration over time intervals up to [di+4(n_1),di+4n[ has allowed the computation of
G(dp), Yl € [0,i+ 4n], of N, VI € [0,n — 1] and of H(f,), Vn € [1,i+ 4n]. By computing G’, we get :

G'(t) = G'(ditan) exp =M (t — digan), Vt € [ditan, diyantal. (40)
By integrating G’ between d; 4, and d; 4,14, We get :

1 —exp —{ \i(dijantk — dizan)}
An

G(di+an+k) — G(ditan) = G'(ditan) , Vk € [1,4]. (41)
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We can notice that :

S+ 1,0+ 4n+4)% = H(fi41)? (G(diyanss) — G(dy)), (42)
gives G(ditan+4), since S(i + 1,7+ 4n + 4) is known from swaption prices. Then equation (42) (k = 4) gives
An, since G(d;yan) and G'(d;4n) are known. Once ), is known, the computation of G(d;tan+k), k=1,...,4

is direct through equation (42). The computations of H(fiyanik), K =1,...,4 are done through the following
equation :
St +4n+k,i+4n + k)

(G(disantr) — Gldiyanir))’

H(fivan+k) = oo d (43)

This completes the calibration.

7 A NEW NUMERAIRE.

In this section, we introduce a new numeraire that is convenient to price path dependent interest options such
as index amortizing swaps.

We have already seen that investing at Libor is a forward investment : the funds are transfered to the borrower
the open day after the negociation. We must then distinguish between a set of fixing (or settlement) dates,
fis.+., fn,... and a set of investment and payment dates, dg,d1,...,d,,.... f1 is the time at which the cap or
the amortizing cap will be negociated. In the case of a cap dy will be the exercise date, d; will be usually the
first payment date (if there is a first fixing). The two sets are ordered :

fi<dy< fo<di<...<fpn<dp1<for1<...<fnv<dny_1<dpy,
dy is the last payment date. There is no fixing just prior to the last payment date.

Investment at Libor implies negociation of the (forward) rate at time f,,, between times d,_; and d,,. Libor at
time f,, is defined by :

J(dnflv dn)

1 + Libor(f,) [ 360

} — exply(fo et dn) (A — dr ). (44)

Let us consider now the following iterated (or roll-over) Libor investment strategy :

- At time ¢, f,,_1 <t < f,, the portfolio is invested in discount bonds that mature at time d,,_;. Thus, the
value of the portfolio should be known at time d,,_1.

- At time f,, (fn < dp—1), this known amount is invested forward from time d,,—; to time d,, at the prevailing
forward rate y(fy,dn—1,d,). Thus the portfolio is invested is discount bonds maturing at time d,,.

The initial value of the portfolio at time f; is : G(f1) = 1. This amount is invested in discount bonds maturing
at time d;. This can be duplicated as an investment between time f; and time dg and a forward investment
between time dy and time dj.

To end this iterated strategy, the last forward investement is made at time fy and thus, the value of the portfolio
is defined until time d.

The value of the numeraire is then given by :
1 a 1
(f1,do) -3 P(fi,di—1,d)

B(t) = P(t,dy) - LVt fo SES fag, (45)
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with the conventional notation fyi1 = dy. In particular the value of B at time dy is compounded at forward
rates and is given by :

N
Pldn) = fl,do gpﬁ, div i) (46)
A N
ﬁ(dN) = exp (d()*fl flad(] +Z - fla i—1, )‘| ’ (47)
i—1
5 al i —di1
B(dn) = exp[(do — f1)y(f1,do)l [ | <1 + Libor(f;) [WD : (48)
=1

For t € [0,dy], let’s define the function d(t) by : d(t) = d,,, such that : f, <t < f,41 < d,,. d(t) is some kind
of "strict” next payment date after time t.

dB(t) = r(O)B()dt + o (¢, d(t))5(t)dWVs. (49)
A . .. P(t,T) . . .
We denote @), the probability measure under which ﬁ(t is a martingale. By Girsanov’s theorem, we know

that :

W, = W, — /0 (s, d(s))ds. (50)

where W, is a standard brownian motion under Q).

8 DYNAMICS OF PIBOR RATES UNDER THE RISK NEU-
TRAL PROBABILITY ASSOCIATED TO THE NEW NU-
MERAIRE.

Libor rates are directly linked to the associated forward rates y(fy, dn—1,d,). The dynamics of these rates are
given by :

G(dy) = G(dn—1) [T o(s)

Y(fasdn-r,dn) = y(0,dn-1,dn) + —— “d 0 G’(s)dWS
— fn 62(s
3o | Ga(( )> (G(du) + Glduon) — 26(s)) ds. (51)

The dynamics of the forward rate associated to the Libor savings account risk-neutral probability is given by :

- G(dn) = G(dn1) [ a(s)
y(fmdnflvdn) - y(o,dn71,dn)+ dp —dp_q 0 GI(S)dWS

1G(dn) — G(dn—1) [T 0%(s)
2 dy — dp_1 o G"™(s)

{Gdn) + Cd-r) —26(d(s)} ds.  (52)

This also gives the expression of the forward rate at the previous period :

G(dy 1) — G(dy ) /f O
dp_1—dp_so 0 G'(s)

Y(fr-1,dn-2,dn-1) = y(0,dpn_2,dp_1)+

_ frot 525
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From (52) and (53), it can be seen that :

E[y(f’nv dn—17 dn) ‘ y(f’n—lv dn—27 dn—l)] - L(dn—27 dn—la dn)y(fn—la d’n—Qa d’n—l)
+Z\/[(fn71; fnadnf%dnfladn)a (54)
V[y(fmdn—lvdn) | y(fn—la dn—den—l)] = N(fn—la fnvdn—Qadn—lvdn)v (55)

G(dn) - G(dn—l) dn—l - dn—?

L(dn—Qa dn_1, dn) = G(dn—l) — G(dn72) dy, — dp—1 .

G(d,) — G(dy—1) dp_1—d

M(fnfla fn7 dn727 dnfla dn) = y(ov dnfla dn) - G(dn—l) — G(dn_g) dn — dn:lIQ y(ov dn727 dnfl)
+% G(dgj : i(ﬁl*l) {[G(d,) — G(dy_2)|Hi(frn_1) + [G(dy) — G(dy—1)|[H1(fr) — Hi(fr1)]},
4 A = t) 4, ()G d1) — Gl + ()G ) — Glda 1))}, (57)
M(fnfla fna dn72a dnfla dn) = y(ov dnfla dn) - L(dnf2a dnflv dn)y(oa dn72a dn,1)
5 S = t) 4, () — Glda-a)] + i) Gln) — Gl )l | )
N1 Jsdo-150) = | SLZEED g 1) = 5, 0), (59)

Once we get these conditional distributions, it is easy to simulate the price path of the numeraire, (3 (}1)7 1=
1,...,N + 1 and to value by Monte Carlo techniques any path dependent interest rate option, whose payoff is
based on Pibor rates taken at fixing dates f,, and paid-off at some payment date d;. We can notice that the
prices of these particular payoffs depend only on the volatility matrix S(i,j), that is determined by cap and
swaption prices. Thus, while there may be a large set of probability measures consistent with observed prices,
all these measures will give the same price for these particular payoffs. As a practical illustration, some of these
index amortizing swap payoffs are embedded in retail mortgages supplied in the French market, or can be used
in the hedging of prepayment options by mortgage banks.

9 CONCLUSION

We must emphasize that the LGM risk neutral probability that can be extracted from observed prices may be
very different from the actual probability and cannot be used for prediction. Even the yield curve model is
well specified, time varying risk premia will make it difficult to infer anything from the risk neutral probability.
Moreover, if markets are incomplete, there will be hedging residual risks for most options and multiplicity of
equivalent risk neutral probabilities. We do not even claim that the exhibited LGM risk neutral probability is
equivalent to the the real one, since it precludes some twists in the yield curve, which we know may happen.
The use of a simple complete market model in a maybe incomplete market world can merely be seen as a way
to consistently extrapolate derivative prices, knowing the prices of basic derivatives (i.e avoiding simple stactic
arbitrage opportunities like a payoff strictly dominating another payoff with a smaller price).

The approximated prices will be accurate provided that the calibrated LGM measure is not too far from the true
pricing probability. In our framework, we can reasonably guess that this is true for near-the-money options with

16



payoffs depending primarily on the level of rates, rather than on the shape of the yield curve. This includes a
wide range of options such as index amortizing swaps, amortizing swaptions, captions or american style options.

One way to check out our guess would be to look at how stable through time are the implied conditional
distributions of the ”level of rates” (some average of rates of different maturities with positive weights) under
the one factor LGM model. We must stress that the functional parameters may vary quickly over time, while
the implied conditional distributions remain much more stable.

Even if these implied conditional distributions of interest rates vary dramatically over time, the quality of
interpolation may remain quite high ; since the purpose is not to get parameters with economic meaning, but
to provide well approximated and consistent derivative prices, this instability is not relevant*. However, in such
a case, the hedging performance based on the proxy model would probably be poor.

We must also stress that when the calibration process performs well, we get a quick way to price a wide range
of path dependent interest rate options, while still able to reproduce current observed option prices.

The standard approach for calibrating yield curve models is to choose a model (whatever it is) with unknown pa-
rameters (maybe functional) to go through some calibration process with observed prices (by forward induction
or 7hit and try”) and then cross fingers with the hope that there is a unique set of implied parameters.

We show in a particular and explicit example (the one factor LGM model) that more attention should be given
to whether a solution to the calibration problem exists without simply relying on the fact that ”there are as
many equations as there are variables”. We can reasonably guess that this existence problem will occur with
most models specified on a priori grounds.

Some authors (Dupire (1993, Rubinstein (1994)) have addressed the problem of the identification of the risk
neutral process for an underlying risky asset. In this approach, the set of probability measures is not a priori
constrained, as in the generalized Vasicek model ; relaxing the constraints on the set of probability measures
would widen the set of attainable prices. Another related field of future research would be to look when a given
model will provide ”good approximations” of a set of observed prices.

4For instance, in yield curve modelling, it is well known that the parameters in spline functions are unstable even if the fit
remains quite good.
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A Appendix 1 : swaption and caplet price with date treatments.

The forward price P(f;,d;,dx) has the following representation :
P(fi,djsdy) = P(0,dj,dy) exp — { (i, j, K}V + R(i.j k) 2} (60)

where V is Gaussian with zero mean and unit variance under the probability measure Q% . The proof is a
straightforward consequence of El Karoui et al. (1992).

Let us note A,, the exercise region for the caplet :
A, ={wely, st P(fn,dn-1,dn)K, <1}.
The price at time zero of the caplet is then :
P(0,dp1) E®" =t [1g, = KnP(fn,dn,dn)14,], (61)

where the expectation is computed under the forward risk neutral probability (associated to the numeraire
discount bond P(t,d,,—1)). By (59), we can notice that under this probability :

P(fn,dn-1,dpn) = P(0,dp_1,dy) exp — [S(n, n)?V + W} : (62)
Let us denote V, such that :
V= <1og[KnP(o,dn_1,dn)} - w> S(n,n)"%. (63)
The price of the caplet can then be expressed as :
P(0,dy 1)EQn—1 [Lysy:] — KnP(0,dy) B9 [exp - {S(n,n)%v + S(T;’ n) } 1V>V7T:| . (64)

The first expectation is simply equal to ¢(—V,*). A simple change of variable gives the second expectation,
$(—V* — S(n,n)7). This gives the price of the caplet.

The exercise region of the call swap is given by :

Ain = {wely,, ,V(w) <V} with V3 such that :
N
1
1 = r> P(0,di,dijan) exp— {S(i 1,0 +4n)2 Vi + 35+ 10+ 4n)} (65)
n=1

+P(0,d;, dian) exp — {S(z’ F 1+ AN) IV + 1S3+ 1,0 + 4N)} .

The right hand side is a decreasing function of Vy, its limit is 0 when V3, — 400 and +o0o0 when Vj — —ooc.
Thus, V3 exists and is unique for any positive { P(0,d;, d;14n), ,n=1,...,N},{S(i+1,i+4n), ,n=1,...,N}.
The right hand side is also an increasing function of the forward discount bond prices P(0,d;, d;14,). We then
can deduce that :

ovy

OP(0,d;, d;yan)

The pricing of swaptions requires the computation of the following expectations (under the risk neutral proba-
bility associated to the zero coupon bond maturing at time d;).

P(0,di)E [P(fiy1,di,dizan)lv<vs ],

> 0.

1 1
P(O,di+4n)E [exp— {S(Z + ].,i +4TL)EV+ §S(Z + 1,i +4n)} 1V<V1’(J:| .

This is done by a simple change of variable and gives the price of the call swap.
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