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Basel recommandations on credit risk Credit risk in Basel 2.5

Credit risk in Basel Il FRTB

The RWA conundrum

@ Basel framework : the Risk Weighted Assets (RWA)
Minimum Capital Requirement = X% x RWA (1)

@ Is a risk-based indicator a trustworthy one?

Chart 10: Survey responses to “Has your

Chart 9: Survey responses to “How much do you confidence in risk-weighted assets gone up or
trust risk weights?"® down?™
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(a) Based on survey responses of over 130 investors carried (a) Based on survey responses of over 130 investors carried
out in H1 2012, of perceptions over the previous year. outin H1 2012, of perceptions over the pravious year.

Source: Haldane’s speech at FSA (9th April 2013) [1]
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Credit risk in Basel 2.5 (IRC) and RWA variability

@ RWA for credit risk in the trading book: Incremental Risk Charge (IRC)
BCBS - Basel 2.5 (2009) [2]

= No prescribed model (internal, often multi-factorial model for the default correlation)

Chart 6: Risk weight variability in the IRC
Chart 5: Risk weight variability in the trading
book@eXexs model
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(b) Sample consists of 15 banks. Source: BCBS
€) Values have been normalised by the median. For each

(a) From the BCBS hypothetical portfolio exercise for the
model, the ranges represent the simple average of the
normalised minima and

maxima for all portfolios the \rading baok

model was applied to. For the allin portfolio, the (b) Sample consists of 15 banks.
supervisory multiplier was held constant ) Values have been normalised by the median.
(d) Numbers on bars indicate maximum - minimum ratios.

d) Numbers on bars indicate maximum-minimum ratios.

Source: Haldane’s speech at FSA (9th April 2013) [1]
@ Internal models implementations are in cause.
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Credit risk in Basel Ill FRTB

RWA variability : Hypothetical Portfolio Exercices

Dispersion of normalised IRC results for credit spread portfolios
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Note: Normalisation is defined as dividing it by its median;
The vertical axis in each panel is a base 2 log scale.

Source: BCBS - Regulatory Consistency Assessment Program, 2nd report on RWA in the trading book (2013) [3]
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Basel Il FRTB: the Default Risk Charge (DRC)

4

RWA variability tackled

Within the regulation philosophy, variability of RWA among financial institutions should
mostly stem from discrepancies in activity, local jurisdictions or risk profiles.

Improving the RWA comparability among financial institutions

Prescriptive constraints on the modelling choices for internal models

Basel Il FRTB, RWA for credit risk: Default Risk Charge (DRC)
BCBS - Fundamental Review of the Trading Book (2012, 2013, 2015, 2016) [4, 5, 6, 7]

PD,LGD, default correlation matrix

Based on a prescribed two-factor model for the default correlation.

Two papers in the literature addressing these questions

LAURENT, SESTIER and THOMAS (2015) [8]: focuses on the correlation matrix estimation
through a statistical approach

WILKENS and PREDESCU (2016) [9]: provides a full calibration methodology through an eco-
nomic approach

6 /24



Credit risk models
Default Risk Charge (DRC) in Basel Il FRTB Correlation modelli

Hoeffding and risk decomposition

Portfolio loss

@ One period portfolio loss

L =" EAD, x LGDj x DefaultIndicator, (2)
k

- Exposures (EAD) and Losses Given Default (LGD) assumed constant for simplicity.

= Here, we focus on correlation modelling.

@ Trading book inventories
- Exposures may be long (sign +) or short (sign -).

- CDS or bond exposures.

@ Latent variable model

- Default occurs if a latent variable, X, lies below a threshold:

Defaultindicatory = 1¢x, <thresholdy } ®)
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Default Risk Charge (DRC) in Basel Il FRTB Correlation modelling

Hoeffding and risk decomposition

Prescribed two-factor model

@ Prescribed two-factor model

"The Committee has decided to develop a more prescriptive DRC charge in the models-
based framework. Banks using the internal model approach to calculate a default risk
charge must use a two-factor default simulation model, which the Committee believes
will reduce variation in market risk-weighted assets but be sufficiently risk sensitive
as compared to multifactor models.”

BCBS (2013) [5]

@ Factor models

Xy = BkZ + /1 — B, Brex (4)

- Z ~ N(0,1dy): systematic factor.
- €, ~ N(0,1) : specific risk.
- B € RKJ: factor loadings.

- threshold, = ®~!(px) with p; the default probability of the obligor k and ¢ the
Gaussian cdf.

MERTON (1974) [10], BCBS (IRB) (2004) [11], ROSEN & SAUNDERS (2010) [12].

@ Not prescriptive: latent (endogeneous) or observable (exogeneous) factors
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Default Risk Charge (DRC) in Basel Il FRTB Correlation modelling

Hoeffding and risk decomposition

Prescribed calibration data

@ Prescribed calibration data

"Default correlations must be based on credit spreads or on listed equity prices”.
BCBS (2015) [13]

"correlations [should] be calibrated over a one-year stress period [...] using [...] annual
co-movements [...] which took place within the last ten years”.
BCBS (2016) [7]

@ Let's consider X € RKXT the historical sample of centered returns (equity prices or
CDS spreads), along two specifications:

covariance matrix : Yoomple = T iXX!

Shrinked covariance matrix : Y Shrinkage = QX FactorModel + (1 — @)X sample

= The initial correlation matrix is: Co = (diag(Z)) /2% (diag(x)) /2
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Default Risk Charge (DRC) in Basel Il FRTB Correlation modelling

Hoeffding and risk decomposition

Calibration approach

@ No guidance by the BCBS on how to obtain a (J=2)-factor structure

Economic approach

o Exogeneous variables only
o System-wise
o Need for an equity return model

Statistical approach

o Exogeneous or endogeneous variables
o Portfolio-wise
o No need for an equity return model

Nearest correlation matrix with a two-factor structure
argming fopj(B) = [C(8) — Gollr
subject to € Q ={BeRK*2B, B <1,k=1,...,K}
Constraint ensures that C(3) = B3t + diag(ld — 83¢) is positive semi-definite.

PCA-based method and Spectral projected gradient method
ANDERSEN et al. (2003) [14], BIRGIN et. al (2000, 2001) [15, 16]
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Default Risk Charge (DRC) in Basel Il FRTB

Unconstrained correlation matrix and J-factor model

Data for

Estimation method

Calibration method for
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Default Risk Charge (DRC) in Basel Il FRTB
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Credit risk models

Default Risk Charge (DRC) in Basel Il FRTB Correlation modelling
Hoeffding and risk decomposition

Specific-systematic decomposition of the loss

L(Z,e) = zk: EAD, x LGDy x 1wkz+m€k§¢,l(pk)}

@ Hoeffding decomposition of the default losses
VAN DER VAART (2000) [17], ROSEN & SAUNDERS (2010) [12], HOEFFDING (1948) [18].

L(Z,e) = EI[L] } ¢p(L) : Expected Loss
+ E[L|Z]-E[L] } #1(L; Z) : Systematic Loss
+ E[Lle] —E[L] } #2(L; €) : Specific Loss
+

L(Z,e) —E[L|Z] —E[L|e] + E[L] } ¢1,2(L; Z,€) : Interaction Loss

- ¢1(L; Z) corresponds (up to the expected loss term) to the heterogeneous Large Pool
Approximation.

24
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Default Risk Charge (DRC) in Basel Il FRTB Correlation modelling
Hoeffding and risk decomposition

Portfolio risk and contributions

@ Portfolio risk
- Value-at-Risk: VaR,[L] =inf{l e RIP(L < /) > a}
- Full allocation property: VaRo[L = Li+Ls] = E[L1|L = VaRy[L]]+E [L2|L = VaRa[L]]

@ Systematic-specific contribution of the portfolio risk

VaR.[L] = E[¢p|L = VaRa[L]] } Cp : Expected Loss Contribution
+ E[¢1(L; Z)|L = VaR.[L]] } Gi(L; Z) : Systematic Contribution
+  E[¢2(L;¢)|L = VaRa[L]] } G(L;€) : Specific Contribution
+ E[¢12(L; Z,e)|L = VaR4[L]] } Gi2(L; Z,¢) : Interaction Contribution

14 /24



EU Corporate exposures: long only and long/short portfolios
Impact on 99.9% VaR
Empirical implications Drivers of risk (systematic vs idiosyncratic)

Portfolios - Itraxx Europe - Corporates

- A diversification portfolio and a hedge portfolio are built.

- This parallels the distinction between the banking book (long positions, e.g. loans) and
the banking book (long/short positions, e.g. in bonds , CDSs).

Long only portfolio Long/short portfolio
. Long 27 financial names
Composition Long 125 names . .
Short 27 non-financial names
Equal ighted Equal ighted
Exposures qualy weighte qualy weighte
Total exposure =1 Total exposure =0




EU Corporate exposures: long only and long/short portfolios
Impact on 99.9% VaR
Empirical implications Drivers of risk (systematic vs idiosyncratic)

1-year Default Probabilities

@ 1-year Default Probabilities: Bloomberg Issuer Default Risk Methodology
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EU Corporate exposures: long only and long/short portfolios
Impact on 99.9% VaR

Empirical implications Drivers of risk (systematic vs idiosyncratic)

Impacts on the risk - Long portfolio
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EU Corporate exposures: long only and long/short portfolios
Impact on 99.9% VaR
Empirical implications Drivers of risk (systematic vs idiosyncratic)

Impacts on the risk - Long-short portfolio

o (%)

e VaR
s

JELNHLEL I

(1) (2) (B) (4) (5) (6) (7) (B) (9) |(1)(2) (3) (4) (5) (6) (7] (8) (9)
a=0,990 a=0,995 a=0,999

| [ Unconstrained model 1-factor model @ 2-factor model W 1*-factor model |

Configurations: (1) Equity - P1: (2) Equity - P1 - Shrinked: (3) Equity - P1 - Exogenous Factors: (4) Equity - P2: (5)
Equity - P2 - Shrinked: (6) Equity - P2 - Exogenous Factors; (7) IRBA; (8) KMV - P2: (9) CDS - P2. .J*-factor model

is only active for *(1) Equity — P1” and **(4) Equity — P2” configurations.
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EU Corporate exposures: long only and long/short portfolios
Impact on 99.9% VaR
Empirical implications Drivers of risk (systematic vs idiosyncratic)

Systematic contribution to the risk - Long portfolio
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Empirical implications Drivers of risk (systematic vs idiosyncratic)

Systematic contribution to the risk - Long-short portfolio
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EU Corporate exposures: long only and long/short portfolios
Impact on 99.9% VaR
Empirical implications Drivers of risk (systematic vs idiosyncratic)

Conclusions - RWA variability and comparability

\

The RWA variability stemming from correlation modelling remains high.

It is a challenge regarding model comparability.

Two factor constraint is more active in stressed periods (2008)

The prescriptions might prove quite useful when dealing with a large number of assets:
unconstrained correlation matrix (with small eigenvalues) would ease the building of
opportunistic portfolios.

Other main sources of variability

The high confidence level of the regulatory risk measure;

Disparities among correlation matrices (type of data and/or the calibration period).
Small changes in exposures or other parameters may lead to significant changes in the
credit VaR, jeopardizing the comparability of RWA.

The use of Large Pool Approximation is questionable: poor contribution to the VaR
Bending the binds does not seem fundamental enough yet ...

Need for more research on impacts on regulatory risk of estimation and calibration

methods of the correlation matrix ...
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