
 Electronic copy available at: http://ssrn.com/abstract=2678834 

Trading book and credit risk: how fundamental is the Basel review?I,II

This version: October 23, 2015.

Jean-Paul Laurenta,1, Michael Sestiera,b,2, Stéphane Thomasb,3

aPRISM, Université Paris 1 Panthéon-Sorbonne, 17 rue de la Sorbonne, 75005 Paris
bPHAST Solutions Group, 54-56 Avenue Hoche, 75008 Paris

Abstract
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1. Basel recommendations on credit risk

1.1. Credit risk in the Basel II, 2.5 and III agreements

Created in 1974 by ten leading industrial countries and now including supervisors from twenty-seven

countries, the Basel Committee on Banking Supervision (BCBS, henceforth “the Committee”) is

responsible for strengthening the resilience of the global financial system, ensuring the effectiveness of

prudential supervision and improving the cooperation among banking regulators.

The Basel II agreements (BCBS, 2005)[4] define regulatory capital through the concept of RiskWeighted

Assets (RWAs) and through the McDonough ratio. Under the Advanced Internal Rating Based (IRB)

approach, the RWAs in the banking book measure the exposition of a bank granting loans by applying

a weight according to the intrinsic riskiness of each asset. Issuer’s default probability and effective loss

at default time are based on bank’s own internal estimates, though correlation parameters are regulatory

prescribed. The Committee also addressed portfolio risk prescribing a model based on the Asymptotic

Single Risk Factor model (ASRF).

A major gap revealed by the 2008 financial crisis, was the inability to adequately identify the credit risk

of the trading book positions, enclosed in credit-quality linked assets. Considering this deficiency, the

Committee revised the market risk capital requirements in the 2009 reforms, also known as Basel 2.5

agreements (BCBS, 2009) [5], that add two new capital requirements, the Incremental Risk Charge (IRC)

and the Comprehensive Risk Measures (CRM). The former was designed to deal with long term changes

in credit quality, whereas the latter specifically controls correlation products. More exactly, the IRC is

a capital charge that captures default and migration risks through a VaR-type calculation at 99.9% on a

one-year horizon. As opposed to the credit risk treatment in the banking book, the trading book model

specification results from a complete internal model validation process, whereby financial institutions are

required to implement their own framework.

In parallel to the elaboration of new rules, the Committee has recently investigated the RWAs comparability

among institutions and jurisdictions, for both the banking book (BCBS, 2013)[8] and the trading book

(BCBS, 2013)[9, 10], through a Regulatory ConsistencyAssessment Program (RCAP) following previous
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studies led by the International Monetary Fund (IMF) in 2012 (see Le Leslé and Avramova (2012)[40]).

Based on a set of hypothetical benchmark portfolios, reports show large discrepancies in risk measure

levels, and consequently in RWAs, amongst participating financial institutions. The related causes of

such a variability are numerous. Among the foremost is the heterogeneity of risk profiles, consecutive

to institutions’ diverse activities, and divergences in local regulation regimes. In conjunction with these

structural causes, the Committee also raises important discrepancies among internal methodologies of risk

calculation, and in particular, those of the trading book’s RWAs. A main contributor to this variability

appear to be the modeling choices made by each institution within their IRC model (for instance, whether

it uses spread-based or transition matrix-based models, calibration of the transition matrix or that of the

initial credit rating, correlations’ assumptions across obligors, etc.).

1.2. Credit risk in the Fundamental Review of the Trading Book

In response to these shortcomings, the Committee has been working since 2012 towards a new post-crisis

update of the market risk global regulatory framework, known as Fundamental Review of the Trading

Book (FRTB) (BCBS 2012, 2013, 2015)[6, 7, 14, 15, 16]. Notwithstanding long-lasting impact studies

and ongoing consultative working groups, no consensus seems to have been achieved so far. Main

discussions arise from the proposal transforming the IRC in favor of a default-only risk capital charge (i.e.

without migration feature), named DRC. With a one-year 99.9%-VaR calculation, DRC for the trading

book would be based on a two-factor model:

“One of the key observations from the Committee’s review of the variability of market risk weighted

assets is that the more complex migration and default models were a relatively large source of variation.

The Committee has decided to develop a more prescriptive IDR charge [amended to DRC for Default

Risk Charge] in the models-based framework. Banks using the internal model approach to calculate

a default risk charge must use a two-factor default simulation model [“with two types of systematic

risk factors” according to (BCBS 2015)[16]], which the Committee believes will reduce variation in

market risk-weighted assets but be sufficiently risk sensitive as compared to multi-factor models”. (BCBS

2013)[7].
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The objective of constraining the default riskmodeling choices by“limiting discretion on the choice of risk

factors” has also been mentioned in a report to the G20, BCBS (2014)[12]. Going further, the Committee

would especially monitor model risk through correlation calibration constraints. First consultative papers

on the FRTB, (BCBS, 2012, 2013)[6, 7], prescribed the usage of listed equity prices to calibrate the

default correlations. Based on the trading book hypothetical portfolio exercise (BCBS, 2014)[11], the

Committee observes that the usage of equity data was dominant among financial institutions, while some

of them chose CDS spreads for the Quantitative Impact Study (QIS). Indeed, equity-based prescribed

correlations raise practical problems when data are not available4, as for instance for sovereign issuers,

resulting in the consideration of other data sources. Consequently, the third consultative paper of the

Committee (BCBS, 2015)[14], the subsequent ISDA response (ISDA, 2015)[35] and the instructions for

the Basel III monitoring (BCBS 2015)[15] recommend the joint use of credit spreads and equity data.

“Default correlations must be based on credit spreads or on listed equity prices. Banks must have clear

policies and procedures that describe the correlation calibration process, documenting in particular

in which cases credit spreads or equity prices are used. Correlations must be based on a period of

stress, estimated over a 10-year time horizon and be based on a [one]-year liquidity horizon.[...] These

correlations should be based on objective data and not chosen in an opportunistic way where a higher

correlation is used for portfolios with a mix of long and short positions and a low correlation used

for portfolio with long only exposures. […] A bank must validate that its modeling approach for these

correlations is appropriate for its portfolio, including the choice and weights of its systematic risk factors.

A bank must document its modeling approach and the period of time used to calibrate the model.” (BCBS

2015)[15].

Our paper investigates the practical implications of these recommendations, and in particular, studies

the impact of factor models and their induced correlation structures on the trading book credit risk

measurement. The goal here is to provide a comparative analysis of risk factors modeling to assess

the relevance of the Committee’s proposals of prescribing model and calibration procedure to reduce

4Likewise, no guidance has been yet formulated for the treatment of exposures depending on non-modellable risk-factors.
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the RWAs variability and enhance comparability between financial institutions. For this purpose, the

scope of the analysis is only focused on the correlation part of the modeling and therefore does not

include Probability of Default (PD) and Loss Given Default (LGD) estimations for which the Committee

also provides directions (BCBS 2015)[15]. For a general modeling approach, compliant with the Basel

recommendations and covering the correlation structure, the default probabilities and the recovery rates,

see Wilkens and Predescu (2015)[59].

The paper is organized as follows. In Section 2, we describe a two-factor default risk model within the

usual Gaussian latent variables framework, already used in the current banking book setting (one-factor

model) and in the IRC implementations (general J-factor (J ≥ 1) models). Following the Committee’s

recommendations, we discuss main correlation estimation methods. In Section 3, we use the Hoeffding

decomposition of the aggregate loss to explicitly derive contributions of systematic and idiosyncratic risks,

of particular interest in the trading book. Section 4 is devoted to numerical applications on representative

long-only and long-short credit-sensitive portfolios, whereby impacts of J-factor correlation structures

on risk measures and risk contributions are considered. The last section gathers concluding remarks

providing answers to the question raised in the title.

2. Two-factor Default Risk Charge model

2.1. Model specification

The portfolio loss at a one-period horizon is modeled by a random variable L, defined as the sum of

the individual losses on issuers’ default over that period. We consider a portfolio withK positions: L =∑K
k=1 Lk with Lk denoting the loss on the position k. The individual loss is decomposed as Lk = wk×Ik,

where wk is the positive or negative effective exposure5 at the time of default and Ik is a random variable

referred to as the obligor k’s creditworthiness index, taking value 1 when default occurs, and 0 otherwise.

For conciseness, we assume constant effective exposures at default, hence the sole remaining source of

randomness is Ik.

5The effective exposure of the position k is defined as the product of the Exposure At Default (EADk) and the Loss Given
Default (LGDk). Formally: wk = EADk × LGDk. While we could think of stochastic LGDs, there is no consensus as
regard to proper choices, either regarding marginal LGDs or the joint distribution of LGDs and default indicators. The Basel
Committee is not prescriptive at this stage and it is more than likely that most banks will retain constant LGDs.

5



To define the probability distribution of the Lk’s as well as their dependence structure, we rely on a

usual structural factor approach. Creditworthiness is then defined as Ik = 1{Xk≤xk}, where xk is a

predetermined threshold. Modeling Ik thus amounts to modelingXk. This model, introduced by Vasicek

(1987, 2001)[56, 57] and based on seminal work of Merton (1974) [45], is widely used by financial

institutions and regulators to model default risk. More precisely, in this approach, X ∈ RK×1 is a vector

of latent variables, representing obligor’s asset values, which evolves according to a J-factor Gaussian

model:

X = βZ + σ(β)ε (1)

where Z ∼ N (0,ΣZ) is a J-dimensional random vector of centered systematic factors, ε ∼ N (0, 1) is a

K-dimensional random vector of centered and independent specific risks, β ∈ RK×J is the factor loading

matrix and σ(β) ∈ RK×K is a diagonal matrix with elements σk =
√
1− βkΣZβt

k , (βk ∈ R1×J ). This

setting ensures that the random vector of asset values, X , is standard normal with a correlation matrix

depending on the factor loadings:

β 7→ C(β) = βΣZβ
t + σ2(β) (2)

In the remainder of the article, we note Z = {Zj|j = 1, . . . , J} the set of all systematic factors and

E = {εk|k = 1, . . . , K} the set of all idiosyncratic risks such that F = Z ∪ E .

The threshold xk is chosen such that P(Ik = 1) = pk, where pk is the obligor k’s marginal default

probability. From normality of Xk, we have xk = Φ−1(pk), with Φ(.) denoting the standard normal

cumulative function. The portfolio loss6 is then written as follows:

L =
K∑
k=1

wk1{βkZ+σkεk≤Φ−1(pk)} (3)

The single factor variant of this model, where correlation coefficients are regulatory prescribed, is at the

6Since Ik is discontinuous, L can take only a finite number of values in the set L = {
∑

a∈A wa|∀A ⊆ {1, . . . ,K}}∪ {0}.
In the homogeneous portfolio, where all weights are equal: Card(L) = K + 1. In contrast, if the weights are different, then
the number of possible loss values can go up to 2K and the numerical computation of quantile-based risk measures may be
more difficult.
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heart of the Basel II credit risk capital charge. In this model, known as Asymptotic Single Risk Factor

(ASRF) model (cf. Gordy (2003)[31]), the latent systematic factor is usually interpreted as the state of

the economy, i.e. a generic macroeconomic variable affecting all firms. Within multi-factor models7

(J ≥ 2), factors may be either latent or observable. For the later, a fine segmentation (into industrial

sectors, geographical regions, ratings and so on) of factors allowsmodelers to define a detailed operational

representation of the portfolio correlation structure.

2.2. Assets values correlation calibration

The modeling assumptions on the general framework being made, we now consider the calibration of

the assets values correlation matrix of the structural-type credit model. As previously mentioned, the

Committee recommends the joint use of equity and credit spread data (notwithstanding such a combination

may raise consistency issues as pairwise correlations computed from credit spreads and equity data are

sometimes distant). Nevertheless, at that stage, the Committee sets aside concerns as to which estimator of

the correlation matrix is to be used and we here stress that this recommendation neglects issues regarding

the sensitivity of the estimation to the underlying calibration period and regarding the processing of noisy

information, although essential to financial risk measurement.

In the following Subsection, for ease of expositions we consider the latent factor models with ΣZ = Id,

where Id is the identity matrix. We introduce X̃ , the (K × T )-matrix of centered stock or CDS-spread

returns (T is the time series length), and the standard estimators of the sample covariance and correlation

matrices:

Σ = T−1X̃X̃ t (4)

C = (diag (Σ))−
1
2 Σ (diag (Σ))−

1
2 (5)

7In its analysis of the trading book hypothetical portfolio exercise (BCBS, 2014) [11], the Committee reports that most
banks currently use an IRC model with three or less factors, and only 3% have more than three factors. Multi-factor models
for credit-risk portfolio and the comparison to the one-factor model are documented in the literature. For instance, in the
context of long-only credit exposure portfolio, Düllmann et al. (2007)[25] compare the correlation and the Value-at-Risk
estimates among a one–factor model, a multi-factor model (based on the Moody’s KMV model) and the Basel II IRB model.
Their empirical analysis with a heterogeneous portfolio shows a complex interaction of credit risk correlations and default
probabilities affecting the credit portfolio risk.
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It is well known that these matrices suffer some drawbacks. Indeed, when the number of variables

(equities or CDS-spreads), K, is close to the number of historical returns, T , the total number of

parameters is of the same order as the total size of the data set, which is puzzling for the estimator stability.

Moreover, when K is larger than T , the matrices are always singular8.

Within the vast literature dedicated to covariance/correlation matrix estimation from equities9, we refer

particularly to Michaud (1989)[46] for a proof of the instability of the empirical estimator, to Alexander

and Leigh (1997)[1] for a review of covariance matrix estimators in VaR models and to Disatnik and

Benninga (2007)[24] for a brief review of covariance matrix estimators in the context of the shrinkage

method10.

Shrinkage methods are statistical procedures which consist in imposing low-dimensional factor structure

to a covariance matrix estimator to deal with the trade-off between bias and estimation error. Indeed,

the sample covariance matrix can be interpreted as a K-factor model where each variable is a factor (no

residuals) so that the estimation bias is low (the estimator is asymptotically unbiased) but the estimation

error is large. At the opposite, we may postulate a one-factor model which has a large bias from likely

misspecified structural assumptions, but a little estimation error. According to seminal work of Stein

(1956)[50], reaching the optimal trade-off may be done by taking a properly weighted average of the

biased and the unbiased estimators: this is called shrinking the unbiased estimator. Within the context of

default correlation calibration, we here focus on the approach of Ledoit and Wolf (2003)[39] who define

a weighted average of the sample covariance matrix with the single-index model estimator of Sharpe

(1963)[49]: Σshrink = αshrinkΣJ + (1− αshrink) Σ, where ΣJ is the covariance matrix generated by a

8Note that this feature is problematic when considering the Principal Component Analysis (PCA) to estimate factor models
because the method requires the invertibility of Σ or C. To overcome this problem, Connor and Korajczyk (1986,1988)
[20, 21] introduce the Asymptotic PCA which consists in applying PCA on the (T × T )-matrix,K−1X̃tX̃ , rather than on Σ.
The authors show that APCA is asymptotically equivalent to the PCA on Σ.

9A number of academic papers also address the estimation of dynamic correlations. See for instance the paper of Engle
(2002) [26] introducing the Dynamic Conditional Correlation (DCC) or the paper of Engle and Kelly (2012) [27] for a brief
overview of dynamic correlation estimation and the presentation of the Dynamic Equicorrelation (DECO) approach. This is
out of the scope of this paper. For practical purposes we focus on techniques which can easily account for a credit universe
that encompasses several hundreds/thousands of names.

10See also Laloux, Cizeau, Bouchaud and Potters (1999) [37] for evidences of ill-conditioning and of the “curse of
dimension” within a random matrix theory approach, and Papp, Kafka, Nowak and Kondor (2005) [47] for an application
of random matrix theory to portfolio allocation.
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(J = 1)-factor model and the weight αshrink controls how much inertia to impose. The authors show

how to determine the optimal shrinking intensity (αshrink) and, based on historical data, illustrate their

approach through numerical experiments where the method out-performs all other standard estimators.

In the sequel, following the Committee’s proposal, we consider an initial correlation matrixC0, estimated

from historical stock or CDS spread returns. To study the impact of the correlation structure on the levels

of risk and factors contributions (cf. Section 4), we shall also consider other candidates as the initial

matrix such as the “shrinked” correlation matrix (computed from Σshrink), the matrix associated with the

IRB ASRF model and the one associated with a standard J-factor model (like the Moody’s KMV model

for instance).

2.3. Nearest correlation matrix with J-factor structure

Factor models have been very popular in finance as they offer parsimonious explanations of asset returns

and correlations. The underlying goal of the Committee’s proposition is to build a factor model (with a

specified number of factors) generating a correlation structure as close as possible to the pre-determined

correlation structure C0. At this stage, the Committee does not provide any guidance on the calibration

of factors loadings β needed to pass from a (J > 2)-factor structure to a (J = 2)-factor structure. The

objective here is then to present generic methods to calibrate a model with a J-factor structure from an

initial (K ×K)-correlation matrix.

Among popular exploratory methods used to calibrate such models, Principal Components Analysis

(PCA) aims at specifying a linear factor structure between variables. Indeed, by considering the random

vector X of asset values, and using the spectral decomposition theorem on the initial correlation matrix:

C0 = ΓΛΓt (where Λ is the diagonal matrix of ordered eigenvalues of C0 and Γ is an orthogonal matrix

whose columns are the associated eigenvectors), the principal components transform ofX is: Y = ΓtX ,

where the random vector Y contains the ordered principal components. Since this transformation is

invertible, we may finally write: X = ΓY . In this context, an easy way to postulate a J-factor model is

to partition Y according to (Y t
J , Y

t
J̃
)t where YJ ∈ RJ×1 and YJ̃ ∈ R(K−J)×1, and to partition Γ according

to (ΓJ ,ΓJ̃ ) where ΓJ ∈ RK×J and ΓJ̃ ∈ RK×(K−J). This truncation leads to: X = ΓJYJ +ΓJ̃YJ̃ . Hence,
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by considering ΓJ as the factors loadings (composed of the J first eigenvectors of C0), YJ as the factors

(composed of the J first principal components of X) and ΓJ̃YJ̃ as the residuals, we obtain a J-factor

model.

Nevertheless, as mentioned by Andersen, Sidenius and Basu (2003) [2], the specified factor structure

in Equation (1) cannot be merely calibrated by a truncated eigen-expansion, due to the specifications of

residuals that depend on β. In fact, here, we look for a (J = 2)-factor modeledX for which the correlation

matrix11 C(β) = ββt + σ2(β), with σ2(β) = Id− diag(ββt), is as close as possible to C0 in the sense of

a chosen norm. Thus, we define the following optimization problem12:

 arg minβf(β) = ∥C0 − C(β)∥F

subject to: β ∈ Ω = {β ∈ RK×J |βkβ
t
k ≤ 1; k = 1, . . . , K},

(6)

where ∥.∥F is the Froebenius norm: ∀A ∈ RK×K : ∥A∥F = tr(AtA) (with tr(.) denoting the trace of a

square matrix). The constraint, β ∈ Ω, ensures that ββt has diagonal elements bounded by 1, implying

that C(β) is positive semi-definite.

The general problem of computing a correlation matrix of J-factor structure nearest to a given matrix

has been tackled in the literature. In the context of credit basket securities, Andersen, Sidenius and Basu

(2003) [2] determine a sequence {βi}i>0 in the following way. Given the spectral decomposition of

(C0 − σ2(βi)), ΓσΛσΓ
t
σ: βi+1 = Γσ,JΛ

1/2

σ,J , i.e. they consider the eigenvectors associated with the J

largest eigenvalues. The iterations stop when σ2(βi+1) is sufficiently close to σ2(βi).

Borsdorff, Higham and Raydan (2010) [18] show that this PCA-based method, which is not supported by

any convergence theory, often performs surprisingly well on the one hand, partly because the constraints

are often not active at the solution, but may fail to solve the constrained problem on the other. They

acknowledge the Spectral Projected Gradient (SPG) method, as being the most efficient to solve the

11Recall that, for ease of expositions, we consider the latent factor models with ΣZ = Id.
12Ω is a closed and convex set in RK×J . Moreover, the gradient of the objective function is given by: ∇f(β) =

4 (β(ββt)− C0β + β + diag(ββtβ))
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constrained problem. This method allows minimizing f(β) over the convex set Ω by iterating over β in

the following way: βi+1 = βi + αidi where di = ProjΩ (βi − λi∇f(βi)) − βi is the descent direction13,

with λi > 0 a pre-computed scalar, and αi is a positive scalar chosen through a non-monotone line

search strategy. ProjΩ being uncostly to compute, the algorithm is fast enough to enable the calibration

of portfolios having a large number of positions. A detailed presentation and algorithms are available in

Birgin, Martinez and Raydan (2001) [17].

An important point for the validity of a factor model is the correct specification of the number of factors.

Until now, in accordance with the Committee’s specification, we have assumed arbitrary J-factor models

where J is specified by the modeler (J = 2 for the Committee). Based on the data, we may also consider

the problem of determining the optimal number of factors. Some previous academic papers deal with

this issue. Among them, we particularly refer to Bai and Ng (2002) [3] who propose Panel Criteria to

consistently estimate the optimal number of factor from historical data14.

Finally, it is noteworthy that the presented methods, approximating the initial correlation matrix (methods

based on PCA or SPG to find the nearest correlation matrix with J-factor structure based, or the shrinkage

method to make the correlation matrix more robust), may sometimes smooth the pairwise correlations.

For instance, the shrinkage method does not specifically treat the case where the pairwise correlations are

near or equal to one. It rather tends to reverse these correlations to the mean level even if, statistically,

the variance of the correlation estimator with a value close to the unit is often very low or even null.

3. Hoeffding decomposition of losses and risk contributions

In the banking book, the Basel II capital requirement formula (IRB modeling) is based on the assumption

that the portfolio is infinitely fine grained, i.e. it consists of a very large number of credits with small

13Note that βi+1 = (1− αi)βi + αiProjΩ (βi − λi∇f(βi)). Thus, if β1 ∈ Ω, then βi+1 ∈ Ω, ∀i ≥ 1.
14The authors consider the sum of squared residuals, noted V (j, Zj) where the j factors are estimated by PCA (∀j ∈

1, . . . J), and introduce the Panel Criteria and the Information Criteria to be used in practice for determining the optimal number
of factors : PCm(j) = V (j, Zj)+PenaltyPC

m and ICm = ln (V (j, Zj))+PenaltyICm (form = 1, 2, 3), where PenaltyPC
m

and PenaltyICm are penalty functions. To validate their method, the authors consider several numerical experiments. In
particular, in the strict factor model (where the idiosyncratic errors are uncorrelated as in our framework), the preferred criteria
would be the following: PC1, PC2, IC1 and IC2. We refer to Bai and Ng (2002) [3] for a complete description of these
criteria and the general methodology.
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exposures, so that only one systematic risk factor influences portfolio default risk (ASRF model). Thus,

the aggregate loss can be approximated by the systematic factor projection: L ≈ LZ = E [L|Z],

subsequently called “Large Pool Approximation”. Under this assumption, Wilde (2001)[58] expresses

a portfolio invariance property stating that the required capital for any given loan does not depend on

the portfolio it is added to. This makes the IRB modeling appealing as it allows the straightforward

calculation of risk measures and contributions.

At the opposite, the particularities of the trading book positions (actively traded positions, the presence

of long-short credit risk exposures, heterogeneous and potentially small number of positions) make this

assumption too restrictive and compel to analyze the risk contribution of both the systematic factors and

the idiosyncratic risks.

In this Section, we first represent the portfolio loss via the Hoeffding decomposition to exhibit the impact

of both the systematic factors and the idiosyncratic risks. In this framework, the second Subsection

presents analytics of factors contributions to the risk measure.

3.1. Hoeffding decomposition of the aggregate loss

The portfolio loss has been defined in the previous Section via the sum of the individual losses (cf.

Equation (3)). We consider here a representation of the loss as a sum of terms involving sets of factors

through the Hoeffding decomposition, previously used in a credit context by Rosen and Saunders (2010)

[48]. Formally, if F1, . . . , FM and L ≡ L[F1, . . . , FM ] are square-integrable random variables15, then

the Hoeffding decomposition16 expresses the aggregate portfolio loss, L, as a sum of terms involving

conditional expectations given factor sets:

L =
∑

S⊆{1,...,M}

ϕS(L;Fm,m ∈ S) =
∑

S⊆{1,...,M}

∑
S̃⊆S

(−1)|S|−|S̃|E
[
L|Fm;m ∈ S̃

]
. (7)

15The Hoeffding decomposition is usually applied to independent factors. If this assumption is fulfilled, then all terms of
the decomposition are uncorrelated, easing the interpretation of each term.

16Consult Van Der Waart (1999) [55] for a detailed presentation of the Hoeffding decomposition.
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Although the Hoeffding decomposition may be unadapted17 when the number of factors is large,

computation for a two-factor model does not present any challenge, especially in the Gaussian framework

where an explicit analytical form of each term exists (cf. Equations (10) and (11)).

An appealing feature of the Hoeffding decomposition is that it can be applied to subsets of risk factors.

Therefore, we use the decomposition on the set of systematic factors, Z , and the set of specific risks, E ,

to break the portfolio loss down in terms of aggregated systematic and idiosyncratic parts:

L = ϕ∅(L) + ϕ1(L;Z) + ϕ2(L; E) + ϕ1,2(L;Z, E), (8)

where ϕ∅(L) = E [L] is the expected loss, ϕ1(L;Z) = E [L|Z] − E [L] is the loss induced by the

systematic factors Z1 and Z2 (corresponding, up to the expected loss term, to the heterogeneous Large

Pool Approximation: LZ), ϕ2(L; E) = E [L|E ] − E [L] is the loss induced by the K idiosyncratic terms

ϵk, and ϕ1,2(L;Z, E) = (L− E [L|Z]− E [L|E ] + E [L]) is the remaining risk induced by interaction

(cross-effect) between idiosyncratic and systematic risk factors.

Since LZ = ϕ1(L;Z) + ϕ∅(L), the relation between unconditional and conditional portfolio losses is:

L = LZ + ϕ2(L; E) + ϕ1,2(L;Z, E). (9)

Remark that the Hoeffding decomposition is not an approximation. It is an equivalent representation

of the same random variable into uncorrelated terms (thanks to the independence between the sets of

idiosyncratic and systematic risk factors).

From a practical point of view, as we consider a Gaussian factor model, we may easily compute each term

of the decomposition:

E [L|Z] =
K∑
k=1

wkΦ

(
Φ−1(pk)− βkZ

σk

)
, (10)

17The Hoeffding decomposition requires the calculation of 2M terms, whereM is the number of factors.
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E [L|E ] =
K∑
k=1

wkΦ

(
Φ−1(pk)− σkϵk√

βkΣZβt
k

)
. (11)

Rosen and Saunders (2010) [48] focus on the Hoeffding decomposition of heterogeneous Large Pool

Approximation, LZ . In this context, they define the decomposition with two factors, Z1 and Z2, of the

conditional loss LZ by:

LZ = ϕ∅(LZ) + ϕ1(LZ ;Z1) + ϕ2(LZ ;Z2) + ϕ1,2(LZ ;Z1, Z2), (12)

where ϕ∅(LZ) = E [L] is the expected loss, ϕ1(LZ ;Z1) and ϕ2(LZ ;Z2) are the losses induced by the

systematic factors Z1 and Z2 respectively, and the last term ϕ1,2(LZ ;Z1, Z2) is the remaining loss induced

by systematic factors interaction (cross-effect of Z1 and Z2).

Equation (12) provides a factor-by-factor decomposition of the aggregate loss, but raises questions

concerning the significance of each term. Indeed, in the case of models with endogenous factors, ΣZ

is the identity matrix and the terms are uncorrelated. When it comes to exogenous factors, where we

account for the factors’ correlation structure, the elements in Equation (12) are correlated as well, and the

meaning of each term is unclear. More generaly, the significance of the terms is unobvious since factor

rotations18 of the systematic factors leave the distribution ofX unchanged but affects the computation of

Hoeffding terms that depend on subsets included in Z19. Since we further focus on systematic factors on

one hand and specific risks on the others, these two conundrums are not relevant in our case.

3.2. Systematic and idiosyncratic contributions to the risk measure

The portfolio risk is determined by means of a risk measure ϱ, which is a mapping of the loss to

a real number: ϱ : L 7→ ϱ[L] ∈ R. Usual quantile-based risk measures are the VaR and the

18For further details on this statistical procedure, we refer to common statistical literature such as Kline (2014) [36].
19Consider for instance the Large Pool Approximation of the portfolio loss: LZ = E [L|Z1, Z2]. Case 1: we consider that

the betas are equivalent. For instance, ∀k, βk,1 = βk,2 = b (with b ∈ [−1, 1]) which implies that ϕ1(LZ ;Z1) = ϕ2(LZ ;Z2)
in distribution, and the contribution of each element is the same. Case 2: we now consider the special one factor model. For
instance βk,1 =

√
2× b2 and βk,2 = 0 implying that ϕ1(LZ ;Z1) ̸= ϕ2(LZ ;Z2) in distribution. Case 3: we finally consider a

permutation of the case 2: βk,1 = 0 and βk,2 =
√
2× b2 leading to the same conclusion. In those 3 cases, the risk is identical

but factor contributions differ.
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Conditional-Tail-Expectation20 (CTE). For a given confidence level α ∈ [0, 1], the VaR is the α-quantile

of the loss distribution: V aRα[L] = inf {l ∈ R|P(L ≤ l) ≥ α}. On the other hand, the CTE is

the expectation of the loss conditional to loss occurrences higher than the V aRα[L]: CTEα[L] =

E [L|L ≥ V aRα[L]]. Since both IRC in Basel 2.5 and DRC in the Fundamental Review of the Trading

Book prescribe the use of a one-year 99.9%-VaR, we will further restrict to this risk measure even though

risk decompositions can readily be extended to the set of spectral risk measures.

By definition, the portfolio loss equals the sum of individual losses: L =
∑K

k=1 Lk. As we showed earlier,

it can also be defined as the sum of the Hoeffding decomposition terms: L =
∑

S⊆{1,...,M} ϕS(L;Fm,m ∈

S). To understand risk origin in the portfolio, it is common to refer to a contribution measure Cϱ
Lk

(Cϱ
ϕS

respectively) of the position k (of the Hoeffding decomposition term ϕS) to the total portfolio risk

ϱ[L]. The position risk contribution is of great importance for hedging, capital allocation, performance

measurement and portfolio optimization and we refer to Tasche (2007) [52] for a detailed presentation.

As fundamental as the position risk contribution, the factor risk contribution helps unravel alternative

sources of portfolio risk. Papers dealing with this topic include the following. Cherny and Madan

(2007) [19] consider the conditional expectation of the loss with respect to the systematic factor and

refer it to as factor risk brought by that factor. Martin and Tasche (2007) [42] consider the same

conditional expectation, but then apply the Euler’s principle taking the derivative of the portfolio risk

in the direction of this conditional expectation and call it risk impact. Rosen and Saunders (2007) [48]

apply the Hoeffding decomposition of the loss with respect to sets of systematic factors, the first several

terms of this decomposition coinciding with the conditional expectations mentioned above.

Theoretical and practical aspects of various allocation schemes have been analyzed in several papers

(see Dhaene et al. (2012) [23] for a review). Among these, the marginal contribution method, based on

Euler’s allocation rule, is quite a standard one (see Tasche (2007) [53]). To be applied here, an adaptation

is required because we face discrete distributions (see Laurent (2003) [38] for an analysis of the technical

20Note that as long as L is continuous, the Conditional-Tail-Expectation is equivalent to the Expected-Shortfall.
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issues at hand). Yet, under differentiability conditions, and choosing the VaR as the risk measure21, it

can be shown (see Gouriéroux, Laurent and Scaillet (2001) [32]) that the marginal contribution of the

individual loss Lk to the risk associated with the aggregate loss L =
∑K

k=1 Lk is given by CV aR
Lk

=

E [Lk|L = V aRα[L]]. Besides, computing this expectation does not involve any other assumption than

integrability and defining risk contributions along these lines fulfills the usual full allocation rule L =∑K
k=1 C

V aR
Lk

(see Tasche (2008) [52] for details on this rule).

Similarly, we can compute the contributions of the different terms involved in theHoeffding decomposition

of the aggregate loss. For instance, the contribution of the systematic term is readily derived as CV aR
ϕ1

=

E [ϕ1(L;Z)|L = V aRα[L]]. Likewise, contributions of specific risk and of interaction terms can easily

be written and added afterwards to the systematic term so as to retrieve the risk measure of the aggregate

loss. The additivity property of risk contributions prevails when subdividing the vector of risk factors

into multiple blocks. This parallels the convenient invariance property well known in the Basel ASRF

framework (cf. Wilde (2001)[58]).

It is also noteworthy that although our approach could be deemed as belonging to the granularity

adjustment corpus, relying as well on the Large Pool Approximation, the techniques and the mathematical

properties involved here (such as differentiability, associated with smooth distributions) are completely

different. We refer to Fermanian (2014)[28] and Gagliardini and Gouriéroux (2014)[29] for recent studies

involving this concept.

4. Empirical implications for diversification and hedge portfolios

This section is devoted to the empirical study of the effects of the correlation structure on risk measure and

risk contributions. In particular, it aims at analyzing the impacts ofmodeling constraints for both the future

DRC prescription and the current Basel 2.5 IRC built on constrained (factor-based) and unconstrained

models.

21By defining V aRα[L] = E [L|L = V aRα[L]], similar results hold for CTE (up to a sign change from L = V aRα[L] to
L ≥ V aRα[L].
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We base our numerical analysis on representative long-only and long-short credit-sensitive portfolios.

Since we reckon to focus on widely traded issuers, who represent a large portion of banks’ exposures,

we opt for portfolios with large Investment Grade companies. Specifically, we consider the names in the

iTraxx Europe index, retrieved on the 31st October 2014. The portfolio is composed of 121 European

Investment Grade companies22 , 27 are Financials, the remaining being tagged Non-Financials.

We successively look at two types of portfolio: (i) a diversification portfolio, comprised of positive-only

exposures (long-only credit risk), (ii) a hedge portfolio, built up of positive and negative exposures

(long-short credit risk). The distinction parallels the one between the banking book, containing notably

long-credit loans, and the trading book, usually including long and short positions (like for instance bonds

or CDS) – within the latter, an issuer’s default on a negative exposure yields a gain. For conciseness, the

LGD rate is set to 100% for each position of the two portfolio types.

Regarding the diversification portfolio (K = 121), we consider a constant and equally weighted effective

exposure for each name so that ∀k, wk = 1/K and
∑K

k=1wk = 1.

Concerning the hedge portfolio (K = 54), we assume long exposure to 27 Financials and short exposure

to 27 Non-Financials, selected such that the average default probability between the two groups is the

same (approximately 0.16%). By considering wk∈Financials = 1/27 and wk/∈Financials = −1/27, the

hedge portfolio is thus credit-neutral:
∑K

k=1wk = 0.

For the sake of numerical application, we use default probabilities provided by the Bloomberg Issuer

Default Risk Methodology23. Figure (1) illustrates default probabilities’ frequencies of the portfolio’s

companies grouped by Financials and Non-Financials.

22The index is genuinely composed of 125 names. Nevertheless, due to lack of data for initial correlation computation, it
was not possible to estimate a (125× 125)-matrix.

23This methodology, referred to as Bloomberg DRSK methodology, is based on the model of Merton (1974) [45]. The
model does not use credit market variables, rather it is an equity markets-based view of default risk. In addition to market data
and companies balance sheet fundamental, the model also includes companies’ income statements.
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Figure 1: Histogram of the default probabilities distribution.

Financials clearly show higher and more dispersed default probabilities, with a mean and a standard

deviation equal to 0.16% and 0.16%, respectively, compared to 0.08% and 0.07% respectively, for

Non-Financials. We also note that the floor value (at 0.03%) prescribed by the Committee is restrictive

for numerous (34 over 121) Financial and Non-Financial issuers.

In the next Subsections, we discuss results on the calibration of both the initial correlation matrix (C0) and

the loading matrix (β ∈ RK×J ) of the J−factor models. We then consider the impact of these different

models on the risk for both portfolios. By using a Hoeffding-based representation of the aggregate loss,

we finally compute the contributions of the systematic, the idiosyncratic and the interaction parts of the

loss to the risk.
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4.1. Unconstrained and constrained correlation matrices

Following the Committee’s proposal, we use listed equity prices24 of the 121 issuers, spanning over

a one-year period, to calibrate the initial default correlation matrix through the empirical estimator

(cf. Equation (5))25. To illustrate the sensitivity to the calibration window, we use two sets of equity

time-series. Period 1 covers a time of high market volatility from 07/01/2008 to 07/01/2009, whereas

Period 2 spans a comparatively lower market volatility window, from 09/01/2013 to 09/01/2014. For

both periods, the computed unconstrained (i.e. with no factor structure) (121× 121)-matrix consists of a

matrix of pairwise correlations that we adjust26 to ensure semi-definite positivity. To limit the estimation

error, we also apply the shrinkage methodology on the two periods.

Furthermore, Period 2 is used to define other initial correlation matrices in order to analyze the effects

on the J-factor model of changes in the correlation structure as computed from different types of

financial data. We consider three alternative sources: (i) the imposed IRB correlation formula27, based

on the issuer’s default probability; (ii) the GCorr methodology of Moody’s KMV; (iii) the issuers’ CDS

spreads relative changes (also advocated by the Committee). For each initial correlation matrix, C0, the

optimization problem in Equation (6) is solved with the PCA-based and the SPG-based algorithms.

In addition to these uncorrelated latent factor models, we also consider models based on two correlated

exogenous factors: one region factor (identical across all issuers) and one sector factor. For both periods,

the factor loadings are calibrated by projecting (through linear regression) each issuer’s equity returns

onto the returns of the MSCI Europe index and the returns of a MSCI sector index corresponding to the

issuer’s sector (10 indexes overall).

All characteristics are reported in Table (1).

24Data provided by Bloomberg Professional.
25In the FAQ of August 2015 (BCBS, 2015)[13], the Committee suggests to calibrate correlations over a ten year period,

which includes a one-year stress period, using annual co-movements. To reduce estimation errors, our approach differs from
this proposal and is based on daily returns on a one-year stress period, selected over a ten year period.

26We use a spectral projection method. Note that this treatment is not needed if we only consider the simulation of the
J-factor model calibrated via the optimization problem in Equation (6). As for the unconstrained matrix, we could have used
other approaches such as EM algorithm to deal with missing data.

27The IRB approach is based on a 1-factor model: Xk =
√
ρkZ1 +

√
1− ρkϵk. Thus, Correl(Xk, Xj) =

√
ρkρj where

ρk is provided by a regulatory formula: ρk = 0.12 1−exp−50pk

1−exp−50 + 0.24
(
1− 1−exp−50pk

1−exp−50

)
.
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Table 1: Initial correlation matrix estimation and J-factor model calibration.

Configuration Data for
estimating C0

Period Estimation method
for C0

Calibration method for
the J-factor models

(1) Equity - P1 Equity returns 1 Sample correlation PCA and SPG
algorithms

(2) Equity - P1
Shrinked Equity returns 1 Shrinkage

(αshrink = 0.32)
PCA and SPG
algorithms

(3) Equity - P1
Exogenous Factors Equity returns 1 Sample correlation Linear Regression

(4) Equity - P2 Equity returns 2 Sample correlation PCA and SPG
algorithms

(5) Equity - P2
Shrinked Equity returns 2 Shrinkage

(αshrink = 0.43)
PCA and SPG
algorithms

(6) Equity - P2
Exogenous Factors Equity returns 2 Sample correlation Linear Regression

(7) IRBA - - IRBA formula PCA and SPG
algorithms

(8) KMV - P2 - 2 GCorr methodology PCA and SPG
algorithms

(9) CDS - P2 CDS spreads 2 Sample correlation PCA and SPG
algorithms

Period 1: from 07/01/2008 to 07/01/2009. Period 2: from 09/01/2013 to 09/01/2014.

The optimization problem is also considered for the calibration of J∗-factor models (where J∗ is the

data-based “optimal number” of factors) for both the “(1) Equity - P1” and the “(4) Equity - P2”

configurations. It is defined here as the integer part of the arithmetic average of the panel and information

criteria (see Bai and Ng (2001)[3]). Applying this methodology to the historical time series, we get J∗ = 6

for the “(1) Equity - P1” configuration and J∗ = 3 for the “(4) Equity - P2” configuration28. To make the

results comparable, these optimal numbers29 are the same for the diversification portfolio and the hedge

portfolio.

Table (2) shows the calibration results for models with endogenous factors for both the PCA-based and

the SPG-based algorithms while Figure (2) displays histograms of the pairwise correlations frequencies

28In particular, we get IC1 = 6, IC2 = 5, PC1 = 8 and PC2 = 7 for the “(1) Equity - P1” configuration and IC1 = 2,
IC2 = 2, PC1 = 4 and PC2 = 4 for the “(4) Equity - P2” configuration.

29Remark that these experimental results are consistent with the empirical conclusions of Connor and Korajczyk (1993)[22],
who find a number of factors between 1 to 2 factors for “non-stressed” periods and 3 to 6 factors for “stressed” periods for
the monthly stock returns of the NYSE and the AMEX, over the period 1967 to 1991. It is also in line with the results of Bai
and Ng (2001)[3] who exhibit the presence of two factors when studying the daily returns on the NYSE, the AMEX and the
NASDAQ, over the period 1994 to 1998.
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for each configuration within each J-factor model (J = 1, 2, J∗ with PCA-based calibration) 30.

Table 2: Factor-model calibration over the 121 iTraxx issuers.

Configuration Number of
factors

Froebenius
Norm

Average
Correlation

Average
Correlation
Financial

Average
Correlation
Non-Financial

SPG PCA SPG PCA SPG PCA SPG PCA

(1) Equity - P1

C0 0,00 0,00 0,46 0,46 0,62 0,62 0,46 0,46

1 factor 8,75 8,73 0,47 0,46 0,54 0,54 0,45 0,45

2 factors 6,10 6,01 0,47 0,46 0,60 0,59 0,46 0,46

(J∗ = 6) factors 4,26 3,84 0,46 0,46 0,63 0,61 0,46 0,46

(2) Equity - P1
Shrinked

C0 0,00 0,00 0,46 0,46 0,60 0,60 0,45 0,45

1 factor 5,92 5,88 0,47 0,46 0,55 0,55 0,45 0,45

2 factors 4,18 4,05 0,47 0,46 0,59 0,58 0,46 0,45

(4) Equity - P2

C0 0,00 0,00 0,28 0,28 0,44 0,44 0,26 0,26

1 factor 8,69 8,66 0,28 0,28 0,41 0,41 0,26 0,25

2 factors 6,99 6,94 0,28 0,28 0,43 0,43 0,26 0,26

(J∗ = 3) factors 6,36 6,24 0,28 0,28 0,44 0,43 0,26 0,26

(5) Equity - P2
Shrinked

C0 0,00 0,00 0,28 0,28 0,43 0,43 0,26 0,26

1 factor 4,98 4,95 0,28 0,28 0,41 0,41 0,26 0,26

2 factors 4,07 3,97 0,28 0,28 0,42 0,42 0,26 0,26

(7) IRBA
C0 0,00 0,00 0,25 0,25 0,29 0,29 0,25 0,25

1 factor 0,22 0,00 0,25 0,25 0,29 0,29 0,25 0,25

2 factors 0,34 0,00 0,25 0,25 0,29 0,29 0,25 0,25

(8) KMV - P2
C0 0,00 0,00 0,29 0,29 0,47 0,47 0,27 0,27

1 factor 4,14 4,09 0,29 0,29 0,43 0,43 0,26 0,26

2 factors 2,29 2,10 0,29 0,29 0,47 0,47 0,27 0,26

(9) CDS - P2
C0 0,00 0,00 0,58 0,58 0,81 0,81 0,57 0,57

1 factor 7,69 7,66 0,59 0,58 0,70 0,69 0,57 0,56

2 factors 5,51 5,44 0,59 0,58 0,80 0,80 0,58 0,57

The column “Froebenius norm” corresponds to the optimal value of the objective function whereas the three right hand side
columns state the average pairwise correlations from, respectively, the overall portfolio matrix, the Financial sub-matrix and
the Non-Financial sub-matrix.

Fitting results among the endogenous factor models, in Table (2), suggests that the two considered nearest

correlation matrix approaches (SPG-based and PCA-based) perform similarly and correctly. As expected,

increasing the number of factors tends to produce a better fit to the unconstrained model. We also note

that shrinking the correlation matrix allows a better fit for all models.

30Note that results with the SPG-based algorithm are very similar.
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Figure 2: Histogram of the pairwise correlations among the 121 iTraxx issuers (PCA-based calibration).
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Figure (2) presents important disparities on average level and dispersion in pairwise correlations among

the configurations, reflecting discrepencies in the data used to calibrate the correlation matrices. For

instance, the “(1) Equity – P1” shows large dispersion and high average levels (approximately 50%)

whereas the “(4) Equity – P2” configuration shows more concentrated frequencies with a peak around

30%, much lower than in the stress period 1. The shrinkage seems to have small effect on the level of the

pairwise correlations but slightly decreases disparities among the models. The “(7) IRBA” configuration

yields concentrated correlation levels quite close to the upper bound of 24%. The “(9) CDS – P2”

configuration somehow presents the most dispersed distribution of pairwise correlation. In this case,

factor models tend to overestimate central correlations and underestimate tail correlations (this is also

true for other configurations but to a lesser extent).

Concerning the factor models, they accurately reproduce the underlying pairwise correlations distribution.

In particular, combining Figure (2) and Table (2), the less dispersed the distribution of pairwise

correlations, the fewer the number of factors needed to correctly reproduce the correlation structure.

4.2. Correlation impacts on regulatory VaR

In this Subsection, we analyze the impacts of correlation matrices on portfolio risk. The VaR is computed

via the Monte-Carlo method with 2 × 107 scenarios. Note that the discreteness31 of L implies that the

mapping α 7→ V aRα[L] is piecewise constant so that jumps in the risk measure are possible for small

changes in the default probability.

For both the diversification portfolio (cf. Figure (3)) and the hedge portfolio (cf. Figure (4)), we simulate

the V aRα[L] for α ∈ {0.99, 0.995, 0.999} for each of the nine configurations and the unconstrained and

factor-based models.

31Since we deal with discrete distributions, we cannot rely on standard asymptotic properties of sample quantiles. At
discontinuity points of VaR, sample quantiles do not converge. This can be solved considering the asymptotic framework
introduced by Ma, Genton and Parzen (2011) [41] and the use of the mid-distribution function.
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Figure 3: Risk measure as a function of α for the diversification portfolio (PCA-based calibration).

Figure 4: Risk measure as a function of α for the hedge portfolio (PCA-based calibration).

Configurations: (1) Equity - P1; (2) Equity - P1 - Shrinked; (3) Equity - P1 - Exogenous Factors; (4) Equity - P2; (5) Equity
- P2 - Shrinked; (6) Equity - P2 - Exogenous Factors; (7) IRBA; (8) KMV - P2; (9) CDS - P2. J∗-factor model is only active
for “(1) Equity – P1” and “(2) Equity – P2” configurations.
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Figure (3) and Figure (4) provide guidances on the relevance of the Committee’s prescribed model and

calibration procedure for reducing the RWAs variability and improving comparability between financial

institutions. These numerical simulations clearly show that the VaR variability among configurations

crucially depends to the level of α: increasing the confidence level results in higher variability.

In addition, for each level ofα, themain source ofVaR dispersion are the differences of average correlation

levels among configurations. For instance, considering the regulatory confidence level (α = 0.999), the

prescribed ”(1) Equity - P1” and ”(9) CDS - P2” configurations lead to considerable VaR level differences.

With these equally weighted portfolios, the constrained J-factor models (including the regulatory

two-factor model) tend to produce lower tail risk measures (high level of α) than the unconstrained

model. This phenomenon is even more pronounced when considering dispersed correlation matrices

(such as the configurations “(1) Equity - P1” and “(9) CDS – P2”) and particularly in the hedge portfolio

where constrained models (generating less dispersed correlation matrices) may provoke a substantial risk

mitigation.

Overall, based on our numerical simulations, we see that the principal sources of DRC variability are (i)

the high confidence level of the regulatory risk measure and (ii) the differences in average correlations

among configurations. Moreover, the two-factor constraint seems to be of low interest for reducing the

DRC variability and tends to underestimate risk measures in comparison with the unconstrained model.
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4.3. Systematic and idiosyncratic contributions to regulatory VaR

In this Subsection, we use the Hoeffding-based representation of the loss (Equations (8) and (9)) to provide

insights on the contributions of the systematic factors to the overall portfolio risk and to assess the quality

of the Large Pool Approximation.

We note ϕ(n)
S the realization of the projected loss onto the subset of factors S on the scenario n. Given the

pre-calculated risk measure v = V aRα[L], the contribution32 estimator is:

CV aR
ϕS

[L, α] = E [ϕS|L = v] =⇒ ĈV aR
ϕS

[L, α] =

∑MC
n=1 ϕ

(n)
S 1{L(n)=v}∑MC

n=1 1{L(n)=v}
(13)

Since the conditional expectation defining the risk contribution is conditioned on rare events, this

estimator requires intensive simulations to reach an acceptable confidence interval33. Tasche (2009) [54]

and Glasserman 2005 [30] have already addressed the issue of computing credit risk contributions of

individual exposures or sub-portfolios from numerical simulations. Our framework is similar to theirs,

except that we focus on the contributions of the different terms involved in theHoeffding decomposition of

the aggregate risk. We are thus able to derive contribution of factors, idiosyncratic risks and interaction34.

For both the diversification portfolio (cf. Figure (5)) and the hedge portfolio (cf. Figure (6)), we illustrate

the influence of α on the systematic contribution to the risk by considering ĈV aR
ϕ1

[L, α]/v with α ∈

{0.99, 0.995, 0.999} for each of the nine configurations and the unconstrained and factor-based models.

32Remark that given the discrete nature of considered distributions, and similarly of the risk measure, the mapping α 7→
CV aR

ϕS
[L,α] is piecewise constant. Note also that negative risk contributions may arise within the hedge portfolio.

33Numerical experiments demonstrate that complex correlation structures (such as in the “Equity – P1” configuration) may
induce noisy contribution estimation. This phenomenon is even more pronounced in the presence of a large number of loss
combinations which implies frequent changes in value for the mapping α 7→ ĈV aR

ϕS
[L,α]/v. Indeed, for a given loss level,

there may only be a few simulated scenarios such that L(n) = v , causing more volatile estimators.
34While we could think of various optimized Monte Carlo simulation methods, we have not implemented any in the

current version of the article. Yet, several papers are worth noticing and could represent a basis for extensions of our work.
Glasserman (2005) [30] develops efficient methods based on importance sampling, though not directly applicable to Hoeffding
representation of the discrete loss. Martin, Thompson and Browne (2001) [43] pioneer the Saddle Point Approximation of the
unconditional Moment Generating Function (MGF) for the calculation of VaR and VaR contributions. Huang et al. (2007)
[34] computes risk measures (VaR and ES) and contributions with the saddle point method applied to the conditional MGF,
while Huang et al. (2007) [33] presents a comparative study for the calculation of VaR and VaR contributions with the Saddle
Point method, the Importance Sampling method and the Normal Approximation (i.e., ASRF) method. Takano and Hashiba
(2008) [51] proposes to calculate marginal contributions using a numerical Laplace transform inversion of the MGF. Recently,
Masdemont and Ortiz-Gracia (2014) [44] applies a Fast Expansion Wavelet Approximation to the unconditional MGF for the
calculation of VaR, ES and contributions, through numerically optimized techniques.
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Figure 5: Systematic contribution as a function of α for the diversification portfolio (PCA-based calibration).

Figure 6: Systematic contribution as a function of α for the hedge portfolio (PCA-based calibration).

Configurations: (1) Equity - P1; (2) Equity - P1 - Shrinked; (3) Equity - P1 - Exogenous Factors; (4) Equity - P2; (5) Equity
- P2 - Shrinked; (6) Equity - P2 - Exogenous Factors; (7) IRBA; (8) KMV - P2; (9) CDS - P2. J∗-factor model is only active
for “(1) Equity – P1” and “(2) Equity – P2” configurations.
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In the diversification portfolio, regarding the systematic risk as a function of α (cf. Figure (5)), we

observe a high level of systematic contribution to the overall risk for configurations with a high level of

average pairwise correlations (cf. Figure (2)). Moreover, for all configurations, since extreme values of

the systematic factors lead to the simultaneous default of numerous dependent issuers, CV aR
ϕS

[L, α] is an

increasing function of α (also true for the hedge portfolio).

In the hedge portfolio, regarding the systematic risk as a function of α (cf. Figure (6)), we observe much

smaller levels of systematic contributions than in the diversification portfolio. Strikingly, the one-factor

and two-factor approximationsmay be inoperable andmisleading: themajority of the risk being explained

by the other terms of the Hoeffding decomposition.

Overall, the risk contribution analysis provides informative conclusions on the modeling assumptions.

Based on our numerical simulations, the conditional approach (the Large Pool Approximation) used for

the banking book should not be transposed for the trading book where typical long-short portfolios may

contain significant non-systematic risk components.

5. Conclusions

Assessment of default risk in the trading book is a key point in the Fundamental Review of the Trading

Book. Within the current Committee’s approach, the dependence structure of defaults has to be modeled

through a systematic factor model with constraints on (i) the calibration data of the initial correlation

matrix and (ii) on the number of factors in the underlying correlation structure.

Based on representative long-only and long-short portfolios, this paper has considered the practical

implications of such modeling constraints for both the future DRC prescription and the current Basel

2.5 IRC built on constrained and unconstrained factor models. Various correlation structures have been

considered. Based on a structural-type credit model, we assessed the impacts on the VaR (at various

confidence levels) of the calibration data as well as those of the estimation method of the correlation

structures and the chosen number of factors. Hoeffding decomposition of portfolio exposures to factor

and specific risks has been introduced to quantify systematic and specific contributions to the credit VaR.
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The comparative analysis of risk factors modeling allows us to gauge the relevance of the Committee’s

proposals of prescribing model and calibration procedure, to reduce the RWA variability and to increase

comparability among financial institutions. The key insights of our empirical analysis are the following:

– The main source of DRC variability is the high confidence level of the regulatory risk measure. As

expected, α = 0.999 gives rise to significant discrepancies among configurations (i.e. calibration

data) and among the constrained models we tested. It is noteworthy that forα = 0.99, risk measures

are less dispersed and therefore less prone to model risk. Using this confidence level might be

counterbalanced by a multiplier adjustment factor35. We think this should be accounted for in future

benchmarking exercises.

– Another important source of DRC variability are the disparities among correlation matrices. This

may be due to the type of data (Equity returns, CDS spread returns,...) and/or the calibration

period. Therefore, within the current Committee’s approach, financial institutions could be led

to take arbitrary choices regarding the calibration of the default correlation structure. This may

then cause an ill-favored variability in the DRC making the comparison among institutions harder.

Apart from disclosure of the data retained for correlation estimates, one possibility could be to use

IRB type regulatory prescribed correlations as in the banking book approach. A possibility would

be a disclosure of RWA computed with such prescribed correlations and would mitigate the issue

of moving assets across the trading/booking books boundary.

– The strength of the two-factor constraint depends on the smoothness of the pairwise correlations

frequencies in the initial correlation matrix: the more dispersed the underlying correlation structure,

the greater the number of factors needed to approximate it. On the contrary, the estimation methods

for both the initial correlation (standard or shrinked estimators) and the factor-based correlation

matrices (SPG-based or PCA-based algorithms) have smaller effects, at least on the diversification

portfolio (long-only exposures).

35In the earlier charges of the Basel II agreements, a confidence level of α = 0.995 has been envisaged. But, then a
confidence level of α = 0.999 was retained. The motivation was that Tier 1 was most restricted to hard capital, which is no
longer the case in the Basel III agreements.
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– The impact of the correlation structure on the risk measure mainly depends on the composition

of the portfolio (long-only or long-short). For the particular case of a diversification portfolio

(long-only exposures) with a smooth correlation structure (e.g. estimated on non-stressed equity

returns), constrained factormodels (mostlywhen considering at least two factors) and unconstrained

model produce almost similar risk measure. For the specific case of a hedge portfolio (long-short

exposures) for which widely dispersed pairwise equity or CDS-spread correlations and far tail risks

(99.9%-VaR) are jointly considered, cliff effects arise from discreteness of loss: small changes in

exposures or other parameters (default probabilities) may lead to significant changes in the credit

VaR, jeopardizing the comparability of RWA.

Overall, the usefulness of the two-factor constraint can be challenged:

– In our case study, it drives down the VaR. Moreover, it is unclear whether it would enhance model

comparability and reduce the RWAs variability.

– On the other hand, the Committee’s prescriptionsmight prove quite useful when dealing with a large

number of assets. In such a framework, reasonably standard for large financial institutions with

active credit trading activities, the unconstrained empirical correlation matrix would be associated

with zero or small eigenvalues. This would ease the building of opportunistic portfolios, seemingly

with low risk and would jeopardize the reliance on internal models.

Eventually, when it comes to long/short portfolios, the use of Large Pool Approximation is questionable,

since it contributes poorly to the overall credit VaR.
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